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1 Estimation of low-rank graphs with autoregressive features

Our approach is based on the asumption that features can explain most of the information contained
in the graph, and that these features are evolving with time. We make the following assumptions
about the sequence (At)t≥0 of adjacency matrices of the graphs sequence.

Low-Rank. We assume that the matrices At have low-rank. This reflects the presence of highly
connected groups of nodes such as communities in social networks, or product categories and groups
of loyal/fanatic users in a market place data, and is sometimes motivated by the small number of
factors that explain nodes interactions.

Autoregressive linear features. We assume to be given a linear map ω : Rn×n → Rd defined by

ω(A) =
(
〈Ω1, A〉, · · · , 〈Ωd, A〉

)
, (1)

where (Ωi)1≤i≤d is a set of n×n matrices. These matrices can be either deterministic or random in
our theoretical analysis, but we take them deterministic for the sake of simplicity. The vector time
series (ω(At))t≥0 has autoregressive dynamics, given by a VAR (Vector Auto-Regressive) model:

ω(At+1) = W>0 ω(At) +Nt+1,

where W0 ∈ Rd×d is a unknown sparse matrix and (Nt)t≥0 is a sequence of noise vectors in Rd.
An example of linear features is the degree (i.e. number of edges connected to each node, or the sum
of their weights if the edges are weighted), which is a measure of popularity in social and commerce
networks. Introducing

XT−1 = (ω(A0), . . . , ω(AT−1))> and XT = (ω(A1), . . . , ω(AT ))>,

which are both T × d matrices, we can write this model in a matrix form:

XT = XT−1W0 + NT , (2)

where NT = (N1, . . . , NT )>.

This assumes that the noise is driven by time-series dynamics (a martingale increment), where each
coordinates are independent (meaning that features are independently corrupted by noise), with a
sub-gaussian tail and variance uniformly bounded by a constant σ2. In particular, no independence
assumption between the Nt is required here.

Notations. The notations ‖·‖F , ‖·‖p, ‖·‖∞, ‖·‖∗ and ‖·‖op stand, respectively, for the Frobenius
norm, entry-wise `p norm, entry-wise `∞ norm, trace-norm (or nuclear norm, given by the sum of the
singular values) and operator norm (the largest singular value). We denote by 〈A,B〉 = tr(A>B)
the Euclidean matrix product. A vector in Rd is always understood as a d × 1 matrix. We denote
by ‖A‖0 the number of non-zero elements of A. The product A ◦ B between two matrices with
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matching dimensions stands for the Hadamard or entry-wise product between A and B. The matrix
|A| contains the absolute values of entries of A. The matrix (M)+ is the componentwise positive
part of the matrix M, and sgn(M) is the sign matrix associated toM with the convention sgn(0) = 0

If A is a n × n matrix with rank r, we write its SVD as A = UΣV > =
∑r
j=1 σjujv

>
j where

Σ = diag(σ1, . . . , σr) is a r × r diagonal matrix containing the non-zero singular values of A in
decreasing order, and U = [u1, . . . , ur], V = [v1, . . . , vr] are n× r matrices with columns given by
the left and right singular vectors ofA. The projection matrix onto the space spanned by the columns
(resp. rows) of A is given by PU = UU> (resp. PV = V V >). The operator PA : Rn×n → Rn×n
given by PA(B) = PUB + BPV − PUBPV is the projector onto the linear space spanned by the
matrices ukx> and yv>k for 1 ≤ j, k ≤ r and x, y ∈ Rn. The projector onto the orthogonal space is
given by P⊥A (B) = (I − PU )B(I − PV ). We also use the notation a ∨ b = max(a, b).

1.1 Joint prediction-estimation through penalized optimization

In order to reflect the autoregressive dynamics of the features, we use a least-squares goodness-of-
fit criterion that encourages the similarity between two feature vectors at successive time steps. In
order to induce sparsity in the estimator of W0, we penalize this criterion using the `1 norm. This
leads to the following penalized objective function:

J1(W ) =
1

dT
‖XT −XT−1W‖2F + κ‖W‖1,

where κ > 0 is a smoothing parameter.

Now, for the prediction of AT+1, we propose to minimize a least-squares criterion penalized by the
combination of an `1 norm and a trace-norm. This mixture of norms induces sparsity and a low-rank
of the adjacency matrix. Such a combination of `1 and trace-norm was already studied in [3] for the
matrix regression model, and in [8] for the prediction of an adjacency matrix.

