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Abstract

We present a Bayesian nonparametric model for genetic sequence data in which
a set of genetic sequences is modelled using a Markov model of partitions. The
partitions at consecutive locations in the genome are related by the splitting and
merging of their clusters. Our model can be thought of as a discrete analogue of
the continuous fragmentation-coagulation process [Teh et al 2011], preserving the
important properties of projectivity, exchangeability and reversibility, while being
more scalable. We apply this model to the problem of genotype imputation, show-
ing improved computational efficiency while maintaining accuracies comparable
to other state-of-the-art genotype imputation methods.

1 Introduction

The increasing availability of genetic data (for example, from the Thousand Genomes project [1])
and the importance of genetics in scientific and medical applications requires the development of
scalable and accurate models for genetic sequences which are informed by genetic processes. Al-
though standard models such as the coalescent with recombination [2] are accurate, they suffer from
intractable posterior computations. To address this, various hidden Markov model (HMM) based
approaches have been proposed in the literature as more scalable alternatives (e.g. [3, 4]).

Due to gene conversion and chromosomal crossover, genetic sequences exhibit a local ‘mosaic’-like
structure wherein sequences are composed of prototypical segments called haplotypes [5]. Locally,
these prototypical segments are shared by a cluster of sequences: each sequence in the cluster is
described well by a haplotype that is specific to the location on the chromosome of the cluster. An
example of such a structure is shown in Figure 1. HMMs can capture this structure by having each
latent state correspond to one of the haplotypes [3, 6]. Unfortunately, this leads to symmetries in
the posterior distribution arising from the nonidentifiability of the state labels [7, 8]. Furthermore,
current state-of-the-art HMM methods often involve costly model selection procedures in order to
choose the number of latent states.

A continuous fragmentation-coagulation process (CFCP) has recently been proposed for modelling
local mosaic structure in genetic sequences [9]. The CFCP is a nonparametric models defined di-
rectly on unlabelled partitions thereby avoiding both costly model selection and the label switching
problem [8]. Although inference algorithms derived for the CFCP scale linearly in the number and
length of the sequences [9], since the CFCP is a Markov jump process the computational overhead
needed to model the arbitrary number of latent events located between two consecutive observations
might preclude scalability to large datasets.

In this work, we present a novel fragmentation-coagulation process defined on a discrete grid (called
the DFCP) which provides the advantages of the CFCP while being more scalable. The DFCP
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Figure 1: Haplotype structure of the CEU and YRI populations from HapMap [10] found by DFCP.
Data consists of single nucleotide polymorphisms (SNPs) from TAP2 gene. Horizontal axis indi-
cates SNP location and label. Vertical axis represents clusters from last sample of an MCMC chain
converging to DFCP posterior. Letters inside clusters indicate base identity.

describes location-dependent unlabelled partitions such that at each location on the chromosome the
clusters will split into multiple clusters which then merge to form the clusters at the next location. As
with the CFCP, the DFCP avoids the label switching problem by defining a probability distribution
directly on the space of unlabelled partitions.

The splitting and merging of clusters across the chromosome forms a mosaic structure of haplotypes.
Figure 1 gives an example of the structure discovered by the DFCP. We describe the DFCP in
section 2, and a forward-backward inference algorithm in section 3. Sections 4 and 5 report some
experimental results showing good performance on an imputation problem, and in section 6 we
conclude.

2 The discrete fragmentation-coagulation process

In humans, most of the bases on a chromosome are the same for all individuals in a population.
Genetic variations arise through mutations such as single nucleotide polymorphisms (SNPs), which
are locations in the genome where a single base was altered by a mutation at some time in the
ancestry of the chromosome. At each SNP location, a particular chromosome has one of usually two
possible bases (referred to as the major and minor allele). Consequently, SNP data for a chromosome
can be modelled as a binary sequence, with each entry indicating which of the two bases is present
at that location. In this paper we consider SNP data consisting of n binary sequences x = (xi)

n
i=1,

where each sequence xi = (xit)
T
t=1 is of length T and corresponds to the T SNPs on a segment of

a chromosome in an individual. The t-th entry xit of sequence i is equal to zero if individual i has
the major allele at location t and equal to one otherwise.

