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A Additional Proofs

A.1 Proof of Lemma 4

By definition of β we have that p(γ) = p(1) = 1 therefore p(z) ≥ 1 for all z ∈ [γ, 1]. The maxima

of our polynomial in [γ, 1] is attained at zmax =
√

a1

−3a3
=
√

1
3 [1 + γ + γ2] ∈

(
1√
3
, 1+γ√

3

)
and its

value is

p(zmax) =

(
1

γ
+

γ

1 + γ

)
zmax −

1

γ(1 + γ)
z3max

≤
(
1

γ
+

γ

1 + γ

)
1 + γ√

3
− 1

γ(1 + γ)

1

3
√
3

=
1

γ(1 + γ)
√
3

[
(1 + γ + γ2)(1 + γ)− 1

3

]
=

1

γ(1 + γ)
√
3

[
2

3
+ 2(γ + γ2) + γ3

]
≤ 2

3
√
3

1

γ
+

2√
3
.

Finally, the 1-norm is ∥β∥1 = 2+γ+γ2

γ(1+γ) <
2
γ + 1.

A.2 Proof of Lemma 7

We will take p(z) = α erf(c τz), where erf is the error function and c = αerf−1(1/α). By a
standard fact, erf is equal to its infinite Taylor series expansion at any point, and this series equals

erf(z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
.

Hence, p(z) is an infinite degree polynomial, and it is only left to verify that the properties stated in
the lemma holds for it. Indeed, p is an odd polynomial and |p(z)| ≤ α for all z. In addition,

p(γ) = α erf( c
α γ γ) = α erf(c/α) = 1 .
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Since p is monotonically increasing we conclude that p(z) ≥ 1 for z ≥ γ. Finally, we calculate∑
j β

2
j 2

j . Since c ≤ 1, we have

∞∑
j=3

β2
j 2

j =
4α2

π

∞∑
j=1

(
(cτ)2j+1

j!(2j + 1)

)2

22j+1

≤ 8α2τ2

π

∞∑
j=1

(
τ2j

j!(2j + 1)

)2

22j

=
8

π γ2

∞∑
j=1

1

(2j + 1)2

(
(2τ2)j

j!

)2

≤ 4

π2 γ2

∞∑
j=1

1

j(2j + 1)2

(
2eτ2

j

)2j

Using Stirling’s formula

≤ 4

π2 γ2

 ∞∑
j=1

1

j(2j + 1)2

 · max
j

(
2eτ2

j

)2j

<
0.06

γ2
e4τ

2

,

where in the last inequality we used the facts that
∑

j≥1
1

j(2j+1)2 = 16−π2−4 log 4
4 < 0.06π2

4 and

that maxj(2eτ
2/j)2j ≤ e4τ

2

. Finally, β2
12

1 ≤ 8
π γ2 <

3
γ2 , hence we conclude our proof.

A.3 Proof of Lemma 8

Let ϕsig(z) = 1
1+exp(−4Lz) . [Shalev-Shwartz et al., 2011, Lemma 2.5] proved the following. For

any L ≥ 3 and ϵ′ ∈ (0, 1), there exists an odd polynomial, g(z) =
∑

j βjz
j , such that for all

z ∈ [−1, 1] we have |g(z)− ϕsig(z)| ≤ ϵ′ and with∑
j

β2
j 2

j ≤ 6L4 + exp
(
9L log

(
2L
ϵ′

)
+ 5
)
.

Fix some κ > 2 to be specified later. Let ϕ̄(z) = 2κ(ϕsig(z)− 1/2). It follows that the polynomial
p(z) = 2κ(g(z)− 1/2) satisfies

|p(z)− ϕ̄(z)| = 2κ|g(z)− ϕsig(z)| ≤ 2κϵ′ .

Fix some ϵ to be also specified later, let ϵ′ = ϵ/(2κ), and choose L = 1
4γ log

(
κ+1
κ−1

)
. By construc-

tion,

ϕ̄(γ) = 2κ(ϕsig(γ)− 1/2) = 2κ

(
1

1 + κ−1
κ+1

− 1/2

)
= 2κ

(
κ+ 1

2κ
− κ

2κ

)
= 1 .

Therefore, for z ≥ γ,
p(z) ≥ ϕ̄(z)− ϵ ≥ ϕ̄(γ)− ϵ = 1− ϵ.

In addition, for all z, p(z) ≤ ϕ̄(z) + ϵ ≤ κ + ϵ. Define h(z) = p(z)/(1 − ϵ). So, for z ≥ γ,
h(z) ≥ 1, and for any other z, h(z) ≤ κ+ϵ

1−ϵ .

Using the inequality

∀κ > 2, log

(
κ+ 1

κ− 1

)
= log

(
1 +

2

κ− 1

)
≤ 2

κ− 1
≤ 4

κ

we obtain that L ≤ 1
γ κ .

Now, lets specify κ, ϵ. First, choose ϵ = 1/κ. Second, choose κ so that α = κ+ϵ
1−ϵ = κ2+1

κ−1 .
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Assume that κ > 2.5, we have that 1/κ ≤ 2/α. Hence, L ≤ 2
γ α = 2τ , which yields the bound,

B ≤
(

2κ
1−ϵ

)2 (
6L4 + exp

(
9L log

(
2L
ϵ′

)
+ 5
))

≤ 4α2
(
96τ2 + exp

(
18τ log

(
8τα2

)
+ 5
))

.

Finally, the assumptions on α and γ imply that κ > 2.5 and that L ≥ 3 as required.
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