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Abstract

We study the problem of learning local metrics for nearest neighbor classification.
Most previous works on local metric learning learn a number of local unrelated
metrics. While this ”independence” approach delivers an increased flexibility its
downside is the considerable risk of overfitting. We present a new parametric local
metric learning method in which we learn a smooth metric matrix function over the
data manifold. Using an approximation error bound of the metric matrix function
we learn local metrics as linear combinations of basis metrics defined on anchor
points over different regions of the instance space. We constrain the metric matrix
function by imposing on the linear combinations manifold regularization which
makes the learned metric matrix function vary smoothly along the geodesics of
the data manifold. Our metric learning method has excellent performance both
in terms of predictive power and scalability. We experimented with several large-
scale classification problems, tens of thousands of instances, and compared it with
several state of the art metric learning methods, both global and local, as well as to
SVM with automatic kernel selection, all of which it outperforms in a significant
manner.

1 Introduction

The nearest neighbor (NN) classifier is one of the simplest and most classical non-linear classifica-
tion algorithms. It is guaranteed to yield an error no worse than twice the Bayes error as the number
of instances approaches infinity. With finite learning instances, its performance strongly depends
on the use of an appropriate distance measure. Mahalanobis metric learning [4, 15, 9, 10, 17, 14]
improves the performance of the NN classifier if used instead of the Euclidean metric. It learns
a global distance metric which determines the importance of the different input features and their
correlations. However, since the discriminatory power of the input features might vary between dif-
ferent neighborhoods, learning a global metric cannot fit well the distance over the data manifold.
Thus a more appropriate way is to learn a metric on each neighborhood and local metric learn-
ing [8, 3, 15, 7] does exactly that. It increases the expressive power of standard Mahalanobis metric
learning by learning a number of local metrics (e.g. one per each instance).
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Local metric learning has been shown to be effective for different learning scenarios. One of the
first local metric learning works, Discriminant Adaptive Nearest Neighbor classification [8], DANN,
learns local metrics by shrinking neighborhoods in directions orthogonal to the local decision bound-
aries and enlarging the neighborhoods parallel to the boundaries. It learns the local metrics inde-
pendently with no regularization between them which makes it prone to overfitting. The authors of
LMNN-Multiple Metric (LMNN-MM) [15] significantly limited the number of learned metrics and
constrained all instances in a given region to share the same metric in an effort to combat overfitting.
In the supervised setting they fixed the number of metrics to the number of classes; a similar idea
has been also considered in [3]. However, they too learn the metrics independently for each region
making them also prone to overfitting since the local metrics will be overly specific to their respec-
tive regions. The authors of [16] learn local metrics using a least-squares approach by minimizing a
weighted sum of the distances of each instance to apriori defined target positions and constraining the
instances in the projected space to preserve the original geometric structure of the data in an effort to
alleviate overfitting. However, the method learns the local metrics using a learning-order-sensitive
propagation strategy, and depends heavily on the appropriate definition of the target positions for
each instance, a task far from obvious. In another effort to overcome the overfitting problem of the
discriminative methods [8, 15], Generative Local Metric Learning, GLML, [11], propose to learn
local metrics by minimizing the NN expected classification error under strong model assumptions.
They use the Gaussian distribution to model the learning instances of each class. However, the
strong model assumptions might easily be very inflexible for many learning problems.

In this paper we propose the Parametric Local Metric Learning method (PLML) which learns a
smooth metric matrix function over the data manifold. More precisely, we parametrize the metric
matrix of each instance as a linear combination of basis metric matrices of a small set of anchor
points; this parametrization is naturally derived from an error bound on local metric approximation.
Additionally we incorporate a manifold regularization on the linear combinations, forcing the linear
combinations to vary smoothly over the data manifold. We develop an efficient two stage algorithm
that first learns the linear combinations of each instance and then the metric matrices of the anchor
points. To improve scalability and efficiency we employ a fast first-order optimization algorithm,
FISTA [2], to learn the linear combinations as well as the basis metrics of the anchor points. We
experiment with the PLML method on a number of large scale classification problems with tens of
thousands of learning instances. The experimental results clearly demonstrate that PLML signifi-
cantly improves the predictive performance over the current state-of-the-art metric learning methods,
as well as over multi-class SVM with automatic kernel selection.

