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In this supplementary material, we derive the KL divergence of the IG distribution (14) and
lognormal distribution (15), and the formula for the lower bound (21) in the main manuscript.

S-1 Derivation of the KL divergence

S-1.1 Inverse Gaussian distribution

Inserting Eq. (7) into equation Eq. (5) and assuming that the time scale of the rate fluctuation
λ(t) is longer than the mean ISI, so that the firing rate in each ISI can be approximated to be
constant, we obtain

Dκ(λ(t)||µ) =
1
2

lim
n→∞

1
tn − t0

n∑
i=1

{
− log λ(ti) −

κ

Λ(ti) − Λ(ti−1)
+

κ

µ(ti − ti−1)

}
+
µ

2
logµ. (S-1.1)

Each terms in Eq. (S-1.1) is evaluated as follows:

i) By assuming a long time scale in which a serial correlation of spikes is negligible, the first
term in rhs of Eq. (S-1.1) can be evaluated in the same way as (12):

lim
n→∞

1
tn − t0

n∑
i=1

log λ(ti) = 〈λ log λ〉λ. (S-1.2)

ii) Under the assumption that the rate fluctuation has a long time scale, the second term in rhs
of (S-1.1) becomes

1
tn − t0

n∑
i=1

1
Λ(ti) − Λ(ti−1)

=
n

tn − t0

1
n

n∑
i=1

1
λ(ti)(ti − ti−1)

.

(S-1.3)

In order to evaluate the rhs of the above equation, we use the fact that the expectation of
1/(λx) with respect to the inverse Gaussian distribution λfκ(λx) is given by∫ ∞

0

1
λx
λfκ(λx)dx =

1
κ

+ 1. (S-1.4)
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Note that this does not depend on λ. Thus, we obtain

lim
n→∞

n

tn − t0

1
n

n∑
i=1

1
λ(ti)(ti − ti−1)

= µ

(
1
κ

+ 1
)
. (S-1.5)

iii) To evaluate the third term in rhs of Eq. (S-1.1), let {t(λ)
i − t

(λ)
i−1} be a set of ISIs that are

generated with the rate λ, and nλ be the number of the ISIs included in this set. Using
Eq. (S-1.4), we obtain

1
nλ

nλ∑
i=1

1

t
(λ)
i − t

(λ)
i−1

→ λ

(
1
κ

+ 1
)
, as nλ → ∞. (S-1.6)

On the other hand, the ratio of nλ to n converges to

nλ

n
→ λp(λ)dλ

µ
, as n→ ∞, (S-1.7)

from the law of large number. Using Eqs. (S-1.6) and (S-1.7), we obtain

1
n

n∑
i=1

1
ti − ti−1

→ 1
µ

(
1
κ

+ 1
)∫ ∞

0

λ2p(λ)dλ =
(

1
κ

+ 1
)(

µ+
〈(λ− µ)2〉λ

µ

)
, as n→ ∞.

(S-1.8)

Substituting Eqs. (S-1.2), (S-1.5) and (S-1.8) into Eq. (S-1.1), the KL divergence for IG distri-
bution is obtained as

Dκ(λ(t)||µ) =
µ

2
logµ− 1

2
〈λ log λ〉λ +

κ+ 1
2µ

〈(λ− µ)2〉λ. (S-1.9)

S-1.2 Lognormal distribution

Substituting Eq. (8) into Eq. (5), and using the same approximation leads to

Dκ(λ(t)||µ)

=
µ

2
logµ+

µ

2κ
(logµ)2 +

logµ
κ

lim
n→∞

1
tn − t0

n∑
i=1

log(ti − ti−1)

− lim
n→∞

1
tn − t0

n∑
i=1

[
1
2

log λ(ti) +
1
2κ

{log λ(ti)}2 +
1
κ

log λ(ti) · log(ti − ti−1)

]
.(S-1.10)

Each term in Eq. (S-1.10) is evaluated as follows:

i) In the same way as Eq. (12), we obtain

lim
n→∞

1
tn − t0

n∑
i=1

log λ(ti) = 〈λ log λ〉λ, (S-1.11)

and

lim
n→∞

1
tn − t0

n∑
i=1

{log λ(ti)}2 = 〈λ(log λ)2〉λ. (S-1.12)

ii) Using the fact that the expectation of log x with respect to the lognormal distribution
λfκ(λx) is given by − log λ − κ

2 , and the same argument as the inverse IG distribution
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(i.e., using Eq. (S-1.7)), we obtain

lim
n→∞

1
tn − t0

n∑
i=1

log(ti − ti−1)