We will model these sequences using a discrete fragmentation-coagulation process (DFCP) so that
the sequence values at the SNP at location t are described by the latent partition πt of the sequences.
Each cluster in the partition corresponds to a haplotype. The DFCP models the sequence of partitions
using a discrete Markov chain as follows: starting with πt, we first fragment each cluster in πt into
smaller clusters, forming a finer partition ρt. Then we coagulate the clusters in ρt to form the clusters
of πt+1. In the remainder of this section, we will first give some background theory on partitions, and
random fragmentation and coagulation operations and then we will describe the DFCP as a Markov
chain over partitions. Finally, we will describe the likelihood model used to relate the sequence of
partitions to the observed sequences.

2.1 Random partitions, fragmentations and coagulations

A partition of a set S is a clustering of S into non-overlapping non-empty subsets of S whose union
is all of S. The Chinese restaurant process (CRP) forms a canonical family of distributions on
partitions. A random partition π of a set S is said to follow the law CRP(S, α, σ) if:

Pr(π) =
[α+ σ]#π−1σ

[α+ 1]#S−11

∏
a∈π

[1− σ]#a−11 (1)

where [x]nd = (x)(x+ d) . . . (x+ (n− 1)d) is Kramp’s symbol and α > −σ, σ ∈ [0, 1) are the con-
centration and discount parameters respectively [11]. A CRP can also be described by the following
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analogy: customers (elements of S) enter a Chinese restaurant and choose to sit at tables (clusters in
π). The first customer chooses any table. Subsequently, the i-th customer sits at a previously chosen
table a with probability proportional to #a−σ where #a is the number of customers already sitting
there and at some unoccupied table with probability proportional to α+ σ#π where #π is the total
number of tables already sat at by previous customers.

The fragmentation and coagulation operators are random operations on partitions. The fragmenta-
tion FRAG(π, α, σ) of a partition π is formed by partitioning further each cluster a of π according
to CRP(a, α, σ) and then taking the union of the resulting partitions, yielding a partition of S that
is finer than π. Conversely, the coagulation COAG(π, α, σ) of π is formed by partitioning the set of
clusters of π (i.e., the set π itself) according to CRP(π, α, σ) and then replacing each cluster with the
union of its elements, yielding a partition that is coarser than π. The fragmentation and coagulation
operators are linked through the following theorem by Pitman [12].

Theorem 1. Let S be a set and let A1, B1, A2, B2 be random partitions of S such that:
A1 ∼ CRP(S, ασ2, σ1σ2), B1|A1 ∼ FRAG(A1,−σ1σ2, σ2),

B2 ∼ CRP(S, ασ2, σ2), A2|B2 ∼ COAG(B2, α, σ1).

Then, for all partitions A and B of the set S such that B is a refinement of A:
Pr(A1 =A,B1 =B) = Pr(A2 =A,B2 =B). (2)

2.2 The discrete fragmentation-coagulation process

The DFCP is parameterized by a concentration µ > 0 and rates (Rt)
T−1
t=1 with Rt ∈ [0, 1). Under

the DFCP, the marginal distribution of the partition πt is CRP(S, µ, 0) and so µ controls the number
of clusters that are found at each location. The rate parameterRt controls the strength of dependence
between πt and πt+1, with Rt = 0 implying that πt = πt+1 and Rt → 1 implying independence.

Given µ and (Rt)
T−1
t=1 , the DFCP on a set of sequences indexed by the set S = {1, . . . , n} is de-

scribed by the following Markov chain. First we draw a partition π1 ∼ CRP(S, µ, 0). This CRP
describes the clustering of S at location t = 1. Subsequently, we draw ρt|πt from FRAG(πt, 0, Rt),
which fragments each of the clusters in πt into smaller clusters in ρt, and then πt+1|ρt from
COAG(ρt, µ/Rt, 0), which coagulates clusters in ρt into larger clusters in πt+1.

