
A PROOFS

Proof of Proposition 1. By definition,
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where we used the fact that q
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is an admissible algorithm for this relaxation, and thus the last
inequality holds for any choice x
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We remark that the left-hand side of this inequality is random, while the right-hand side is not. Since
the inequality holds for any realization of the process, it also holds in expectation. The inequality

V
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holds by unwinding the value recursively and using admissibility of the relaxation. The high-
probability bound is an immediate consequences of (6) and the Hoeffding-Azuma inequality for
bounded martingales. The last statement is immediate.
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where we upper bounded the expectation by the supremum. Splitting the resulting expression into
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The last equality is easy to verify, as we are effectively adding a root x
t

to the two subtrees, for
✏
t

= +1 and ✏
t

= −1, respectively.

One can see that the proof of admissibility corresponds to one step minimax swap and symmetriza-
tion in the proof of [15]. In contrast, in the latter paper, all T minimax swaps are performed at once,
followed by T symmetrization steps.

Proof of Proposition 3. Let us first prove that the relaxation is admissible with the Exponential
Weights algorithm as an admissible algorithm. Let L
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by the optimality of �∗. The bound can be improved by a factor of 2 for some loss functions, since
it will disappear from the definition of sequential Rademacher complexity.

We conclude that the Exponential Weights algorithm is an admissible strategy for the relaxation (9).
The final regret bound follows immediately from the bound on sequential Rademacher complexity
(which, in this case, is simply the supremum of a martingale difference process indexed by N
elements – see e.g. [15]).

Arriving at the relaxation We now show that the Exponential Weights relaxation arises naturally
as an upper bound on sequential Rademacher complexity of a finite class. For any � > 0,
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Since, conditioned on ✏1, . . . , ✏i−1, the random variable ✏
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bound the expected value of the product, peeling one random variable at a time from the end (see
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[15] for the proof). We arrive at the upper bound
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The last term, representing the “worst future”, is upper bounded by 2�(T − t), assuming that the
losses are bounded by 1. This removes the x tree and leads to the relaxation (9) and a computation-
ally tractable algorithm.

Proof of Proposition 4. The argument can be seen as a generalization of the Euclidean proof in [2]
to general smooth norms. Let x̃
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Hence, the choice (28) is an admissible algorithm for the relaxation (10). Evidently, the above
proof of admissibility is very simple, but it might seem that we pulled the algorithm (28) out of a
hat. We now show that in fact the choice of f
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where � = �∇�x̃t−1�2,z�
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Plugging back the value of ↵, we find that � = 0. Hence we conclude that f
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defined in (28) in fact
coincides with the optimal solution (27).

Arriving at the Relaxation The derivation of the relaxation is immediate:

R
T

(F �x1, . . . , xt

) = sup
x

E
✏

t+1∶T � T�
s=t+1 ✏

s

x

s−t(✏t+1∶s−1) − t�
s=1x

s

� (31)

≤ sup
x

�����E
✏

t+1∶T � T�
s=t+1 ✏

s

x

s−t(✏t+1∶s−1) − t�
s=1x

s

�
2

(32)

≤ sup
x

������ t�
s=1x

s

�2 +CE
✏

t+1∶T
T�

s=t+1 �✏sxs−t(✏t+1∶s−1)�2 (33)

where the last step is due to the smoothness of the norm and the fact that the first-order terms
disappear under the expectation. The sum of norms is now upper bounded by T − t, thus removing
the dependence on the “future”, and we arrive at������ t�
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as a relaxation on the sequential Rademacher complexity.
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Proof of Proposition 5. We would like to show that, with the distribution q∗
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Just as in the proof of Proposition 3, we may think of the two choices �
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the normalization term, we arrive at the upper bound
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The last step is due to Lemma A.1 in [6]. It remains to show that the log normalization term is upper
bounded by the relaxation at the previous step:
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To justify the last inequality, note thatF
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where g(d, T − t) is the size of the zero cover for a class with Littlestone’s dimension d on the
worst-case tree of depth T − t (see [15]). This completes the proof of admissibility.