The objective function defined below exploits the fact that if W is close to W0, then the features of
the next graph ω(AT+1) should be close to W>ω(AT ). Therefore, we consider

J2(A,W ) =
1

d
‖ω(A)−W>ω(AT )‖2F + τ‖A‖∗ + γ‖A‖1,

where τ, γ > 0 are smoothing parameters. The overall objective function is the sum of the two
partial objectives J1 and J2, which is jointly convex with respect to A and W :

L(A,W )
.
=

1

dT
‖XT −XT−1W‖2F +κ‖W‖1 +

1

d
‖ω(A)−W>ω(AT )‖22 + τ‖A‖∗+γ‖A‖1, (3)

If we choose convex conesA ⊂ Rn×n andW ⊂ Rd×d, our joint estimation-prediction procedure is
defined by

(Â, Ŵ ) ∈ arg min
(A,W )∈A×W

L(A,W ). (4)

It is natural to take W = Rd×d and A = (R+)n×n since there is no a priori on the values of the
feature matrix W0, while the entries of the matrix AT+1 must be positive.

In the next section we propose oracle inequalities which prove that this procedure can estimate W0

and predict AT+1 at the same time.

1.2 Main result

The central contribution of our work is to bound the prediction error with high probability under the
following natural hypothesis on the noise process.

Assumption 1. We assume that (Nt)t≥0 satisfies E[Nt|Ft−1] = 0 for any t ≥ 1 and that there is
σ > 0 such that for any λ ∈ R and j = 1, . . . , d and t ≥ 0:

E[eλ(Nt)j |Ft−1] ≤ eσ
2λ2/2.

Moreover, we assume that for each t ≥ 0, the coordinates (Nt)1, . . . , (Nt)d are independent.
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The main result can be summarized as follows. The prediction error and the estimation error can be
simultaneously bounded by the sum of three terms that involve homogeneously (a) the sparsity, (b)
the rank of the adjacency matrix AT+1, and (c) the sparsity of the VAR model matrix W0. The tight
bounds we obtain are similar to the bounds of the Lasso and are upper bounded by:

C1

√
log d

Td2
‖W0‖0 + C2

√
log n

d
‖AT+1‖0 + C3

√
log n

d
rankAT+1 .

The positive constants C1, C2, C3 are proportional to the noise level σ. The interplay between the
rank and sparsity constraints on AT+1 are reflected in the observation that the values of C2 and C3

can be changed as long as their sum remains constant.

2 Oracle inequalities

In this section we give oracle inequalities for the mixed prediction-estimation error which is given,
for any A ∈ Rn×n and W ∈ Rd×d, by

E(A,W )2 .
=

1

d
‖(W −W0)>ω(AT )− ω(A−AT+1)‖22 +

1

dT
‖XT−1(W −W0)‖2F . (5)

It is important to have in mind that an upper-bound on E implies upper-bounds on each of
its two components. It entails in particular an upper-bound on the feature estimation error
‖XT−1(Ŵ − W0)‖F that makes ‖(Ŵ − W0)>ω(AT )‖2 smaller and consequently controls the
prediction error over the graph edges through ‖ω(Â−AT+1)‖2.

The upper bounds on E given below exhibit the dependence of the accuracy of estimation and pre-
diction on the number of features d, the number of edges n and the number T of observed graphs in
the sequence.

Let us recall NT = (N1, . . . , NT )> and introduce the noise processes

M = −
d∑
j=1

(NT+1)jΩj and Ξ =

T+1∑
t=1

ω(At−1)N>t ,

which are, respectively, n × n and d × d random matrices. The source of randomness comes from
the noise sequence (Nt)t≥0, see Assumption 1. If these noise processes are controlled correctly, we
can prove the following oracle inequalities for procedure (4). The next result is an oracle inequality
of slow type (see for instance [1]), that holds in full generality.

Theorem 1. Let (Â, Ŵ ) be given by (4) and suppose that

τ ≥ 2α

d
‖M‖op, γ ≥ 2(1− α)

d
‖M‖∞ and κ ≥ 2

dT
‖Ξ‖∞ (6)

for some α ∈ (0, 1). Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 + 2τ‖A‖∗ + 2γ‖A‖1 + 2κ‖W‖1

}
.

For the proof of oracle inequalities of fast type, the restricted eigenvalue (RE) condition introduced
in [1] and [4, 5] is of importance. Restricted eigenvalue conditions are implied by, and in gen-
eral weaker than, the so-called incoherence or RIP (Restricted isometry property, [2]) assumptions,
which excludes, for instance, strong correlations between covariates in a linear regression model.
This condition is acknowledged to be one of the weakest to derive fast rates for the Lasso (see [10]
for a comparison of conditions).