Each πt has CRP(S, µ, 0) as its invariant marginal distribution and each ρt is marginally distributed
as CRP(S, µ,Rt). This can be seen by applying Theorem 1 with the substitution σ1 = 0, σ2 =Rt,
α = µ/Rt. In population genetics the CRP appears as (and was predated by) Ewen’s sampling
formula [13], a counting formula for the number of alleles appearing in a population, observed at
a given location. Over a short segment of the chromosome where recombination rates are low,
haplotypes behave like alleles and so a CRP prior on the number of haplotypes at a location is
reasonable.

Further, since fragmentation and coagulation operators are defined in terms of CRPs which are pro-
jective and exchangeable, the Markov chain is projective and exchangeable in S as well. Projectivity
and exchangeability are desirable properties for Bayesian nonparametric models because they imply
that the marginal distribution of a given data item does not depend on the total number of other data
items or on the order in which the other data items are indexed. In genetics, this captures the fact
that usually only a small subset of a population is observed.

Finally, the theorem also shows that conditioned on πt+1, ρt has distribution FRAG(πt+1, 0, Rt)
while πt|ρt has distribution COAG(ρt, µ/Rt, 0) meaning that the Markov chain defining the DFCP
is reversible. Chromosome replication is directional and so statistics for genetic processes along the
chromosome are not reversible. But the strength of this effect on SNP data is not currently known
and many genetic models such as the coalescent with recombination [14] assume reversibility for
simplicity. The non-reversibility displayed by models such as fastPHASE is an artifact of their
construction rather than an attempt to capture non-reversible aspects of genetic sequences.

2.3 Likelihood model for sequence observations

Given the sequence of partitions (πt)
T
t=1, we model the observations in each cluster at each location

t independently. For each cluster a ∈ πt at location t, we adopt a discrete likelihood model in which

3



ρ1 ρ2 ρT−1

π1 π2 · · · πT

xi1 xi2 · · · xiT

θ1a θ2a · · · θTa

β1 β2 · · · βT

∀ 1 ≤ i ≤ n

∀ a ∈ π1 ∀ a ∈ π2 ∀ a ∈ πT

π1 ∼ CRP(S, µ, 0),

ρt|πt ∼ FRAG(πt, 0, Rt),

πt+1|ρt ∼ COAG(ρt, µ/Rt, 0),

logµ ∼ N (m, v),

logRt ∼ Uniform(logRmin, 0),

xit|ait = θtait , θta|βt ∼ Bernoulli(βt),

βt|γt ∼ Beta(
γt
2
,
γt
2

),

log γt ∼ Uniform(log γmin, 0). (3)

Figure 2: Left: Graphical model for the dis-
crete fragmentation coagulation process. Hy-
perparameters are not shown. Right: Gener-
ative process for genetic sequences xit.

the same observation is emitted for each sequence in the cluster. For each sequence i, let ait ∈ πt
be the cluster in πt containing i. Let θta be the emission of cluster a at location t. Since SNP data
has binary labels, θta ∈ {0, 1} is a Bernoulli random variable. Let the mean of θta be βt (this
is the latent allele frequency at location t). We assume that conditioned on the partitions and the
parameters, the observations xit are independent, and determined by the cluster parameter θta. Thus
the probability Pr(θta = 1|βt) = βt and the probability Pr(xit|ait = a, θta) = δ(xit = θta) where
δ is an indicator function (i.e., it is one if xit = θta and zero otherwise).

We place a beta prior on βt with mean parameter 1/2 and mass parameter γt. The mass parameters
are themselves marginally independent and we place on them an uninformative log-uniform prior
over a range: p(γt) ∝ γ−1t , γt ≥ γmin. Since this distribution is heavy tailed, the βt variables
will have more mass near 0 and 1 than they would have if γt were fixed, adding sparsity to the
latent allele frequencies. This phenomenon is empirically observed in SNP data. We also place an
uninformative log-uniform prior on Rt over a range: p(Rt) ∝ R−1t , Rt ≥ Rmin. Note that the
prior gives more mass to values of Rt close to Rmin which we set close to zero, since we expect
the partitions of consecutive locations to be relatively similar so that the mosaic haplotype structure
can be formed. Finally, we place a truncated log-normal prior on µ with mean m and variance v:
logµ ∼ N (m, v), µ > 0. The graphical model for this generative process is shown in Figure 2.

