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For convenience we begin by recalling the statement of our main result and the key assumptions
used in the proof.

Assumption 1 There exists a constant v > 0 such that if (x,y) ~ D, then |y| < v almost surely.

Assumption 2 There exist constants ¢,n > 0 such that P,.p[|z| > t] < exp(—ct'™") holds for
allt > 0.

Theorem 1 Let Z be a sample formed by m i.i.d. examples generated from some distribution D
satisfying Assumptions 1 and 2. Let Ay be the WFA returned by algorithm HMCp, (+SM with p = 2
and loss function L(y,y') = |y — y'|- Then, for any § > 0, the following holds with probability at
least1 — 0 for fz =t,0 fa,:
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1 Perturbation and stability tools

In this section, we list a series of known perturbation results for singular values, pseudo-inverses,
and singular vectors, and other stability results needed for the proofs given in this appendix.

Lemma 2 ([4]) Let A,B € R4%492, Then, for any n € [1,min{dy, ds}], the following inequality
holds: o, (A) — 0,(B)| < ||A — BJ|.

Lemma 3 ([4]) Let A,B € R%*%_ Then the following upper bound holds for the norm of the
difference of the pseudo-inverses of matrices A and B:
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AT -B"| < max {|AT], B[} |A - B

Lemma 4 ([5]) Let A € RY*? be symmetric positive semidefinite matrix and E € R a sym-
metric matrix such that B = A + E is positive semidefinite. Fix n < rank(A) and suppose that
IEllr < (A(A) — Apy1(A))/4. Then, writing V,, for the top n eigenvectors of A and W, for
the top n eigenvectors of B, we have

4|E|lr
An(A) = Apy1(A)
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This last lemma will be most useful to us in the form given in this next corollary.



Corollary 5 Let A,E € R4 and write B = A + E. Suppose n < rank(A) and |E||r <

\/07,(A)2 — ont1(A)2/4. If V,,, W, contain the first n right singular vectors of A and B respec-
tively, then

S| AllrIElF + 4IE|%
Un(A)z - Un+1(A)2 .

HVn - WnHF <

Proof. Using that |[ATA — BT B||r < 2||A|r|E|r + |E||% and \,(ATA) = 0,,(A)?, we can
apply Lemma 4 to get the bound on || V,, — W,,|| > under the condition that [ATA — BTB||p <
(0n(A)? — 0,41(A)?)/4. To see that this last condition is satisfied, observe that for all z,y > 0

one has V1 +v2/x +y > Vx + V- Thus, we get
Von(A)? — 04 41(A)?
4

~ Von(A)? — 01 (A)? + VAA[E - 2| Allr
- 2V1+ V2
= VAIALE + 0n(A)? — oni1(A)? — 2 Al
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and this last inequality implies 2||A || r||E||r + ||E[|% < (0,,(A)? — 0,,41(A)?) /4. O
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The next two results give useful extensions of McDiarmid’s inequality to deal with functions that do
not satisfy the bounded difference assumption almost surely [2].

Definition 6 Ler X = (X1,...,X,,) be a random variable on a probability space Q™. We say
that a function ®: Q™ — R is strongly difference-bounded by (b, ¢, §) if the following holds: there
exists a measurable subset E C Q™ with P[E| < 0, such that

o if X and X' differ only by one coordinate and X ¢ E, then |®(X) — &(X')| < ¢;

e forall X, X' that differ only by one coordinate |(X) — ®(X")| < b.

Theorem 7 Let ® be a function over a probability space Q™ that is strongly difference-bounded by
(b,c,0) withb > ¢ > 0. Then, for any t > 0,

—t? mbé
P[® - E[®] >t < .
[ [#] = ]_eXp(Sch>Jr c
Furthermore, the same upper bound holds for P[E[®] — & > ¢].

Corollary 8 Let ® be a function over a probability space Q2™ that is strongly difference-bounded by
(b,0/m, exp(—Km)). Then, forany 0 < t < 20v/K and m > max{b/0, (9+18/K)In(34+6/K)},

P[® — E[®] > {] < 2exp (‘592;”)

Furthermore, the same upper bound holds for P[E[®] — & > ¢].
The following is another useful form of the previous Corollary.
Corollary 9 Let ® be a function over a probability space Q™ that is strongly difference-bounded

by (b,0/m,exp(—Km)). Then, for any § > 0 and any m > max{b/0,(9 + 18/K)In(3 +
6/K),(2/K)In(2/6)}, each of the following holds with probability at least 1 — §:
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2 Proof of Theorem 1

To analyze the stability of our algorithm, we consider a sample Z’ = (z1, ..., zZm—1, 2,,) that differs
from Z only by the last point (z],, instead of z,,). Example 2/, is an arbitrary point in the domain of
D. Throughout the analysis, h = hz and h’ = hzs denote the functions in H obtained by solving
(HMC-h) respectively with training samples Z and Z' respectively. We also denote by H = Hy
and H' = H/ their corresponding Hankel matrices.