2 Preliminaries

We denote by X the n×dmatrix of learning instances, the i-th row of which is the xTi ∈ Rd instance,
and by y = (y1, . . . , yn)

T , yi ∈ {1, . . . , c} the vector of class labels. The squared Mahalanobis
distance between two instances in the input space is given by:

d2M(xi,xj) = (xi − xj)
TM(xi − xj)

where M is a PSD metric matrix (M � 0). A linear metric learning method learns a Mahalanobis
metric M by optimizing some cost function under the PSD constraints for M and a set of additional
constraints on the pairwise instance distances. Depending on the actual metric learning method,
different kinds of constraints on pairwise distances are used. The most successful ones are the
large margin triplet constraints. A triplet constraint denoted by c(xi,xj ,xk), indicates that in the
projected space induced by M the distance between xi and xj should be smaller than the distance
between xi and xk.

Very often a single metric M can not model adequately the complexity of a given learning problem
in which discriminative features vary between different neighborhoods. To address this limitation
in local metric learning we learn a set of local metrics. In most cases we learn a local metric for
each learning instance [8, 11], however we can also learn a local metric for some part of the instance
space in which case the number of learned metrics can be considerably smaller than n, e.g. [15]. We
follow the former approach and learn one local metric per instance. In principle, distances should
then be defined as geodesic distances using the local metric on a Riemannian manifold. However,
this is computationally difficult, thus we define the distance between instances xi and xj as:

d2Mi
(xi,xj) = (xi − xj)

TMi(xi − xj)
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where Mi is the local metric of instance xi. Note that most often the local metric Mi of instance
xi is different from that of xj . As a result, the distance d2Mi

(xi,xj) does not satisfy the symmetric
property, i.e. it is not a proper metric. Nevertheless, in accordance to the standard practice we will
continue to use the term local metric learning following [15, 11].

3 Parametric Local Metric Learning

We assume that there exists a Lipschitz smooth vector-valued function f(x), the output of which
is the vectorized local metric matrix of instance x. Learning the local metric of each instance is
essentially learning the value of this function at different points over the data manifold. In order to
significantly reduce the computational complexity we will approximate the metric function instead
of directly learning it.

Definition 1 A vector-valued function f(x) on Rd is a (α, β, p)-Lipschitz smooth
function with respect to a vector norm ‖·‖ if ‖f(x)− f(x′)‖ ≤ α ‖x− x′‖ and∥∥f(x)− f(x′)−∇f(x′)T (x− x′)

∥∥ ≤ β ‖x− x′‖1+p, where ∇f(x′)T is the derivative of
the f function at x′. We assume α, β > 0 and p ∈ (0, 1].

[18] have shown that any Lipschitz smooth real function f(x) defined on a lower dimensional man-
ifold can be approximated by a linear combination of function values f(u),u ∈ U, of a set U of
anchor points. Based on this result we have the following lemma that gives the respective error
bound for learning a Lipschitz smooth vector-valued function.

Lemma 1 Let (γ,U) be a nonnegative weighting on anchor points U in Rd. Let f be an (α, β, p)-
Lipschitz smooth vector function. We have for all x ∈ Rd:∥∥∥∥∥f(x)−∑

u∈U

γu(x)f(u)

∥∥∥∥∥ ≤ α
∥∥∥∥∥x−∑

u∈U

γu(x)u

∥∥∥∥∥+ β
∑
u∈U

γu(x) ‖x− u‖1+p (1)

The proof of the above Lemma 1 is similar to the proof of Lemma 2.1 in [18]; for lack of space
we omit its presentation. By the nonnegative weighting strategy (γ,U), the PSD constraints on the
approximated local metric is automatically satisfied if the local metrics of anchor points are PSD
matrices.