= lim
n→∞

n

tn − t0

1
n

n∑
i=1

log(ti − ti−1)

=
∫ ∞

0

(
− log λ− κ

2

)
λp(λ)dλ, (S-1.13)

and

lim
n→∞

1
tn − t0

n∑
i=1

log λ(ti) · log(ti − ti−1)

= lim
n→∞

n

tn − t0

1
n

n∑
i=1

log λ(ti) · log(ti − ti−1)

=
∫ ∞

0

log λ
(
− log λ− κ

2

)
λp(λ)dλ. (S-1.14)

Substituting Eqs. (S-1.11)-(S-1.14) into Eq. (S-1.10), the KL divergence for the lognormal
distribution is obtained as

Dκ(λ(t)||µ) =
µ

2κ
(logµ)2 − logµ

κ
〈λ log λ〉λ +

1
2κ

〈λ(log λ)2〉λ. (S-1.15)

S-2 Derivation of the formula for the lower bound

Here, we derive the formula (21) in the main manuscript. In this derivation, we assume the
following conditions for asymptotic analysis:

(A) The time scale of the rate fluctuation is longer than the mean ISI, so that the serial correlation
of spikes are negligible.

(B) The amplitude of rate fluctuation relative to the mean rate is small.

(C) A large observation interval T � 1.

S-2.1 Formulation of the empirical Bayes method

Here, we briefly summarize the empirical Bayes method. We suppose that a spike train {ti} :=
{t1, t2, . . . , tn} in the interval [0, T ] is derived from the time-rescaled renewal process with the
gamma ISI distribution, whose firing rate and the shape parameter are given by λ(t) and κ,
respectively. We also suppose that the firing rate is given by the form:

λ(t) = ex(t) = µ+ σf(t),

where µ is the mean firing rate, and f(t) represent the rate fluctuation such that 〈f(t)〉 = 0 and
〈f(t)f(t′)〉 = φ(t− t′). x(t) ∈ R denotes the latent process.

From the given spike train {ti}, we wish to evaluate the marginal likelihood function:

pν,γ({ti}) =
∫
pν({ti}|{x(t)})pγ({x(t)})D{x(t)}, (S-2.1)

where

pν({ti}|{x(t)}) =
n∏

i=1

λ(ti)fν(Λ(ti) − Λ(ti−1)), fν(y) = ννyν−1e−νy/Γ(ν), (S-2.2)
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is the likelihood function of the time-rescaled renewal process with the gamma ISI distribution,
and

pγ({x(t)}) =
1

Z(γ)
exp

[
− 1

2γ2

∫ T

0

(
dx(t)
dt

)2

dt

]

is the prior distribution of x(t). Z(γ) is the normalization constant given by

Z(γ) =
1√

2πγ2T
exp

[
− {x(T ) − x(0)}2

2γ2T

]
.

Then, the estimators for κ and γ are obtained by maximizing the marginal likelihood:

(κ̂, γ̂) = arg max
ν,γ

pν,γ({ti}).

S-2.2 Evaluation of the marginal likelihood

The log of likelihood function (S-2.2) is explicitly given by

log pν({ti}|{x(t)}) =
∑

i

[
x(ti) + ν log ν + (ν − 1) log(Λ(ti) − Λ(ti−1))

− ν(Λ(ti) − Λ(ti−1)) − log Γ(ν)
]
.

=
∑

i

[
x(ti) + (ν − 1) log(Λ(ti) − Λ(ti−1))

]
+ nν log ν − ν

∫ T

0

ex(t)dt− n log Γ(ν).

From the condition (A), the firing rate in each ISI can be approximated to be constant, and thus
we obtain

log(Λ(ti) − Λ(ti−1)) ≈ x(ti) + log(ti − ti−1).

Under this approximation, the log likelihood is rewritten as

log pν({ti}|{x(t)}) =
∑

i

[
νx(ti) + (ν − 1) log(ti − ti−1)

]
+ nν log ν − ν

∫ T

0

ex(t)dt− n log Γ(ν).

We decompose the state x(t) into the mean logµ and fluctuation y(t), as

x(t) = logµ+ y(t).

Accordingly, the log likelihood function is decomposed into two parts, as

log pν({ti}|{x(t)}) = H + I, (S-2.3)

where H represents the log likelihood function of the gamma distribution,

H = −Tνµ+ nν logµ+ nν log ν − n log Γ(ν) + (ν − 1)
∑

i

log(ti − ti−1), (S-2.4)

whereas I represents the contribution of rate fluctuation,

I = ν

∫ T

0

[∑
i

δ(t− ti)y(t) − µ(ey(t) − 1)
]
dt.
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Substituting Eq. (S-2.3) into Eq. (S-2.1), the marginal likelihood function is obtained as

pν,γ({ti}) = eHF .