Matrix version of these assumptions are introduced in [6]. Below is a version of the RE assumption
that fits in our context. First, we need to introduce the two restriction cones.

The first cone is related to the ‖W‖1 term used in procedure (4). If W ∈ Rd×d, we denote by
ΘW = sign(W ) ∈ {0,±1}d×d the signed sparsity pattern of W and by Θ⊥W ∈ {0, 1}d×d the
orthogonal sparsity pattern. For a fixed matrix W ∈ Rd×d and c > 0, we introduce the cone

C1(W, c)
.
=
{
W ′ ∈ W : ‖Θ⊥W ◦W ′‖1 ≤ c‖ΘW ◦W ′‖1

}
.
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This cone contains the matrices W ′ that have their largest entries in the sparsity pattern of W .

The second cone is related to mixture of the terms ‖A‖∗ and ‖A‖1 in procedure (4). Before defining
it, we need further notations and definitions.

For a fixed A ∈ Rn×n and c, β > 0, we introduce the cone

C2(A, c, β)
.
=
{
A′ ∈ A : ‖P⊥A (A′)‖∗ + β‖Θ⊥A ◦A′‖1 ≤ c

(
‖PA(A′)‖∗ + β‖ΘA ◦A′‖1

)}
.

This cone consist of the matricesA′ with large entries close to that ofA and that are “almost aligned”
with the row and column spaces of A. The parameter β quantifies the interplay between these too
notions.
Definition 1 (Restricted Eigenvalue (RE)). For W ∈ W and c > 0, we introduce

µ1(W, c) = inf
{
µ > 0 : ‖ΘW ◦W ′‖F ≤

µ√
dT
‖XT+1W

′‖F , ∀W ′ ∈ C1(W, c)
}
.

For A ∈ A and c, β > 0, we introduce

µ2(A,W, c, β) = inf
{
µ > 0 : ‖PA(A′)‖F ∨ ‖ΘA ◦A′‖F

≤ µ√
d
‖W ′>ω(AT )− ω(A′)‖2, ∀W ′ ∈ C1(W, c),∀A′ ∈ C2(A, c, β)

}
.

The RE assumption consists of assuming that the constants µ1 and µ2 are non-zero. Now we can
state the following Theorem that gives a fast oracle inequality for our procedure using RE.

Theorem 2. Let (Â, Ŵ ) be given by (4) and suppose that

τ ≥ 3α

d
‖M‖op, γ ≥ 3(1− α)

d
‖M‖∞ and κ ≥ 3

dT
‖Ξ‖∞ (7)

for some α ∈ (0, 1). Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

+
25

36
µ1(W )2‖W‖0κ2

}
,

where µ1(W ) = µ1(W, 10) and µ2(A,W ) = µ2(A,W, 10, γ/τ) (see Definition 1).

The proofs of Theorems 1 and 2 use tools introduced in [6] and [1].

Note that the residual term from this oracle inequality mixes the notions of sparsity of A and W
via the terms rank(A), ‖A‖0 and ‖W‖0. It says that our mixed penalization procedure provides an
optimal trade-off between fitting the data and complexity, measured by both sparsity and low-rank.
This is the first result of this nature to be found in literature.

In the next Theorem 3, we obtain convergence rates for the procedure (4) by combining Theorem 2
with controls on the noise processes. We introduce

v2
Ω,op =

∥∥∥1

d

d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥1

d

d∑
j=1

ΩjΩ
>
j

∥∥∥
op
, v2

Ω,∞ =
∥∥∥1

d

d∑
j=1

Ωj ◦ Ωj

∥∥∥
∞
,

σ2
ω = max

j=1,...,d

1

T + 1

T+1∑
t=1

ωj(At−1)2,

which are the (observable) variance terms that naturally appear in the controls of the noise processes.
We introduce also

`T = 2 max
j=1,...,d

log log

(∑T+1
t=1 ωj(At−1)2

T + 1
∨ T + 1∑T+1

t=1 ωj(At−1)2
∨ e
)
,

which is a small (observable) technical term that comes out of our analysis of the noise process Ξ.
This term is a small price to pay for the fact that no independence assumption is required on the
noise sequence (Nt)t≥0, but only a martingale increment structure with sub-gaussian tails.
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Theorem 3. Consider the procedure (Â, Ŵ ) given by (4) with smoothing parameters given by