Alternative Method Let us now derive the algorithm. Once again, consider the optimization
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where we have dropped the �

2 (T − t) term from both sides. Equating the two values, we obtain
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�
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������� �(�,�
t

)∈F �
x

t

g(Ldim(F
t

(�,�
t

)), T − t) exp{−�L
t−1(�)}E✏

exp{−�(1 − ✏�
t

)}�������
for a Rademacher random variable ✏ ∈ {±1}. Now,

E
✏

exp{−�(1 − ✏�
t

)} = e−�E
✏

e�✏�t ≤ e−�e�
2�2

Substituting this into the above expression, we obtain an upper bound of

�

2

(T − t + 1) + 1

�
log

������� �(�,�
t

)∈F �
x

t

g(Ldim(F
t

(�,�
t

)), T − t) exp{−�L
t−1(�)}

�������
which completes the proof of admissibility using the same combinatorial argument as in the earlier
part of the proof.

Arriving at the Relaxation Finally, we show that the relaxation we use arises naturally as an
upper bound on the sequential Rademacher complexity. Fix a tree x. Let � ∈ {±1}t−1 be a sequence
of signs. Observe that given history xt = (x1, . . . , xt

), the signs ✏ ∈ {±1}T−t, and a tree x, the
function class F takes on only a finite number of possible values (�,�

t

,!) on (xt,x(✏)). Here,
x(✏) denotes the sequences of values along the path ✏. We have,

sup

x

E
✏

sup

f∈F �2
T−t�
i=1

✏
i

f(x
i

(✏)) − t�
i=1
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i
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i
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✏
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t

∈{±1} max(�,!)∶(�,�
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,!)∈F �(xt
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�2 T−t�

i=1
✏
i

!
i
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��

i
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i
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x

E
✏
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t

∈{±1} max
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t

)∈F �
x
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v∈V (F(�,�
t

),x)�2
T−t�
i=1

✏
i

v

i

(✏) − t�
i=1
��

i

− y
i

��
where F �(xt

,x(✏)) is the projection of F onto (xt,x(✏)), F(�,�
t

) = {f ∈ F ∶ f(xt) = (�,�
t

)},
and V (F(�,�

t

),x) is the zero-cover of the set F(�,�
t

) on the tree x. We then have the following
relaxation:

1

�
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�
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where L

t

(�,�
t

) = ∑t

i=1 ��i

− y
i

�. The latter quantity can be factorized:
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This concludes the derivation of the relaxation.

Proof of Lemma 6. We first exhibit the proof for the convex loss case. To show admissibility using
the particular randomized strategy q

t

given in the lemma, we need to show that

sup

x

t

� E
f∼q

t

[`(f, x
t

)] +Rel

T

(F �x1, . . . , xt

)� ≤Rel

T

(F �x1, . . . , xt−1)
The strategy q

t

proposed by the lemma is such that we first draw x
t+1, . . . , xT

∼ D and ✏
t+1, . . . ✏T

Rademacher random variables, and then based on this sample pick f
t

= f
t

(x
t+1∶T , ✏

t+1∶T ) as in (17).
Hence,

sup

x

t

� E
f∼q

t

[`(f, x
t

)] +Rel

T

(F �x1, . . . , xt

)�

= sup
x

t

���������
E

✏

t+1∶T
x

t+1∶T
`(f

t

, x) + E
✏

t+1∶T
x
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sup

f∈F �C
T�

i=t+1
✏
i

`(f, x
i

) −L
t

(f)�
���������

≤ E
✏
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x
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x

t

�`(f
t

, x) + sup
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✏
i

`(f, x
i

) −L
t

(f)��
where L

t

(f) = ∑t

i=1 `(f, x
i

). Observe that our strategy “matched the randomness” arising from the
relaxation! Now, with f