Lemma 1 suggests a natural way to approximate the local metric function by parameterizing the
metric Mi of each instance xi as a weighted linear combination, Wi ∈ Rm, of a small set of
metric basis, {Mb1 , . . . ,Mbm}, each one associated with an anchor point defined in some region
of the instance space. This parametrization will also provide us with a global way to regularize the
flexibility of the metric function. We will first learn the vector of weights Wi for each instance xi,
and then the basis metric matrices; these two together, will give us the Mi metric for the instance
xi.

More formally, we define a m × d matrix U of anchor points, the i-th row of which is the anchor
point ui, where uTi ∈ Rd. We denote by Mbi the Mahalanobis metric matrix associated with ui.
The anchor points can be defined using some clustering algorithm, we have chosen to define them
as the means of clusters constructed by the k-means algorithm. The local metric Mi of an instance
xi is parametrized by:

Mi =
∑
bk

WibkMbk , Wibk ≥ 0,
∑
bk

Wibk = 1 (2)

where W is a n ×m weight matrix, and its Wibk entry is the weight of the basis metric Mbk for
the instance xi. The constraint

∑
bk
Wibk = 1 removes the scaling problem between different local

metrics. Using the parametrization of equation (2), the squared distance of xi to xj under the metric
Mi is:

d2Mi
(xi,xj) =

∑
bk

Wibkd
2
Mbk

(xi,xj) (3)

where d2Mbk
(xi,xj) is the squared Mahalanobis distance between xi and xj under the basis metric

Mbk . We will show in the next section how to learn the weights of the basis metrics for each instance
and in section 3.2 how to learn the basis metrics.
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Algorithm 1 Smoothl Local Linear Weight Learning
Input: W0, X, U, G, L, λ1, and λ2
Output: matrix W

define g̃β,Y(W) = g(Y) + tr(∇g(Y)T (W −Y)) + β
2 ‖W −Y‖2F

initialize: t1 = 1, β = 1,Y1 = W0, and i = 0
repeat
i = i+ 1, Wi = Proj((Yi − 1

β∇g(Y
i)))

while g(Wi) > g̃β,Yi(Wi) do
β = 2β, Wi = Proj((Yi − 1

β∇g(Y
i)))

end while
ti+1 =

1+
√

1+4t2i
2 , Yi+1 = Wi + ti−1

ti+1
(Wi −Wi−1)

until converges;

3.1 Smooth Local Linear Weighting

Lemma 1 bounds the approximation error by two terms. The first term states that x should be close
to its linear approximation, and the second that the weighting should be local. In addition we want
the local metrics to vary smoothly over the data manifold. To achieve this smoothness we rely
on manifold regularization and constrain the weight vectors of neighboring instances to be similar.
Following this reasoning we will learn Smooth Local Linear Weights for the basis metrics by mini-
mizing the error bound of (1) together with a regularization term that controls the weight variation
of similar instances. To simplify the objective function, we use the term

∥∥x−∑u∈U γu(x)u
∥∥2

instead of
∥∥x−∑u∈U γu(x)u

∥∥. By including the constraints on the W weight matrix in (2), the
optimization problem is given by:

min
W

g(W) = ‖X−WU‖2F + λ1tr(WG) + λ2tr(W
TLW) (4)

s.t. Wibk ≥ 0,
∑
bk

Wibk = 1,∀i, bk

where tr(·) and ‖·‖F denote respectively the trace norm of a square matrix and the Frobenius norm
of a matrix. The m× n matrix G is the squared distance matrix between each anchor point ui and
each instance xj , obtained for p = 1 in (1), i.e. its (i, j) entry is the squared Euclidean distance
between ui and xj . L is the n × n Laplacian matrix constructed by D − S, where S is the n × n
symmetric pairwise similarity matrix of learning instances and D is a diagonal matrix with Dii =∑
k Sik. Thus the minimization of the tr(WTLW) term constrains similar instances to have similar

weight coefficients. The minimization of the tr(WG) term forces the weights of the instances
to reflect their local properties. Most often the similarity matrix S is constructed using k-nearest
neighbors graph [19]. The λ1 and λ2 parameters control the importance of the different terms.