τ = 3ασvΩ,op

√
2(x+ log(2n))

d
, γ = 3(1− α)σvΩ,∞

√
2(x+ 2 log n)

d
,

κ = 6σσω
1

d

√
2e(x+ 2 log d+ `T )

T + 1

for some α ∈ (0, 1) and fix a confidence level x > 0. Then, we have

E(Â, Ŵ )2 ≤ inf
(A,W )∈A×W

{
E(A,W )2 + 25µ2(A)2 rank(A)α2σ2v2

Ω,op

2(x+ log(2n))

d

+ 25µ2(A)2‖A‖0(1− α)2σ2v2
Ω,∞

2(x+ 2 log n)

d

+ 25µ1(W )2‖W‖0σ2σ2
ω

2e(x+ 2 log d+ `T )

d2(T + 1)

}
with a probability larger than 1− 17e−x, where µ1 and µ2 are the same as in Theorem 2.

The proof of Theorem 3 follows directly from Theorem 2 basic noise control results. In the next
Theorem, we propose more explicit upper bounds for both the indivivual estimation of W0 and the
prediction of AT+1.
Theorem 4. Under the same assumptions as in Theorem 3, for any x > 0 the following inequalities
hold with a probability larger than 1− 17e−x:

1

dT
‖XT (Ŵ −W0)‖2F

≤ inf
A∈A

{1

d
‖ω(A)− ω(AT+1)‖2F +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

}
+

25

36
µ1(W0)2‖W0‖0κ2

(8)

‖Ŵ −W0‖1 ≤ 5µ1(W0)2‖W0‖0κ

+ 6
√
‖W0‖0µ1(W0) inf

A∈A

√
1

d
‖ω(A)− ω(AT+1)‖2F +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

(9)

‖Â−AT+1‖∗ ≤ 5µ1(W0)2‖W0‖0κ+ (6
√

rankAT+1 + 5β
√
‖AT+1‖0)µ2(AT+1)

× inf
A∈A

√
1

d
‖ω(A)− ω(AT+1)‖2F +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2) .

(10)

[Appendix : Proof of propositions]

A Proofs of the main results

From now on, we use the notation ‖(A, a)‖2F = ‖A‖2F +‖a‖22 and 〈(A, a), (B, b)〉 = 〈A,B〉+〈a, b〉
for any A,B ∈ RT×d and a, b ∈ Rd.

Let us introduce the linear mapping Φ : Rn×n × Rd×d → RT×d × Rd given by

Φ(A,W ) =
( 1√

T
XT−1W,ω(A)−W>ω(AT )

)
.

Using this mapping, the objective (3) can be written in the following reduced way:

L(A,W ) =
1

d

∥∥∥( 1√
T
XT , 0

)
− Φ(A,W )

∥∥∥2

F
+ γ‖A‖1 + τ‖A‖∗ + κ‖W‖1.
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Recalling that the error writes, for any A and W :

E(A,W )2 =
1

d
‖(W −W0)>ω(AT )− ω(A−AT+1)‖2F +

1

dT
‖XT−1(W −W0)‖2F ,

we have
E(A,W )2 =

1

d

∥∥Φ(A−AT+1,W −W0)‖2F .

Let us introduce also the empirical risk

Rn(A,W ) =
1

d

∥∥∥( 1√
T
XT , 0

)
− Φ(A,W )

∥∥∥2

F
.

The proofs of Theorem 1 and 2 are based on tools developped in [6] and [1]. However, the context
considered here is very different from the setting considered in these papers, so our proofs require a
different scheme.

A.1 Proof of Theorem 1

First, note that

Rn(Â, Ŵ )−Rn(A,W )

=
1

d

(
‖Φ(Â, Ŵ )‖2F − ‖Φ(A,W )‖2F − 2〈( 1√

T
XT , 0),Φ(Â−A, Ŵ −W )〉

)
.

Since
1

d

(
‖Φ(Â, Ŵ )‖2F − ‖Φ(A,W )‖2F

)
= E(Â, Ŵ )2 − E(A,W )2 +

2

d
〈Φ(Â−A, Ŵ −W ),Φ(AT+1,W0)〉,

we have

Rn(Â, Ŵ )−Rn(A,W )

= E(Â, Ŵ )2 − E(A,W )2 +
2

d
〈Φ(Â−A, Ŵ −W ),Φ(AT+1,W0)− (

1√
T
XT , 0)〉

= E(Â, Ŵ )2 − E(A,W )2 +
2

d
〈Φ(Â−A, Ŵ −W ), (− 1√

T
NT , NT+1)〉.