The contribution of the rate fluctuation can be represented in the form of a path integral [2],

F =
1

Z(γ)

∫
exp

[
−
∫ T

0

L(y, ẏ)dt
]
D{y(t)}, (S-2.5)

where L(ẋ, x) is a “Lagrangian” of the form,

L(y, ẏ) =
1

2γ2
ẏ2 + νµ(ey − 1) − ν

∑
i

δ(t− ti)y. (S-2.6)

Using Eq. (12) the Lagrangian (S-2.6) is represented as

L(y, ẏ) =
1

2γ2
ẏ2 + νµ(ey − 1) − ν

[
λ(t) +

√
λ(t)/κξ(t)

]
y.

Under the condition (B), we can take the terms up to second-order with respect to y, and the
Lagrangian is approximated to

L(y, ẏ) =
1

2γ2
ẏ2 +

νµ

2
y2 − ν

[
σf(t) +

√
λ(t)/κξ(t)

]
y. (S-2.7)

Note that this approximation is valid in O((σ/µ)3/2).
The MAP estimate ŷ is obtained by solving the Euler-Lagrange equation,

d

dt

(
∂L

∂ ˙̂y

)
− ∂L

∂ŷ
= 0.

The Euler-Lagrange equation associated with Eq. (S-2.7) is obtained as

1
γ2

¨̂y − νµŷ + ν
[
λ(t) − µ+

√
λ(t)/κξ(t)

]
= 0. (S-2.8)

By decomposing y(t) = ŷ(t) + φ(t) and approximate the path integral (S-2.5) to the range
quadratic with respect to φ(t), the marginal likelihood function can be evaluated as

pν,γ({ti}) =
eH

Z(γ)
R exp

[
−
∫ T

0

L(ŷ, ˙̂y)dt
]
, (S-2.9)

where R is the fluctuation factor:

R =
∫

exp
[
−
∫ T

0

(
1

2γ2
φ̇2 +

νµ

2
φ2

)
dt

]
D{φ(t)}. (S-2.10)

In the following, we evaluate the three factors in Eq. (S-2.9).

Contribution of the MAP path

First, we evaluate the factor exp[−
∫ T

0
L(ŷ, ˙̂y)dt] in Eq. (S-2.9). The MAP path is obtained by

solving Eq. (S-2.8) as

ŷ(t) =
γ

2

√
ν

µ

∫ T

0

e−γ
√

νµ|t−s|
[
σf(s) +

√
λ(s)/κξ(s)

]
ds. (S-2.11)

By using Eqs. (S-2.7) and (S-2.8), we obtain

1
T

∫ T

0

L(ŷ, ˙̂y)dt =
∫ T

0

[
1

2γ2

d

dt
(ŷ ˙̂y) − ν

2
{σf(t) +

√
λ(t)/κξ(t)}ŷ

]
dt.
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For T � 1, the boundary effect is negligible so that the first-term in the rhs of the above equation
vanishes. Substituting the MAP path (S-2.11) into the above equation leads to

1
T

∫ T

0

L(ŷ, ˙̂y)dt = −
γ
√
νµ

4

{
ν

κ
+

2νσ2

µ

∫ ∞

0

φ(u)e−γ
√

νµudu

}
, (S-2.12)

for T → ∞.

Fluctuation factor

Next, we evaluate the fluctuation factor (S-2.10). This factor can be represented by the ratio of
determinants [1]:

R =
1√

2πγ2T

[
det(−∂2

t + νµγ2)
det(−∂2

t )

]− 1
2

=
1√

2πγ2T

[
ϕ1(T )
ϕ2(T )

]− 1
2

,

which can be computed by solving the associated differential equations:

(−∂2
t + νµγ2)ϕ1(t) = 0, ϕ1(0) = 0, ϕ̇1(0) = 1,

−∂2
t ϕ2(t) = 0, ϕ2(0) = 0, ϕ̇2(0) = 1.

The above differential equations are solved as

ϕ1(t) =
1

2γ
√
νµ

{
eγ

√
νµt − e−γ

√
νµt
}
, ϕ2(t) = t,

from which the fluctuation factor is obtained as
1
T

logR = −
γ
√
νµ

2
, (S-2.13)

for T → ∞.