The following technical lemma will be used to study the algorithmic stability of the optimization
problem (HMC-h).

Lemma 10 The following inequality holds for all samples Z and Z' differing by only one point:
27(|h = '3 < Rz (') = Rz(h) + Rz (h) — Rz (h) .

Proof. The argument is the same as the one presented in [3] to bound the stability of kernel ridge
regression. The following inequality is first shown using the expansion of || — h'[|3 in terms of the
corresponding inner product:

27|h = W|I5 < 7(By (W ||h) + By (h|[1)) < Br, (W||h) + Br,, (hl|F)

where Br denotes the Bregman divergence associated to F'. Next, using the optimality of ~A and
h', which implies VFz(h) = 0 and VFz/(h') = 0, we can write Br, (h'||h) + Br,, (h||h') =

Ry () = Ry(h) + Ry (k) = Ry (0). O
Our next lemma bounds the stability of the first stage of the algorithm using Lemma 10.

Lemma 11 Assume that D satisfies Assumption 1. Then, the following holds:

1
|[H—-H'||r < min {QV\/PHS,} )

7 min{m,m’}

Proof. Note that by Assumption 1, for all (z,y) in Z, or Z', we have |y| < v. Therefore, we must
have |H(u,v)| < v forallu € P and v € S, otherwise the value of Fz(H) is not minimal because
decreasing the absolute value of an entry |H(u,v)| > v decreases the value of Fiz(H). The same

holds for H'. Thus, the first bound follows from |H — H'|r < |H||r + [|[H'||r < 2v4/|P||S].

Now we proceed to show the second bound. Since by definition |H — H'||p = ||h — I/||2, it is
sufficient to bound this second quantity. By Lemma 10, we have

2r||h — 1|3 < Rz(l') — Rz(h) + Ry, (h) — Ry, (W) . 2)

We can consider four different situations for the right-hand side of this expression, depending on the
membership of z,, and «/,, in the set PS.

If &, 2, ¢ PS, then Z = Z'. Therefore, R;(h) = Ry, (h), Rz(h') = Ry, (h'),and ||h— h'||2 =
0.

If 2, 2, € PS, then m = m/, and the following equalities hold:

D ) h,m*m*h//*/
Byl) Ry 1) = ) =l W) ]

b

Thus, in view of (2), we can write

[A@m) = W (@m)| + |P(3,) = 1 (7))

2r||n =13 <
m

2
< =|h =12
m

where the first inequality follows from ||h(z) — y| — |R'(z) — y|| < |h(x) — h/(z)|, and the second
from |h(z) — B/ (z)| < ||h — K'||2.



If ., € PS and x},, ¢ PS, the right-hand side of (2) equals
Z |W(2) —yl _ [h(2) —y| | |h(z) =yl _ |h(z) y|>+|h'(wm) — Yl [W@m) —ym|

m m

~ m m’ m’ m
z€Z’'
Now, since m = m’ + 1 we can write
h(z) =W (z)|] | [hM@m) = h(em)] _ 2
27||h — W2 < | S ml A Zh—=HRs .
rp-wig < 3 MO TIEL < Zh—#l

m

A

By symmetry, a similar bound holds in the case where z,,, ¢ PS and z], € PS. Combining these
four bounds yields the desired inequality. O

The next three lemmas contain the main technical tools needed to bound the difference |fa,(x) —
fa,, (x)| in our agnostic setting.

Lemma 12 Let A = (o, 3,{A.}) and A" = (o/, 8, {AL}) be two weighted automata with n
states. Let «y be such that both A and A’ are v-bounded. Then, the following inequality holds for
any string x € ¥*:

||

@) = far@)] <94 (o= ol + 18— 811+ D 1Az, — AL -
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Proof. Follows by induction on |z| using techniques similar to those used to prove Lemmas 11 and
12in[1]. O

Lemma 13 Let v = v\/|P||S|/on(He). The weighted automaton Az is y-bounded.