2.4 Relationship with the continuous fragmentation-coagulation process

The continuous version of the fragmentation-coagulation process [9], which we refer to as the CFCP,
is a partition valued Markov jump process (MJP). (The ‘time’ variable for this MJP is the chromo-
some location, viewed as a continuous variable.) The CFCP is a pure jump process and can be
defined in terms of its rates for various jump events. There are two types of events in the CFCP:
binary fragmentation events, in which a single cluster a is split into two clusters b and c at a rate of
RΓ(#b)Γ(#c)/Γ(#a), and binary coagulation events in which two clusters b and c merge to form
one cluster a at a rate of R/µ.

As was shown in [9] the CFCP can be realised as a continuous limit of the DFCP. Consider a DFCP
with concentration µ and constant rate parameter Rε. Then as ε → 0 the probability that the
coagulation and fragmentation operations at a specific time step t induce no change in the partition
structure πt approaches 1. Conversely, the probability that these operations are the binary events
given above scales as O(ε), while all other events scale as larger powers of ε. If we rescale the time
steps by t 7→ εt, then the expected number of binary events over a finite interval approaches ε times
the rates given above and the expected number of all other events goes to zero, yielding the CFCP.

In the CFCP fragmentation and coagulation events are binary: they involve either one cluster frag-
menting into two new clusters, or two clusters coagulating into one new cluster. However, for the
DFCP the fragmentation and coagulation operators can describe more complicated haplotype struc-
tures without introducing more latent events. For example one cluster splitting into three clusters
(as happens to the second haplotype from the top of Figure 1 after the 18th SNP) can be described
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by the DFCP using just one fragmentation operator. The order of the latent events introduced by the
CFCP required does not matter, adding unnecessary symmetry to its posterior.

3 Inference with the discrete fragmentation coagulation process

We derive a Gibbs sampler for posterior simulation in the DFCP by making use of the exchangeabil-
ity of the process. Each iteration of the sampler updates the trajectory of cluster assignments of one
sequence i through the partition structure. To arrive at the updates, we first derive the conditional
distribution of the i-th trajectory given the others, which can be shown to be a Markov chain. Cou-
pled with the deterministic likelihood terms, we then use a backwards-filtering/forwards-sampling
algorithm to obtain a new trajectory for sequence i. In this section, we derive the conditional dis-
tribution of trajectory i using the definition of fragmentation and coagulation and also the posterior
distributions of the parameters Rt, µ which we will update using slice sampling [15].

3.1 Conditional probabilities for the trajectory of sequence i

We will refer to the projection of the partitions πt and ρt onto S − {i} by π−it and ρ−it respectively.
Let at (respectively bt) be the cluster assignment of sequence i at location t in πt (respectively ρt).
If the sequence i is placed in a new cluster by itself in πt (i.e., it forms a singleton cluster) we will
denote this by at = ∅ and for ρ−it we will denote the respective event by bt = ∅. Otherwise, if
the the sequence i is placed in an existing cluster in π−it (respectively ρ−it ) we will denote this by
at ∈ π−it (respectively bt ∈ ρ−it ). Thus the state spaces of at and bt are respectively π−it ∪ {∅} and
ρ−it ∪ {∅}.
Starting at t = 1, since the initial distribution is π1 ∈ CRP(S, µ, 0), the conditional cluster assign-
ment of the sequence i in π1 is given by the CRP probabilities from (1):

Pr(at = a|π−i1 ) =

{
#a/(n− 1 + µ) if a ∈ π−it ,
µ/(n− 1 + µ) if a = ∅.