t

defined as

f
t
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g∈F sup

x

t

∈X �`(g, x
t

) + sup
f∈F �C
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✏
i

`(f, x
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(f)��
for any given x
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t+1∶T , we have
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i
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We can conclude that for this choice of q

t

,

sup
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� E
f∼q

t
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In the last step we appealed to the minimax theorem which holds as loss is convex in g and F is a
compact convex set and the term in the expectation is linear in p

t

, as it is an expectation. The last
expression can be written as

E
✏
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x

t+1∶T
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∼p sup
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✏
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Last inequality is by Assumption 1, using which we can replace a draw from supremum over distri-
butions by a draw from the “equivalently bad” fixed distribution D by suffering an extra factor of C
multiplied to that random instance.

The key step where we needed convexity was to use minimax theorem to swap infimum and supre-
mum inside the expectation. In general the minimax theorem need not hold. In the non-convex
scenario this is the reason we add the extra randomization through q̂

t

. The non-convex case has
a similar proof except that we have expectation w.r.t. q̂

t

extra on each round which essentially
convexifies our loss and thus allows us to appeal to the minimax theorem.

Proof of Lemma 7. Let w ∈ RN be arbitrary. We need to show
max

x∈{±1}N E
✏

max

i∈[N] �wi

+ 2✏x
i

� ≤ E
x∼DE

✏

max

i∈[N] �wi

+C✏x
i

� (34)

Let i∗ = argmax

i

�w
i

� and j∗ = argmax

i≠i∗ �w
i

� be the coordinates with largest and second-largest

magnitude. If �w
i

∗ � − �w
j

∗ � ≥ 4, the statement is immediate as the top coordinate stays at the top. It
remains to consider the case when �w

i

∗ � − �w
j

∗ � < 4. In this case first note that,
max

x∈{±1}N E
✏
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i∈[N] �wi

+ 2✏x
i

� ≤ �w
i

∗ � + 2
On the other hand, since the distribution we consider is symmetric, with probability 1�2 its sign
is negative and with remaining probability positive. Define �

i

∗ = sign(x
i

∗), �
j

∗ = sign(x
j

∗),
⌧
i

∗ = sign(w
i

∗), and ⌧
j

∗ = sign(w
j

∗). Since each coordinate is drawn i.i.d., using conditional
expectations we have,
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Now since we are in the case when �w
i

∗ � − �w
j

∗ � < 4 we see that

E
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�w
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On the other hand, as we already argued,
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� ≤ �w
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∗ � + 2
Hence, as long as

C E [�x
i
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∗ = ⌧
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≥ 2
or, in other words, as long as

C ≥ 6�E [�x
i

� � sign(x
i

) = sign(w
i
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we have that
max
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This concludes the proof.
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Lemma 13. Consider the case when X is the `N∞ ball and F is the `N1 unit ball. Let f∗ =
argmin

f∈F �f,R�, then for any random vector R,

E
R

�sup
x∈X {�f∗, x� + �R + x�∞}� ≤ E

R

� inf
f∈F supx {�f, x� + �R + x�∞}� + 4 P (�R�∞ ≤ 4)

Proof. Let f∗ = argmin

f∈F �f,R�. We start by noting that for any f ′ ∈ F ,

sup

x∈X {�f ′, x� + �R + x�∞} = sup
x∈X ��f ′, x� + supf∈F �f,R + x��
= sup

f∈F sup

x∈X {�f ′, x� + �f,R + x�}
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f∈F �supx∈X �f ′ + f, x� + �f,R��
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f∈F {�f ′ + f�1 + �f,R�}
Hence note that
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f
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′∈F {�f ′ − f∗�1 − �f∗,R�} ≥ inf

f

′∈F {�f ′ − f∗�1 + �R�∞} = �R�∞
(36)