Proof. Since |H,| < |Hullr < v+/|P]|S|, simple calculations show that ||| < v+/|S],

18]l < v/IPl/on(He), and [|Aa]l < vy/[P[IS]/ow(He). D

Let us define the following quantities in terms of the vectors and matrices that define A and A’:

ge = [[He — H/e” )
€a = ||Ha — H:;” )
ev =[[V-V'|,

es = |has —h) sl .
ep = |[hpx —hp | .

Now we state a result that will be used in the proof of Lemma 15.

Lemma 14 The following three bounds hold:

o +ev|Hg || n 1+v5  [[H[l(ec +ev|HL])
on(HV) 2 min{o,(HV)2,0,(H.V')2} ’
oo —a/|| <es+evlhys] ,

BB < —=2 1+v5  |[hp ,l(ec +ev | H]]) .
= o, (HV) 2 min{o, (H.V)2, 0, (H.V')2}

1A — ALl <

Proof. Using the triangle inequality, the submultiplicativity of the operator norm, and the properties
of the pseudo-inverse, we can write

A — ALll = [(HNV)T(HV — H, V') + (HI V)T — (H V)N H, V|
< |(HV) [V = H, VY| + [[(HeV) ™ — (HOV) T, V|
< o (HeV)7HHV = HL V|| + [ H [[[| (V)T = (V)



where we used that || (H.V)T|| = 0,,(H.V) by the properties of pseudo-inverse and operator norm,
and | H., V’|| < ||H/,|| by sub-multiplactivity and ||V’|| = 1. Now note that we also have

HoV — H, V|| < [[V][[[He — He || + [H[[[[V = V|| < eq +ev |[Hg| -
Furthermore, using Lemma 3 we obtain
1++5
2
_ 1+ V6 [He — B[ V]| + [H[]V - V']
-2 min{o,(HV)?,0,(H.V’)2}
1++5 ge +ev|HL|
2 min{o,(HV)?,0,(H.V")2} ~
Thus we get the first of the bounds. The second bound follows straightforwardly from
IV has =V Bl < VT =V s+ [V llas =B ll = s +ev sl
which uses that |[M || = ||M|| holds for the operator norm.

I V)™ — (HV)T|

IA

[V — HL V|| max{]| (HV) ™12, | (HZV) T2}

Finally, the last bound follows from the following inequalities, where we use Lemma 3 again:
18 =Bl < [(HV)[[[[hp, 5 — hip || + [0 5[ [[(H V)T — (HV) |
Ibpp —hpal 14+ V5 [hpllHV = HV
on(HV) 2 min{o,(HV)?,0,(H.V’)?}
ep 145 [[hp yl(ec +ev[IH])
on(HV) 2 min{o,(HV)2,0,(H.V')2} ~
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Lemma 15 Letc = |H — H'||r, ¢ = min{o,(H,),0,(H.)}, and p = 0,,(H¢)? — 001 (He)2
Suppose € < \[’p\/ 4. There exists a universal constant c; > 0 such that the following inequalities
hold for all a € ¥

€V3|P|3/2‘S|1/2

2 )

[Ae — ALl < e =

2p(1/2|§
Ha,a/”gclw ’

3| PI3/2|S|1/2
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Proof. We begin with a few observations that will help us apply Lemma 14. First note that ||H, —
H,| < |[H, - Hi|[r < cforalla € X', as well as |hp y — hjp || < eand [[hys —h) 5| <e.
Furthermore, |H, || < ||Hq|lr < v+/|P]|S] and ||H,|| < v+/|P||S| for all € ¥'. In addition, we
have ||hy s| < v+/|S] and [hip 5[ < v/|P|. Finally, by construction we also have o,,(H. V) =
on(H,) and 0,,(HLV') = 0,(H.). Therefore, it only remains to bound ||V — V’||, which by
Corollary 5 is

1
IV - V|| < %(21/ PIS] +¢) < oevVIPIST

where the last inequality follows from Lemma 11.

Plugging all the bounds above in Lemma 14 yields the following inequalities:
16v|P|*/2|S'/2N | 14 V5 ev|P[V/2]S|1/? 1602|P||S
L 6APIVASI2Y | 1 VPSR (16 PYS]Y
p 2 o2 p
161/2|73|1/2|$|>
+

™
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laa—a'|| <e <1

1+ 5 ev|P|/? (1 N 16u2|7?|8|)

_’<E
I8-BI<5+—5-2 ;



The result now follows from an adequate choice of ¢;. O

We now define the properties that make Z a good sample and show that for large enough m they are
satisfied with high probability.

Definition 16 We say that a sample Z of m i.i.d. examples from D is good if the following conditions
are satisfied for any z,, = (z,,,yr,) € supp(D):

o |zi| < ((1/¢) n(4m*)Y 0 forall 1 < i < m;
e |[H-H|p <4/(rmm);

o min{o,(He), 00 (HY)} > 0/2;

o 0, (Ho)? — 01 (He)? > p/2.