Log likelihood of gamma distribution

In order to evaluate the log likelihood function of the gamma distribution (S-2.4), we need to
evaluate 1

n

∑
i log(ti − ti−1). Let {t(λ)

i − t
(λ)
i−1} be a set of ISIs in the whole ISIs {ti − ti−1} derived

from the gamma distribution with the rate λ, and nλ be the number of the ISIs in this set. Then,
we obtain

1
nλ

nλ∑
i=1

log(t(λ)
i − t

(λ)
i−1) → ψ(κ) − log κ− log λ, as nλ → ∞,

where ψ(κ) = d
dκ log Γ(κ) is the digamma function. On the other hand, nλ/n converges to

nλ

n
→ λp(λ)dλ

µ
, as n→ ∞,

from the law of large number. Using these, we obtain

lim
n→∞

1
n

n∑
i=1

log(ti − ti−1) =
∫ ∞

0

[ψ(κ) − log κ− log λ]
λp(λ)
µ

dλ.

By using the condition (B) and expanding up to the second-order with respect to σ/µ, the above
equation can be evaluated as

ψ(κ) − log κ− logµ− σ2

2µ2

∫ ∞

−∞
f2p(f)df = ψ(κ) − log κ− logµ− σ2φ(0)

2µ2
. (S-2.14)

Substituting (S-2.14) into Eq.(S-2.4), the log likelihood of the gamma distribution is obtained as

1
T
H = µ

{
logµ− ν + ν log ν − log Γ(ν) + (ν − 1)

[
ψ(κ) − log κ− σ2φ(0)

2µ2

]}
. (S-2.15)
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Log marginal likelihood function

Summing the contribution of the MAP path (S-2.12), fluctuation factor (S-2.13) and the likelihood
function (S-2.15), the log marginal likelihood function is written as

L(γ, ν) :=
1
T

log pν,γ({ti}) =
1
T

(
logR− logZ(γ) −

∫ T

0

L( ˙̂y, ŷ)dt+ H

)

= −
γ
√
νµ

4

{
2 − ν

κ

(
1 +

2κσ2

µ

∫ ∞

0

φ(u)e−γ
√

νµudu

)}

+
√
µσ

{(
logµ− ν + ν log ν − log Γ(ν) + (ν − 1)[ψ(κ) − log κ]

)(σ
µ

) 1
2

− (ν − 1)φ(0)
2

(
σ

µ

) 3
2
}
, (S-2.16)

in the limit of T → ∞. Note that Eq. (S-2.16) is valid in O((σ/µ)3/2).

S-2.3 Lower bound

In the range of parameter space (γ, ν) that is valid for the asymptotic analysis (in which o((σ/µ)3/2)
is negligible), the log marginal likelihood function can have a maximum at (γ, ν) = (0, κ̂0) or at
(γ̂, κ̂), γ̂ > 0, which correspond to constant and fluctuating rate estimations, respectively.

For the case of γ = 0, the fluctuation in the rate estimation (S-2.11) vanishes, and thus the
rate estimation becomes constant λ̂(t) = µ. Taking ∂L/∂ν = 0 leads to

ψ(κ̂0) − log κ̂0 −
[
ψ(κ) − log κ− σ2φ(0)

2µ2

]
= 0.

The solution of the above equation is obtained as

κ̂0 = κ− σ2φ(0)
2µ2I(κ)

+ o((σ/µ)2), (S-2.17)

where I(κ) = ψ̇(κ) − 1/κ is the Fisher information of the gamma distribution.
We next evaluate the fluctuating rate estimation if it exists. From (S-2.17), κ̂ must be κ +

O((σ/µ)2), and the log marginal likelihood function becomes

L(γ, κ̂) = L(γ, κ)

= −η
4

[
1 − 2

κσ2

µ

∫ ∞

0

φ(u)e−ηudu

]
+ L(0, κ̂0), (S-2.18)

in O((σ/µ)3/2), where η := γ
√
κµ. L(γ, κ̂) satisfies L(0, κ̂) = 0 and L(∞, κ̂) = −∞, and has the

global maximum either at γ = γ̂ > 0 or γ = 0, depending on the value of κσ2/µ. L(γ, κ̂) has the
global maximum at γ = γ̂ > 0 if κσ2/µ exceeds the critical value:

1
2 maxη

∫∞
0
φ(u)e−ηudu

. (S-2.19)

On the other hand, from Eq. (14), the KL divergence of the time-rescaled gamma renewal
process with the rate λ(t) = µ+ σf(t) is obtained as

Dκ(λ(t)||µ) =
κσ2

2µ
φ(0) + o((σ/µ)3/2). (S-2.20)

From eqn. (S-2.19) and (S-2.20), we obtain the formula (22) that the critical point satisfies as

Dκ(λ(t)||µ) =
φ(0)

4maxη

∫∞
0
φ(u)e−ηudu

. (S-2.21)
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