On the other hand note that, f∗ is the vertex of the `1 ball (any one which given by argmin

i∈[d] �R[i]�
with sign opposite as sign of R[i] on that vertex). Since the `1 ball is the convex hull of the 2d
vertices, any vector f ∈ F can be written as f = ↵h − �f∗ some h ∈ F such that �h�1 = 1 and�h,R� = 0 (which means that h is 0 on the maximal co-ordinate of R specified by f∗) and for some
� ∈ [−1,1], ↵ ∈ [0,1] s.t. �↵h − �f∗�1 ≤ 1. Further note that the constraint on ↵,� imposed by
requiring that �↵h − �f∗�1 ≤ 1 can be written as ↵ + ��� ≤ 1. Hence,

sup
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Hence combining with equation 35 we can conclude that

E
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Proof of Lemma 8. On any round t, the algorithm draws ✏
t+1, . . . , ✏T and x

t+1, . . . , xT

∼ DN and
plays

f
t

= argmin

f∈F �f,
t−1�
i=1

x
i

−C
T�

i=t+1
x
i

�
We shall show that this randomized algorithm is (almost) admissible w.r.t. the relaxation (with some
small additional term at each step). We define the relaxation as

Rel

T

(F �x1, . . . , xt

) = E
x

t+1,...xT

∼D ��
t�

i=1
x
i

−C
T�

i=t+1
x
i

�
∞
�

Proceeding just as in the proof of Lemma 6 note that, for our randomized strategy,
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t
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In view of Lemma 13 (with R = ∑t−1
i=1 x

i

−C∑T

i=t+1 ✏
i

x
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) we conclude that
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Combining with Equation (37) we conclude that
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Now, since
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we have
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(39)

In view of Lemma 7, Assumption 2 is satisfied by DN with constant C. Further in the proof of
Lemma 6 we already showed that whenever Assumption 2 is satisfied, the randomized strategy
specified by f∗

t

is admissible. More specifically we showed that

E
x

t+1,...,xT
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��f∗
t
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(F �x1, . . . , xt−1)
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and so using this in Equation (38) we conclude that for the randomized strategy in the statement of
the lemma,

sup

x

� E
f∼q

t

[�f, x�] +Rel

T

(F �x1, . . . , xt

)�
≤Rel

T

(F �x1, . . . , xt−1) + 4 P

y
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y
i

� ≤ 4�
Or in other words the randomized strategy proposed is admissible with an additional additive factor
of 4 P

y

t+1,...,yT

∼D �C �∑T

i=t+1 y
i

� ≤ 4� at each time step t. Hence by Proposition 1 we have that for
the randomized algorithm specified in the lemma,

E [Reg

T

] ≤Rel

T

(F ) + 4 T�
t=1Py

t+1,...,yT

∼D �C � T�
i=t+1

y
i

� ≤ 4�
= C E

x1,...,xT

∼DN

�� T�
t=1x

t

�
∞
� + 4 T�

t=1Py

t+1,...,yT

∼D �C � T�
i=t+1

y
i

� ≤ 4�
This concludes the proof.

Proof of Lemma 9. Instead of using C = 4√2 and drawing uniformly from surface of unit sphere
we can equivalently think of the constant as being 1 and drawing uniformly from surface of sphere
of radius 4

√
2. Let �⋅� stand for the Euclidean norm. To prove (19), first observe that

sup

p∈�(X ) E
x

t

∼p�w + E
x∼p[x] − x

t

� ≤ sup
x∈X E

✏

�w + 2✏x� (40)

for any w ∈ B. Further, using Jensen’s inequality

sup

x∈X E
✏

�w + 2✏x� ≤ sup
x∈X
�

E
✏

�w + 2✏x�2 ≤ sup
x∈X
��w�2 +E

✏

�2✏x�2 =��w�2 + 4
To prove the lemma, it is then enough to show that for r = 4√2

E
x∼D �w + rx� ≥��w�2 + 4 (41)

for any w, where we omitted ✏ since D is symmetric. This fact can be proved with the following
geometric argument.