Lemma 17 Suppose D satisfies Assumptions 1 and 2.  There exists a quantity M =
poly(v,,a, p,7,|P|,|S|) such that if m > M, then Z is good with probability at least 1 — 1/m3.

Proof. First note that by Assumption 2, writing L = ((1/¢) In(4m*))*/(*+") a union bound yields

¥ 1
g [\_/1 i > L| < mexp(=eL!™7) = —— .
Now letm = (21, ..., Zm—1)N(PS). Note that we have min{m, m'} > mand Ez[m] = 7(m—1).

Thus, for any A € (0, 1) the Chernoff bound gives

Pl < m(m — 1)(1 — A)] < exp (—W) < exp (—W;N) :

where we have used that (m — 1)/m > 1/2 form > 2.

Taking A = /(4/mm) In(4m3) above we see that min{m,m’'} > (m — 1)x(1 — A) > mn(1 —
A)/2 holds with probability at least 1 — 1/(4m?3). Now note that m > (16/) In(4m?) implies
A < 1/2. Therefore, by Lemma 11 we have that m > max{2, (16/7) In(4m3), 2/ (r7v+/|P||S])}
implies that [|[H — H'|| < 4/(77m) holds with probability at least 1 — 1/(4m?).

For the third claim note that by Lemma 2 we have |o,,(H.)—0,(H.)| < |H.—H.||r < |H-H'||F.
Thus, from the argument we just used in the previous bound we can see that when m > 2 the
function ®(Z) = o, (H,) is strongly difference-bounded by (b,, 0, /m, exp(—K,m)) with b, =
2v+/|P||S], 0, = 2/(t7(1 — A)), and K, = wA?/4 for any A € (0,1). Now note that by
Lemma 2 and the previous goodness condition on |H — H'||r we have min{o,,(H,),o,(H.)} >
on(He) — |H—-H'||p > 0,,(H.) — 4/(v7wm). Furthermore, taking A = 1/2 and assuming that

m > max{m ”|P||S|, <9+ %8) In (3+ 96) ,321n(8m3)} ,
T T ™

2

we can apply Corollary 9 with § = 1/(4m?) to see that

128
>0 — 4/ ———In(8m3) —
vrm T2712m vTm

on(He) —

holds with probability at least 1 — 1/(4m?). Hence, for any sample size such that m >
max{16/(vmo), (2048/721%0?) In(8m?)}, we get

128 4 o
——  In(8m3) — >0 — —
T27m2m n(8m?) vrm o 4

min{o,(H,),0,(H.)} > 0 —

| Q
|9



We begin

To prove the fourth bound we shall study the stability of ®(Z) = o, (H,)? — 0,41 (H,)%
> On+t (H ):

with the following chain of inequalities, which follows from Lemma 2 and O’n(H )
|®(Z) — <I>(Z | = | on( H6)2 - Un+1(H6)2) - (Un(H/e) - Jn+1(H,s)2)|
< |Un(He)2 - Un(H/e)2| + |Jn+1(H6)2 - UnJrl(H;)Q‘
= |Un(He) + Un(H/e)”Un(He) - Un(H/e>| + ‘Un-i-l (He) + Un+1(H/e)HUn+l(He) - Un+1(H/e)|
< (200 (He) + |[He — Hel]) [[He — Hel| + (20741 (He) + [He — Hel]) [He — He||
< 4oy (He)|[H - H'||p + 2 H - H'|[7 .

Now we can use this last bound to show that ®(Z) is strongly difference-bounded by
(b, /m exp(—K,m)) with the definitions: b, = 1602|P||S|, 6, = 64c/(77) and K, =
mm{a 7272 /256, 7/64}. For b, just observe that from Lemma 11 and on(Hy) < |Hy|lp <

v+/|P||S| we get
don(Ho)|H — H'||p + 2|H — H'||3 < 160°[P|S] .