(4)

To find the conditional distribution of bt given at, we use the definition of the fragmentation oper-
ation as independent CRP partitions of each cluster in πt. If at = ∅, then the sequence i is in a
cluster by itself in πt and so it will remain in a cluster by itself after fragmenting. Thus, bt = ∅
with probability 1. If at = a ∈ π−it then bt must be one of the clusters in ρt into which a fragments.
This can be a singleton cluster, in which case bt = ∅, or it can be one of the clusters in ρ−it . We will
refer to this set of clusters in ρ−it by Ft(a). Since a is fragmented according to CRP(a, 0, R), when
the i-th sequence is added to this CRP it is placed in a cluster b ∈ Ft(a) with probability propor-
tional to (#b−R) and it is placed in a singleton cluster with probability proportional to R#Ft(a).
Normalizing these probabilities yields the following joint distribution:

Pr(bt = b|at = a, π−it , ρ−it ) =


(#b−Rt)/#a if a ∈ π−it , b ∈ Ft(a),
Rt#Ft(a)/#a if a ∈ π−it , b = ∅,

1 if a = b = ∅,
0 otherwise.

(5)

Similarly, to find the conditional distribution of at+1 given bt = b we use the definition of the
coagulation operation. If b 6= ∅, then the sequence i was not in a singleton cluster in ρ−it and so it
must follow the rest of the sequences in b to the unique a ∈ π−it+1 such that b ⊆ a (i.e., b coagulates
with other clusters to form a). We will refer to the set of clusters in ρ−it that coagulate to form a by
Ct(a). If b = ∅ then the sequence i is in a singleton cluster in ρ−it and so we can imagine it being the
last customer added to the coagulating CRP(ρt, µ/Rt, 0) of the clusters of ρt. Hence the probability
that sequence i is placed in a cluster a ∈ π−it+1 is proportional to #Ct(a) while the probability that it
forms a cluster by itself in π−it+1 is proportional to µ/Rt. This yields the following joint probability:

Pr(at+1 = a|bt = b, π−it+1, ρ
−i
t ) =


1 if a ∈ π−it+1, b ∈ Ct(a),

Rt#Ct(a)/(µ+Rt#ρ
−i
t ) if a ∈ π−it+1, b = ∅,

µ/(µ+Rt#ρ
−i
t ) if a = b = ∅,

0 otherwise.

(6)

5



3.2 Message passing and sampling for the sequences of the DFCP

Once the conditional probabilities are defined, it is straightforward to derive messages that allow
us to conduct backwards-filtering/forwards-sampling to resample the trajectory of sequence i in the
DFCP. This provides an exact Gibbs update for the trajectory of that sequence conditioned on the
trajectories of all the other sequences and the data. The messages we will define are the conditional
distribution of all the data seen after a given location in the sequence conditioned on the cluster
assignment of sequence i at that location. The messages are defined as follows:

mt
C(a) = Pr(xi,(t+1):T |at = a, π−it:T , ρ

−i
t:(T−1)). (7)

mt
F (b) = Pr(xi,(t+1):T |bt = b, π−it:T , ρ

−i
t:(T−1)). (8)

We define the last messages to be mT
C (a) = 1. These messages are computed as follows:

mt
F (b) =

∑
a∈π−i

t+1∪{∅}

mt+1
C (a) δ(xi,(t+1) = θ(t+1),a)︸ ︷︷ ︸

Likelihood.

Pr(at+1 = a|bt = b, π−it+1, ρ
−i
t )︸ ︷︷ ︸

Coagulation probabilities from (6).

. (9)

mt
C(a) =

∑
b∈ρ−i

t ∪{∅}

mt
F (b) Pr(bt = b|at = a, π−it , ρ−it )︸ ︷︷ ︸

Fragmentation probabilities from (5).

. (10)

As the fragmentation and coagulation conditional probabilities are only supported for clusters a, b
such that b ⊆ a, these sums can be expanded so that only non-zero terms are summed over. For
simplicity we do not provide these expanded forms here. Given these computations it is easy to
define backwards messages using the reversibility of the process. The backwards messages can be
used to compute marginal probabilities of the observation as in the forward-backward algorithm.

To sample from the posterior distribution of the trajectory for sequence i conditioned on the other
trajectories and the data, we use the Markov property for the chain a1, b1, . . . , bT−1, aT and the
definition of the messages. Starting at location 1, we have:

Pr(a1 = a|xi, π−i1:T , ρ
−i
1:(T−1))

∝Pr(a1 = a|π−i1 ) Pr(xi1|a1 = a) Pr(xi,2:T |a1 = a, π−i1:T , ρ
−i
1:(T−1)),

= Pr(a1 = a|π−i1 )︸ ︷︷ ︸
CRP probabilities (1).