We define quadruplets (w + z1,w + z2,w − z1,w − z2) of points on the sphere of radius r. Each
quadruplets will have the property that

�w + z1� + �w + z2� + �w − z1� + �w − z2�
4

≥��w�2 + 4 (42)

for any w. We then argue that the uniform distribution can be decomposed into these quadruplets
such that each point on the sphere occurs in only one quadruplet (except for a measure zero set when
z1 is aligned with −w), thus concluding that (41) holds true.

✓

z2z1

w

Figure 1: The two-dimensional construction for the proof of Lemma 9.
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Pick any direction w⊥ perpendicular to w. A quadruplet is defined by perpendicular vectors z1 and
z2 which have length r and which lie in the plane spanned by w,w⊥. Let ✓ be the angle between−w and z1. Since we are now dealing with a two dimensional plane spanned by w and w⊥, we may
as well assume that w is aligned with the positive x-axis, as in Figure 1. We write w for �w�. The
coordinates of the quadruplet are

(w−r cos(✓), r sin(✓)), (w+r cos(✓),−r sin(✓)), (w+r sin(✓), r cos(✓)), (w−r sin(✓),−r cos(✓))
For brevity, let s = sin(✓), c = cos(✓). The desired inequality (42) then reads√

w2 − 8wc + r2 +√w2 + 8wc + r2 +√w2 + 8ws + r2 +√w2 − 8ws + r2 ≥ 4√w2 + 4
To prove that this inequality holds, we square both sides, keeping in mind that the terms are non-
negative. The sum of four squares on the left hand side gives 4w2 + 4r2. For the six cross terms, we
can pass to a lower bound by replacing r2 in each square root by r2c2 or r2s2, whichever completes
the square. Then observe that

�w + rs� ⋅ �w − rs� + �w + rc� ⋅ �w − rc� = 2w2 − r2

while the other four cross terms
(�w + rs� ⋅ �w − rc� + �w + rs� ⋅ �w + rc�) + (�w − rs� ⋅ �w + rc� + �w − rs� ⋅ �w − rc�) ≥ �w + rs� ⋅ 2w + �w − rs� ⋅ 2w ≥ 4w2

Doubling the cross terms gives a contribution of 2(6w2 − r2), while the sum of squares yielded
4w2 + 4r2. The desired inequality is satisfied as long as 16w2 + 2r2 ≥ 16(w2 + 4), or r ≥ 4√2.

Proof of Lemma 10. By Lemma 9, Assumption 2 is satisfied by distribution D with constant C =
4

√
2. Hence by Lemma 7 we can conclude that for the randomized algorithm which at round t

freshly draws x
t+1, . . . , xT

∼D and picks

f∗
t

= argmin

f∈F sup

x∈X ��f, x� + �− t−1�
i=1

x
i

+ 4√2 T�
i=t+1

x
i

− x�
2

�
(we dropped the ✏’s as the distribution is symmetric to start with) the expected regret is bounded as

E [Reg

T

] ≤ 4√2 E
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∼D ��
T�
t=1x

t

�
2

� ≤ 4√2T
We claim that the strategy specified in the lemma that chooses

f
t

= −∑t−1
i=1 x

i

+ 4√2∑T

i=t+1 x
i�

�−∑t−1
i=1 x

i

+ 4√2∑T
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i

x
i

�2
2
+ 1

is the same as choosing f∗
t

. To see this let us start by defining

x̄
t

= − t−1�
i=1

x
i

+ 4√2 T�
i=t+1

x
i

Now note that

f∗
t

= argmin

f∈F sup

x∈X ��f, x� + �− t−1�
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x
i
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2

�
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f∈F sup
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f∈F sup
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��f, x� +��x̄
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f∈F sup
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��f, x� +��x̄

t

�2 − 2 �x̄
t

, x� + 1�

21



However this argmin calculation is identical to the one in the proof of Proposition 4 (with C = 1 and
T − t = 0) and the solution is given by

f∗
t

= f
t

= −∑t−1
i=1 x

i

+ 4√2∑T

i=t+1 x
i�

�−∑t−1
i=1 x

i

+ 4√2∑T

i=t+1 ✏
i

x
i

�2
2
+ 1

Thus we conclude the proof.