Since the cost function g(W) is convex quadratic with W and the constraint is simply linear, (4) is
a convex optimization problem with a unique optimal solution. The constraints on W in (4) can be
seen as n simplex constraints on each row of W; we will use the projected gradient method to solve
the optimization problem. At each iteration t, the learned weight matrix W is updated by:

Wt+1 = Proj(Wt − η∇g(Wt)) (5)

where η > 0 is the step size and ∇g(Wt) is the gradient of the cost function g(W) at Wt. The
Proj(·) denotes the simplex projection operator on each row of W. Such a projection operator can
be efficiently implemented with a complexity of O(nm log(m)) [6]. To speed up the optimization
procedure we employ a fast first-order optimization method FISTA, [2]. The detailed algorithm is
described in Algorithm 1. The Lipschitz constant β required by this algorithm is estimated by using
the condition of g(Wi) ≤ g̃β,Yi(Wi) [1]. At each iteration, the main computations are in the
gradient and the objective value with complexity O(nmd+ n2m).

To set the weights of the basis metrics for a testing instance we can optimize (4) given the weight of
the basis metrics for the training instances. Alternatively we can simply set them as the weights of
its nearest neighbor in the training instances. In the experiments we used the latter approach.
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3.2 Large Margin Basis Metric Learning

In this section we define a large margin based algorithm to learn the basis metrics Mb1 , . . . ,Mbm .
Given the W weight matrix of basis metrics obtained using Algorithm 1, the local metric Mi of
an instance xi defined in (2) is linear with respect to the basis metrics Mb1 , . . . ,Mbm . We define
the relative comparison distance of instances xi, xj and xk as: d2Mi

(xi,xk) − d2Mi
(xi,xj). In

a large margin constraint c(xi,xj ,xk), the squared distance d2Mi
(xi,xk) is required to be larger

than d2Mi
(xi,xj) + 1, otherwise an error ξijk ≥ 0 is generated. Note that, this relative comparison

definition is different from that defined in LMNN-MM [15]. In LMNN-MM to avoid over-fitting,
different local metrics Mj and Mk are used to compute the squared distance d2Mj

(xi,xj) and
d2Mk

(xi,xk) respectively, as no smoothness constraint is added between metrics of different local
regions.

Given a set of triplet constraints, we learn the basis metrics Mb1 , . . . ,Mbm with the following
optimization problem:

min
Mb1

,...,Mbm ,ξ
α1

∑
bl

||Mbl ||2F +
∑
ijk

ξijk + α2

∑
ij

∑
bl

Wibld
2
Mbl

(xi,xj) (6)

s.t.
∑
bl

Wibl(d
2
Mbl

(xi,xk)− d2Mbl
(xi,xj)) ≥ 1− ξijk ∀i, j, k

ξijk ≥ 0; ∀i, j, k Mbl � 0; ∀bl

where α1 and α2 are parameters that balance the importance of the different terms. The large margin
triplet constraints for each instance are generated using its k1 same class nearest neighbors and k2
different class nearest neighbors by requiring its distances to the k2 different class instances to be
larger than those to its k1 same class instances. In the objective function of (6) the basis metrics are
learned by minimizing the sum of large margin errors and the sum of squared pairwise distances of
each instance to its k1 nearest neighbors computed using the local metric. Unlike LMNN we add the
squared Frobenius norm on each basis metrics in the objective function. We do this for two reasons.
First we exploit the connection between LMNN and SVM shown in [5] under which the squared
Frobenius norm of the metric matrix is related to the SVM margin. Second because adding this term
leads to an easy-to-optimize dual formulation of (6) [12].