The next Lemma will come in handy several times in the proofs.
Lemma 1. For any A ∈ Rn×n and W ∈ Rd×d we have

〈( 1√
T
NT ,−NT+1),Φ(A,W )〉 = 〈(M,

1

T
Ξ), (A,W )〉 =

1

T
〈W,Ξ〉+ 〈A,M〉.

This Lemma follows from a direct computation, and the proof is thus omitted. This Lemma entails,
together with (4), that

E(Â, Ŵ )2 ≤ E(A,W )2 +
2

dT
〈Ŵ −W,Ξ〉+

2

d
〈Â−A,M〉

+ τ(‖A‖∗ − ‖Â‖∗) + γ(‖A‖1 − ‖Â‖1) + κ(‖W‖1 − ‖Ŵ‖1).

Now, using Hölder’s inequality and the triangle inequality, and introducing α ∈ (0, 1), we obtain

E(Â, Ŵ )2 ≤ E(A,W )2 +
(2α

d
‖M‖op − τ

)
‖Â‖∗ +

(2α

d
‖M‖op + τ

)
‖A‖∗

+
(2(1− α)

d
‖M‖∞ − γ

)
‖Â‖1 +

(2(1− α)

d
‖M‖∞ + γ

)
‖A‖1

+
( 2

dT
‖Ξ‖∞ − κ

)
‖Ŵ‖1 +

( 2

dT
‖Ξ‖∞ + κ

)
‖W‖1,

which concludes the proof of Theorem 1, using (6). �
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A.2 Proof of Theorem 2

Let A ∈ Rn×n and W ∈ Rd×d be fixed, and let A = U diag(σ1, . . . , σr)V
> be the SVD of A.

Recalling that ◦ is the entry-wise product, we haveA = ΘA◦|A|+Θ⊥A◦A, where ΘA ∈ {0,±1}n×n
is the entry-wise sign matrix of A and Θ⊥A ∈ {0, 1}n×n is the orthogonal sparsity pattern of A.

The definition (4) of (Â, Ŵ ) is equivalent to the fact that one can find Ĝ ∈ ∂L(Â, Ŵ ) (an element
of the subgradient of L at (Â, Ŵ )) that belongs to the normal cone ofA×W at (Â, Ŵ ). This means
that for such a Ĝ, and any A ∈ A and W ∈ W , we have

〈Ĝ, (Â−A, Ŵ −W )〉 ≤ 0. (11)
Any subgradient of the function g(A) = τ‖A‖∗ + γ‖A‖1 writes

Z = τZ∗ + γZ1 = τ
(
UV > + P⊥A (G∗)

)
+ γ
(

ΘA +G1 ◦Θ⊥A

)
for some ‖G∗‖op ≤ 1 and ‖G1‖∞ ≤ 1 (see for instance [7]). So, if Ẑ ∈ ∂g(Â), we have, by
monotonicity of the sub-differential, that for any Z ∈ ∂g(A)

〈Ẑ, Â−A〉 = 〈Ẑ − Z, Â−A〉+ 〈Z, Â−A〉 ≥ 〈Z, Â−A〉,
and, by duality, we can find Z such that

〈Z, Â−A〉 = τ〈UV >, Â−A〉+ τ‖P⊥A (Â)‖∗ + γ〈ΘA, Â−A〉+ γ‖Θ⊥A ◦ Â‖1.
By using the same argument with the function W 7→ ‖W‖1 and by computing the gradient of the
empirical risk (A,W ) 7→ Rn(A,W ), Equation (11) entails that

2

d
〈Φ(Â−AT+1, Ŵ −W0),Φ(Â−A, Ŵ −W )〉

≤ 2

d
〈( 1√

T
NT ,−NT+1),Φ(Â−A, Ŵ −W )〉 − τ〈UV >, Â−A〉 − τ‖P⊥A (Â)‖∗

− γ〈ΘA, Â−A〉 − γ‖Θ⊥A ◦ Â‖1 − κ〈ΘW , Ŵ −W 〉 − κ‖Θ⊥W ◦ Ŵ‖1.