Proof of Lemma 11. We shall start by showing that the relaxation is admissible for the game where
we pick prediction ŷ

t

and the adversary then directly picks the gradient @`(ŷ
t

, y
t

). To this end note
that
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Let us use the notation L

t−1(f) = ∑t−1
i=1 @`(ŷ

i

, y
i

) ⋅ f[i] for the present proof. The supremum over
r
t

∈ [−L,L] is achieved at the endpoints since the expression is convex in r
t

. Therefore, the last
expression is equal to
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where the last step is due to the minimax theorem. The last quantity is equal to
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By passing to the worst-case choice of r

t

, r′
t

(which is achieved at the endpoints because of convex-
ity), we obtain a further upper bound

sup

r

t

,r

′
t

∈{L,−L}E✏

sup

f∈F �2L
T�

i=t+1
✏
i

f[t] −L
t−1(f) + ✏

t

(r′
t

− r
t

) ⋅ f[t]�
≤ sup

r

t

∈{L,−L}E✏

sup

f∈F �2L
T�

i=t+1
✏
i

f[t] −L
t−1(f) + 2✏trt ⋅ f[t]�

= sup

r

t

∈{L,−L}E✏

sup

f∈F �2L
T�
i=t

✏
i

f[t] −L
t−1(f)�

=Rel

T
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Thus we see that the relaxation is admissible. Now the corresponding prediction is given by
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The last step holds because of convexity of the term inside the supremum over r

t

is convex in r
t

and
so the suprema is attained at the endpoints of the interval. The ŷ
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above is attained when both terms
of the supremum are equalized, that is for ŷ
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Finally since the relaxation is admissible we can conclude that the regret of the algorithm is bounded
as
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This concludes the proof.

Proof of Lemma 12. The proof is similar to that of Lemma 11, with a few more twists. We want to
establish admissibility of the relaxation given in (21) w.r.t. the randomized strategy q

t

we provided.
To this end note that
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). Further, by convexity of
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upper bound
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Now the strategy we defined is
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which can be re-written as
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By this choice of ŷ
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The expression inside the supremum is linear in p
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, as it is an expectation. Also note that the term
is convex in ŷ

t

, and the domain ŷ
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In the last step, we replaced the infimum over ŷ
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In the above we split the term in the supremum as the sum of two terms one involving r
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The above step used the fact that the first term only involved r′
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and second only r
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and further ✏
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t

in the above
supremum is L or −L, since it is multiplied by ✏

t

we obtain an upper bound

E
✏

�sup
f∈F �2L

T�
i=t

✏
i

f[i] −L
t−1(f)��

We conclude that the relaxation

Rel

T

(F �y1, . . . , yt) = E
✏

�sup
f∈F �2L

T�
i=t+1

✏
i

f[i] −L
t

(f)��
is admissible and further the randomized strategy where on each round we first draw ✏’s and then set

ŷ
t

(✏) = �sup
f∈F �

T�
i=t+1

✏
i

f[i] − 1

2L
L
t−1(f) + 1

2

f[t]� − sup
f∈F �

T�
i=t+1

✏
i

f[i] − 1

2L
L
t−1(f) − 1

2

f[t]��
= � inf

f∈F �−
T�

i=t+1
✏
i

f[i] + 1

2L
L
t−1(f) + 1

2

f[t]� − inf

f∈F �−
T�

i=t+1
✏
i

f[i] + 1

2L
L
t−1(f) − 1

2

f[t]��
is an admissible strategy. Hence, the expected regret under the strategy is bounded as

E [Reg

T

] ≤Rel

T

(F) = 2L E
✏

�sup
f∈F

T�
i=1

✏
i

f[i]�
which concludes the proof.
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