δ(x1 = θ1a)︸ ︷︷ ︸
Likelihood.

m1
C(a). (11)

For subsequent bt and at+1 for locations t = 1, . . . , T − 1,

Pr(bt = b|at = a, xi, π
−i
1:T , ρ

−i
1:(T−1))

∝Pr(bt = b|at = a, π−it , ρ−it ) Pr(xi,(t+1):T |bt = b, π−it:T , ρ
−i
t:(T−1)),

= Pr(bt = b|at = a, π−it , ρ−it )︸ ︷︷ ︸
Fragmentation probabilities from (5).

mt
F (b). (12)

Pr(at = a|bt−1 = b, xi, π
−i
1:T , ρ

−i
1:(T−1))

∝Pr(at = a|bt−1 = b, π−it , ρ−it−1) Pr(xit|at = a) Pr(xi,(t+1):T |at = a, π−it:T , ρ
−i
t:(T−1)),

= Pr(at = a|bt−1 = b, π−it , ρ−it−1)︸ ︷︷ ︸
Coagulation probability from (6).

δ(xit = θta)︸ ︷︷ ︸
Likelihood.

mt
C(a). (13)

The complexity of this update isO(KT ) whereK is the expected number of clusters in the posterior.
This complexity class is the same as for the continuous fragmentation-coagulation process and other
related HMM methods such as fastPHASE. But there is no exact Gibbs update for the trajectories in
the CFCP. Instead the CFCP sampler relies on uniformization [16] which has slower mixing times
than exact Gibbs and so the update for the DFCP is, theoretically, more efficient.

3.3 Parameter updates

We use slice sampling [15] to update the µ and Rt parameters conditioned on the partition structure.
Using Bayes’ rule, the definition (3) of the DFCP, and the identity [a]nb = bnΓ(a/b + n)/Γ(a/b),
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Figure 3: Allele imputation for X chromosomes from the Thousand Genomes project. Left:
Accuracy for prediction of held out alleles for continuous (CFCP) and discrete (DFCP) versions of
fragmentation-coagulation process and for popular methods BEAGLE and fastPHASE. 90% miss-
ing data condition truncates BEAGLE accuracies to emphasize other conditions. Right: Runtime
versus accuracy for 500 MCMC iterations for DFCP and CFCP in 50% missing data condition.
Points are averaged over 20 datasets and 25 consecutive samples.

the posterior probabilities of µ and Rt given the partitions π1:T and ρ1:(T−1) are as follows:

Pr(µ|π, ρ) ∝ Pr(µ) Pr(π1|µ,R1) Pr(ρ1|π1, µ,R1) · · ·Pr(πT |ρT−1, µ,RT−1),

∝ Pr(µ)
Γ(µ)

Γ(µ+ n)
µ−T+

∑T
t=1 #πt

T−1∏
t=1

Γ(µ/Rt)

Γ(µ/Rt + #ρt)
. (14)

Pr(Rt|π, ρ, µ) ∝ Pr(Rt) Pr(ρt|πt, µ,Rt) Pr(πt+1|ρt, µ,Rt),

∝ Pr(Rt)R
#ρt−#πt−#πt+1+1
t

Γ(µ/Rt)Γ(1−Rt)−#ρt
Γ(#ρt + µ/Rt)

∏
b∈ρt

Γ(#b−Rt). (15)

4 Experiments

To examine the accuracy and scalability of the DFCP we conducted an allele imputation experiment
on SNP data from the Thousand Genomes project1. We also compared the runtime of the samplers
for the DFCP and CFCP on data simulated from the coalescent with recombination model [14]. In
this section, we describe the setup of these experiments and in section 5 we present the results.

For the allele imputation experiment, we considered SNPs from 524 male X chromosomes. We
chose 20 intervals randomly, each containing 500 consecutive SNPs. In five conditions we held out
nested sets of between 10% and 90% of the alleles uniformly over all pairs of sites and individuals,
and used fastPHASE [3], BEAGLE [17], CFCP [9] and the DFCP to predict the held out alleles.