By the same arguments used above, if m is large enough we have |H — H'||p < 4/(77wm) with
probability at least 1 — exp(—mm/16). Furthermore, by taking A = 1/2 in the stability argument
given above for o,(H,), and invoking Corollary 9 with § = 2exp(—Km) for some 0 < K <

K,/2 =7/32, we get
/128 K
Un<He) <o+ W ,

with probability at least 1 — 2 exp(—Km). Thus, taking K = min{n/32, 027272 /128} we get
on(H¢) < 20. If we now combine the bounds for |[H — H'|| ¢ and o, (H,), we get
2 2 4 0
4o, (H)|H-H'||r +2|H-H|7 < 320 32 _ 0o 6 ,

Tom  T2m?m2 T tmm m

where have assumed that m > 1/(77o). To get K, note that the above bound holds with probability
at least

1— efmﬂ'/IG _ 267Km Z 1— 367K7n Z 1— eme/Q =1— e*Kpm ,
where we have used that K’ < 7/16 and assumed that m > 21n(3)/K. Finally, applying Corollary 9
to ®(Z) we see that with probability at least 1 — 1/(4m?) one has

921552

T212m

whenever m > max{(2'702/727%p?) In(8m?), v317|P||S|/(40),
6/K,), (2/K,) In(8m?)}. O

Un(He)2 - Un+1(He)2 2p— In(8m?) >

)

NI
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9 + 18/K,)In(3 +

We can now analyze how the change of one sample point in Z can affect the difference R(fz) —
Rz(fz). Our main result will be obtained by applying Theorem 7 to this difference.

Lemma 18 Let v = 6404 |P]2|S|3/2/(r0®pr) and vo = 2w|P|V2|S|V?/0. If m >
max{M, 16v/2/(77/p), exp(6 Inv2(1.2cIn2)/")}, then the function ®(Z) = R(fz) — Rz (fz)
is strongly difference-bounded by (4v + 2v/m, coyym=°/%Inm, 1/m?) for some constant c5 > 0.

Proof. We will write for short f = fz and f' = fz. Let 81 = Epupg[|f(x) — f/(2)|] and
B2 = maxi<i<m—1 |f(x;) — f'(x;)|. We first show that |®(Z) — ®(Z')| < B1 + B2 + 2v/m. By
definition of ® we can write

®(Z) = ®(Z")| < |R(f) — R(f")| + |Rz(f) — Rz ()] .

By Jensen’s inequality, the first term can be upper bounded by E,, ,y ||| f(x) —y| = f'(z) —yl|] <
B1. Now, using the triangle inequality and | f (z,,) — ym|, | f'(2],) — yl,| < 2v, the second term can
be bounded as follows:

Ralf) - Brl(f)] < 22 %Z Pl < 2 g g™




Observe that for any samples Z and Z’ we have 31, 82 < 2v. This provides an almost-sure upper
bound needed in the definition of strongly difference-boundedness. We use this bound when the
sample Z is not good. By Lemma 17, when m is large enough this event will occur with probability
at most 1/m3.

It remains to bound (; and [y assuming that Z is good. Note that by Lemma 17, m >
max{M,16v2/(rm\/p)} implies |[H — H'||p < \/p/4. Thus, by combining Lemmas 12, 13,
15, and 17, we see that the following holds for any x € ¥*:

(2V|7’|”25|”2> = 3901 (Ja] + 208 |PP2)S)

£(@) ~ f'@) . e
C;Zl exp(|z|Inye + In(jz| +2)) .

In particular, for |z| < L = ((1/c)In(4m*))/ 047 and m > exp(6In~(1.2¢In v2)'/"), a simple
calculation shows that | f(x) — f'(x)| < Cyym~>/%1nm for some constant C.. Thus, we can write

Br< B (If@) = f'@)] ] < L]+ 20Pspy [l 2 L] < Cram™>® lnm + v/2m?

and By < C%m_5/ 6 In m, where the last bound follows from the goodness of Z. Combining these
bounds yields the desired result. O

The following is the proof of our main result.

Proof.[of Theorem 1] The result follows from an application of Theorem 7 to ®(Z), defined as in
Lemma 18. In particular, for large enough m, the following holds with probability at least 1 — 4:

~ In?m 1
R(fz) < Ba(fa)+ B, [9(2)] + | O g In <a e ) |

for some constants C, C’ and v, = v*|P|?|S|*>/2 /70> pr. Thus, it remains to bound E z..pm [®(Z)].

First note that we have Ezpm [R(fz)] = Ez ,.pm+1[|fz(x) — y|]. On the other hand, we can also

write Ezopm[Rz(f2)] = Ez .opm+1[|fz:(x) — y|], where Z' is a sample of size m containing z
and m — 1 other points in Z chosen at random. Thus, by Jensen’s inequality we can write

LB @<, B 2@ - f2@)]

Z~Dm

Now an argument similar to the one used in Lemma 18 for bounding 3; can be used to show that,
for large enough m, the following inequality holds:

Inm 2u
Z~Dm [@(2)]] < CMW T

which completes the proof. O
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