(12)

Using Pythagora’s theorem, we have

2〈Φ(Â−AT+1, Ŵ −W0),Φ(Â−A, Ŵ −W )〉

= ‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22 − ‖Φ(A−AT+1,W −W0)‖22.
(13)

It shows that if 〈Φ(Â−AT+1,W −W0),Φ(Â−A, Ŵ −W )〉 ≤ 0, then Theorem 2 trivially holds.
Let us assume that

〈Φ(Â−AT+1,W −W0),Φ(Â−A, Ŵ −W )〉 > 0. (14)
Using Hölder’s inequality, we obtain

|〈UV >, Â−A〉| = |〈UV >,PA(Â−A)〉| ≤ ‖UV >‖op‖PA(Â−A)‖∗ = ‖PA(Â−A)‖∗,
|〈ΘA, Â−A〉| = |〈ΘA,ΘA ◦ (Â−A)〉| ≤ ‖ΘA‖∞‖ΘA ◦ (Â−A)‖1 = ‖ΘA ◦ (Â−A)‖1,

and the same is done for |〈ΘW , Ŵ −W 〉| ≤ ‖ΘW ◦ (Ŵ −W )‖1. So, when (14) holds, we obtain
by rearranging the terms of (12):

τ‖P⊥A (Â−A)‖∗ + γ‖Θ⊥A ◦ (Â−A)‖1 + κ‖Θ⊥W ◦ (Ŵ −W )‖1
≤ τ‖PA(Â−A)‖∗ + γ‖ΘA ◦ (Â−A)‖1 + κ‖ΘW ◦ (Ŵ −W )‖1

+
2

d
〈( 1√

T
NT ,−NT+1),Φ(Â−A, Ŵ −W )〉.

(15)

Using Lemma 1, together with Hölder’s inequality, we have for any α ∈ (0, 1):

〈( 1√
T
NT ,−NT+1),Φ(Â−A, Ŵ −W )〉 = 〈M, Â−A〉+

1

T
〈Ξ, Ŵ −W 〉

≤ α‖M‖op‖PA(Â−A)‖∗ + α‖M‖op‖P⊥A (Â−A)‖∗
+ (1− α)‖M‖∞‖ΘA ◦ (Â−A)‖1 + (1− α)‖M‖∞‖Θ⊥A ◦ (Â−A)‖1

+
1

T
‖Ξ‖∞(‖ΘW ◦ (Ŵ −W )‖1 + ‖Θ⊥W ◦ (Ŵ −W )‖1) .

(16)
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Now, using (15) together with (16), we obtain(
τ − 2α

d
‖M‖op

)
‖P⊥A (Â−A)‖∗ +

(
γ − 2(1− α)

d
‖M‖∞

)
‖Θ⊥A ◦ (Â−A)‖1

+
(
κ− 2

dT
‖Ξ‖∞

)
‖Θ⊥W ◦ (Ŵ −W )‖1

≤
(
τ +

2α

d
‖M‖op

)
‖PA(Â−A)‖∗ +

(
γ +

2(1− α)

d
‖M‖∞

)
‖ΘA ◦ (Â−A)‖1

+
(
κ+

2

dT
‖Ξ‖∞

)
‖ΘW ◦ (Ŵ −W )‖1

which proves, using (7), that

τ‖P⊥A (Â−A)‖∗ + γ‖Θ⊥A ◦ (Â−A)‖1 ≤ 5τ‖PA(Â−A)‖∗ + 5γ‖ΘA ◦ (Â−A)‖1.

This proves that Â−A ∈ C2(A, 5, γ/τ). In the same way, using (15) withA = Â together with (16),
we obtain that Ŵ −W ∈ C1(W, 5).

Now, using together (12), (13) and (16) , and the fact that the Cauchy-Schwarz inequality entails

‖PA(Â−A)‖∗ ≤
√

rankA‖PA(Â−A)‖F , |〈UV >, Â−A〉| ≤
√

rankA‖PA(Â−A)‖F ,

‖ΘA ◦ (Â−A)‖1 ≤
√
‖A‖0‖ΘA ◦ (Â−A)‖F , |〈ΘA, Â−A〉| ≤

√
‖A‖0‖ΘA ◦ (Â−A)‖F .