We used the most recent versions of BEAGLE and fastPHASE software available to us. We imple-
mented the DFCP with many of the same libraries and programming techniques as the CFCP and
both versions were optimized. In each missing data condition, the CFCP and DFCP were run with
five random restarts and 46 MCMC iterations per restart (26 of which were discarded for burnin and
thinning). The accuracies for the DFCP and CFCP were computed by thresholding the empirical
marginal probabilities of the held out alleles at 0.5. The priors on the hyper parameters and the
likelihood specification of the two models were matched and the samplers were initialized using a
sequential Monte Carlo method based on the trajectory updates.

The posterior distributions of the concentration parameter µ for the two methods are different. In
order to match the expected number of clusters in the posterior, we also conducted allele imputation
in the 50% missing data condition with µ fixed at 10.0 for both models. We simulated 500 MCMC
iterations with no random restarts. We then computed the accuracy of the samples by predicting
held out alleles based on the cluster assignments of the sample.

1March 2012 v3 release of the Thousand Genomes Project.
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In a second experiment we simulated datasets from the coalescent with recombination model con-
sisting of between 10,000 and 50,000 sequences using the software ms [14]. We conducted posterior
MCMC simulation in both models and compared the computation time required per iteration.

5 Results

The accuracy of the DFCP in the allele imputation experiment was comparable to that of the CFCP
and fastPHASE in all missing data conditions (Figure 3, left). For the 70% and 90% missing data
conditions, BEAGLE performed poorly (its median accuracy for this condition was 93.90% and
mean at chance accuracy for all conditions was 93.44%). In Figure 3(right) we compare the accuracy
and runtime for the 50% missing data condition. This figure shows that the runtime required for each
iteration is lower for the DFCP and the sequential Monte Carlo initialization is better (i.e., closer
to a posterior mode) for the DFCP. No difference in mixing time is suggested by the figure. As an
aside, we estimated the Shannon entropy in these samples and found that the DFCP had slightly
more entropy per sample than the CFCP (the difference was small but statistically significant). This
could indicate that the DFCP has better mixing.

For the second experiment, we plot the runtime per iteration of both models against the number
of sequences in the simulated dataset (Figure 4). The DFCP was around 2.5 times faster than the
CFCP for the condition with 50,000 sequences. In both models, most of the computation time was
spent calculating the messages in the backwards-filtering step. The CFCP has an arbitrary number of
latent events between consecutive observations and it is likely that the runtime improvement shown
by the DFCP is due to its reduced number of required message calculations.

6 Discussion
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Figure 4: Runtimes per iteration per sequence of
DFCP and CFCP on simulated datasets consist-
ing of large numbers of sequences. Lines indicate
mean. Shaded region indicates standard deviation.

In this paper we have presented a discrete
fragmentation-coagulation process. The DFCP
is a partition-valued Markov chain, where par-
titions change along the chromosome by a frag-
mentation operation followed by a coagulation
operation. The DFCP is designed to model
the mosaic haplotype structure observed in ge-
netic sequences. We applied the DFCP to an al-
lele prediction task on data from the Thousand
Genomes Project yielding accuracies compa-
rable to state-of-the-art methods and runtimes
that were lower than the runtimes of the contin-
uous fragmentation-coagulation process [9].

The DFCP and CFCP induce different joint dis-
tributions on the partitions at adjacent locations.
The CFCP is a Markov jump process with an ar-
bitrary number of latent binary events wherein
a single cluster is split into two clusters, or two clusters are merged into one. The DFCP however
can model any partition structure with one pair of fragmentation and coagulation operations. Ex-
act Gibbs updates for the partitions are possible in the DFCP whereas sampling in the CFCP uses
uniformization [16] which, although fast in practice, has in theory slower mixing than exact Gibbs.

In future work we will explore better calling and calibration methods to improve imputation ac-
curacies. Another avenue of future research is to understand how other genetic processes can be
incorporated into the fragmentation-coagulation framework, including population admixture and
gene conversion. Although haplotype structure is a local property, the Markov assumption does not
hold in real genetic data. This could be reflected through hierarchical FCP models or adaptation of
other dependent nonparametric models such as the spatially normalized Gamma process [18].
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