and similarly for Ŵ −W , we arrive at

‖Φ(Â−AT+1, Ŵ −W0)‖22 + ‖Φ(Â−A, Ŵ −W )‖22 − ‖Φ(A−AT+1,W −W0)‖22

≤
(2α

d
‖M‖op + τ

)√
rankA‖PA(Â−A)‖F +

(2α

d
‖M‖op − τ

)
‖P⊥A (Â−A)‖∗

+
(2α

d
‖M‖∞ + γ

)√
‖A‖0‖ΘA ◦ (Â−A)‖F +

(2α

d
‖M‖∞ − γ

)
‖Θ⊥A ◦ (Â−A)‖1

+
( 2α

dT
‖Ξ‖∞ + κ

)√
‖W‖0‖ΘW ◦ (Ŵ −W )‖F +

( 2α

dT
‖Ξ‖∞ − κ

)
‖Θ⊥W ◦ (Ŵ −W )‖1,

which leads, using (7), to
1

d
‖Φ(Â−AT+1, Ŵ −W0)‖22 +

1

d
‖Φ(Â−A, Ŵ −W )‖22 −

1

d
‖Φ(A−AT+1,W −W0)‖22

≤ 5τ

3

√
rankA‖PA(Â−A)‖F +

5γ

3

√
‖A‖0‖ΘA ◦ (Â−A)‖F +

5κ

3

√
‖W‖0‖ΘW ◦ (Ŵ −W )‖F .

Since Â − A ∈ C2(A, 5, γ/τ) and Ŵ − W ∈ C1(W, 5), we obtain using Assumption 1 and
ab ≤ (a2 + b2)/2:

1

d
‖Φ(Â−AT+1, Ŵ −W0)‖22 +

1

d
‖Φ(Â−A, Ŵ −W )‖22

≤ 1

d
‖Φ(A−AT+1,W −W0)‖22 +

25

18
µ2(A,W )2

(
rank(A)τ2 + ‖A‖0γ2)

+
25

36
µ1(W )2‖W‖0κ2 +

1

d
‖Φ(Â−A, Ŵ −W )‖22,

which concludes the proof of Theorem 2. �

A.3 Proof of Theorem 4

For the proof of (8), we simply use the fact that 1
dT ‖XT−1(Ŵ − W0)‖2F ≤ E(Â, Ŵ )2 and use

Theorem 3. Then we take W = W0 in the infimum over A,W .

For (9), we use the fact that since Ŵ −W0 ∈ C1(W0, 10), we have (see the Proof of Theorem 2),

‖Ŵ −W0‖1 ≤ 6
√
‖W0‖0‖ΘW ◦ (Ŵ −W0)‖F

≤ 6
√
‖W0‖0‖XT−1(Ŵ −W0)‖F /

√
dT

≤ 6
√
‖W0‖0E(Â, Ŵ ),

and then use again Theorem 3. The proof of (10) follows exactly the same scheme. �
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A.4 Concentration inequalities for the noise processes

The control of the noise terms M and Ξ is based on recent developments on concentration inequal-
ities for random matrices, see for instance [9]. Moreover, the assumption on the dynamics of the
features’s noise vector (Nt)t≥0 is quite general, since we only assumed that this process is a martin-
gale increment. Therefore, our control of the noise Ξ rely in particular on martingale theory.

Proposition 1. Under Assumption 1, the following inequalities hold for any x > 0. We have∥∥∥1

d

d∑
j=1

(NT+1)jΩj

∥∥∥
op
≤ σvΩ,op

√
2(x+ log(2n))

d
(17)

with a probability larger than 1− e−x. We have∥∥∥1

d

d∑
j=1

(NT+1)jΩj

∥∥∥
∞
≤ σvΩ,∞

√
2(x+ 2 log n)

d
(18)

with a probability larger than 1− 2e−x, and finally∥∥∥ 1

T + 1

T+1∑
t=1

ω(At−1)N>t

∥∥∥
∞
≤ σσω

√
2e(x+ 2 log d+ `T )

T + 1
(19)

with a probability larger than 1− 14e−x, where

`T = 2 max
j=1,...,d

log log

(∑T+1
t=1 ωj(At−1)2

T + 1
∨ T + 1∑T+1

t=1 ωj(At−1)2
∨ e
)
.

Proof. For the proofs of Inequalities (18) and (19), we use the fact that (NT+1)1, . . . , (NT+1)d are
independent (scalar) subgaussian random variables.

From Assumption 1, we have for any n × n deterministic self-adjoint matrices Xj that
E[exp(λ(NT+1)jXj)] � exp(σ2λ2X2

j /2), where� stands for the semidefinite order on self-adjoint
matrices. Using Corollary 3.7 from [9], this leads for any x > 0 to

P
[
λmax

( d∑
j=1

(NT+1)jXj

)
≥ x

]
≤ n exp

(
− x2

2v2

)
, where v2 = σ2

∥∥∥ d∑
j=1

X2
j

∥∥∥
op
. (20)

Then, following [9], we consider the dilation operator L : Rn×n → R2n×2n given by

L(Ω) =

(
0 Ω

Ω∗ 0

)
.

We have∥∥∥ d∑
j=1

(NT+1)jΩj

∥∥∥
op

= λmax

(
L
( d∑
j=1

(NT+1)jΩj

))
= λmax

( d∑
j=1

(NT+1)jL(Ωj)
)

and an easy computation gives∥∥∥ d∑
j=1

L(Ωj)
2
∥∥∥

op
=
∥∥∥ d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥ d∑
j=1

ΩjΩ
>
j

∥∥∥
op
.

So, using (21) with the self-adjoint Xj = L(Ωj) gives

P
[∥∥∥ d∑

j=1

(NT+1)jΩj

∥∥∥
op
≥ x

]
≤ 2n exp

(
− x2

2v2

)
where v2 = σ2

∥∥∥ d∑
j=1

Ω>j Ωj

∥∥∥
op
∨
∥∥∥ d∑
j=1

ΩjΩ
>
j

∥∥∥
op
,

which leads easily to (18).
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Inequality (19) comes from the following standard bound on the sum of independent sub-gaussian
random variables:

P
[∣∣∣1
d

d∑
j=1

(NT+1)j(Ωj)k,l

∣∣∣ ≥ x] ≤ 2 exp
(
− x2

2σ2(Ωj)2
k,l

)
together with an union bound on 1 ≤ k, l ≤ n.

Inequality (20) is based on a classical martingale exponential argument together with a peeling
argument. We denote by ωj(At) the coordinates of ω(At) ∈ Rd and by Nt,k those of Nt, so that( T+1∑

t=1

ω(At−1)N>t

)
j,k

=

T+1∑
t=1

ωj(At−1)Nt,k.

We fix j, k and denote for short εt = Nt,k and xt = ωj(At). Since E[exp(λεt)|Ft−1] ≤ eσ
2λ2/2

for any λ ∈ R, we obtain by a recursive conditioning with respect to FT−1, FT−2, . . . ,F0, that

E
[

exp
(
θ

T+1∑
t=1

εtxt−1 −
σ2θ2

2

T+1∑
t=1

x2
t−1

)]
≤ 1.

Hence, using Markov’s inequality, we obtain for any v > 0:

P
[ T+1∑
t=1

εtxt−1 ≥ x,
T+1∑
t=1

x2
t−1 ≤ v

]
≤ inf
θ>0

exp(−θx+ σ2θ2v/2) = exp
(
− x2

2σ2v

)
,

that we rewrite in the following way:

P
[ T+1∑
t=1

εtxt−1 ≥ σ
√

2vx,

T+1∑
t=1

x2
t−1 ≤ v

]
≤ e−x.

Let us denote for short VT =
∑T+1
t=1 x2

t−1 and ST =
∑T+1
t=1 εtxt−1. We want to replace v

by VT from the previous deviation inequality, and to remove the event {VT ≤ v}. To do so,
we use a peeling argument. We take v = T + 1 and introduce vk = vek so that the event
{VT > v} is decomposed into the union of the disjoint sets {vk < VT ≤ vk+1}. We introduce

also `T = 2 log log
(∑T+1

t=1 x2
t−1

T+1 ∨ T+1∑T+1
t=1 x2

t−1

∨ e
)

.

This leads to

P
[
ST ≥ σ

√
2eVT (x+ `T ), VT > v

]
=
∑
k≥0

P
[
ST ≥ σ

√
2eVT (x+ `T ), vk < VT ≤ vk+1

]
=
∑
k≥0

P
[
ST ≥ σ

√
2vk+1(x+ 2 log log(ek ∨ e)), vk < VT ≤ vk+1

]
≤ e−x(1 +

∑
k≥1

k−2) ≤ 3.47e−x.

On {VT ≤ v} the proof is the same: we decompose onto the disjoint sets {vk+1 < VT ≤ vk} where
this time vk = ve−k, and we arrive at

P
[
ST ≥ σ

√
2eVT (x+ `T ), VT ≤ v

]
≤ 3.47e−x.

This leads to

P
[ T+1∑
t=1

ωj(At−1)Nt,k ≥ σ
(

2e

T+1∑
t=1

ωj(At−1)2(x+ `T,j)
)1/2

]
≤ 7e−x

for any 1 ≤ j, k ≤ d, where we introduced

`T,j = 2 log log
(∑T+1

t=1 ωj(At−1)2

T + 1
∨ T + 1∑T+1

t=1 ωj(At−1)2
∨ e
)
.

The conclusion follows from an union bound on 1 ≤ j, k ≤ d. This concludes the proof of Proposi-
tion 1.
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