Unlike many special solvers which optimize the primal form of the metric learning problem [15, 13],
we follow [12] and optimize the Lagrangian dual problem of (6). The dual formulation leads to an
efficient basis metric learning algorithm. Introducing the Lagrangian dual multipliers γijk, pijk and
the PSD matrices Zbl to respectively associate with every large margin triplet constraints, ξijk ≥ 0
and the PSD constraints Mbl � 0 in (6), we can easily derive the following Lagrangian dual form

max
Zb1

,...,Zbm ,γ

∑
ijk

γijk −
∑
bl

1

4α1
· ‖Zbl +

∑
ijk

γijkWiblCijk − α2

∑
ij

WiblAij‖2F (7)

s.t. 1 ≥ γijk ≥ 0; ∀i,j,k Zbl � 0; ∀bl

and the corresponding optimality conditions: M∗
bl

=
(Z∗

bl
+
∑

ijk γ
∗
ijkWibl

Cijk−α2

∑
ij Wibl

Aij)

2α1
and

1 ≥ γijk ≥ 0, where the matrices Aij and Cijk are given by xTijxij and xTikxik−xTijxij respectively,
where xij = xi − xj .

Compared to the primal form, the main advantage of the dual formulation is that the second term
in the objective function of (7) has a closed-form solution for Zbl given a fixed γ. To drive the
optimal solution of Zbl , let Kbl = α2

∑
ijWiblAij −

∑
ijk γijkWiblCijk. Then, given a fixed γ,

the optimal solution of Zbl is Z∗bl = (Kbl)+, where (Kbl)+ projects the matrix Kbl onto the PSD
cone, i.e. (Kbl)+ = U[max(diag(Σ)),0)]UT with Kbl = UΣUT.

Now, (7) is rewritten as:

min
γ

g(γ) = −
∑
ijk

γijk +
∑
bl

1

4α1
‖(Kbl)+ −Kbl‖

2
F (8)

s.t. 1 ≥ γijk ≥ 0;∀i, j, k
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And the optimal condition for Mbl is M∗
bl

= 1
2α1

((K∗bl)+ −K∗bl). The gradient of the objective
function in (8), ∇g(γijk), is given by: ∇g(γijk) = −1 +

∑
bl

1
2α1
〈(Kbl)+ −Kbl ,WiblCijk〉. At

each iteration, γ is updated by: γi+1 = BoxProj(γi − η∇g(γi)) where η > 0 is the step size.
The BoxProj(·) denotes the simple box projection operator on γ as specified in the constraints
of (8). At each iteration, the main computational complexity lies in the computation of the eigen-
decomposition with a complexity of O(md3) and the computation of the gradient with a complexity
of O(m(nd2 + cd)), where m is the number of basis metrics and c is the number of large margin
triplet constraints. As in the weight learning problem the FISTA algorithm is employed to accelerate
the optimization process; for lack of space we omit the algorithm presentation.

4 Experiments

In this section we will evaluate the performance of PLML and compare it with a number of rel-
evant baseline methods on six datasets with large number of instances, ranging from 5K to 70K
instances; these datasets are Letter, USPS, Pendigits, Optdigits, Isolet and MNIST. We want to de-
termine whether the addition of manifold regularization on the local metrics improves the predictive
performance of local metric learning, and whether the local metric learning improves over learning
with single global metric. We will compare PLML against six baseline methods. The first, SML, is
a variant of PLML where a single global metric is learned, i.e. we set the number of basis in (6) to
one. The second, Cluster-Based LML (CBLML), is also a variant of PLML without weight learn-
ing. Here we learn one local metric for each cluster and we assign a weight of one for a basis metric
Mbi if the corresponding cluster of Mbi contains the instance, and zero otherwise. Finally, we
also compare against four state of the art metric learning methods LMNN [15], BoostMetric [13]1,
GLML [11] and LMNN-MM [15]2. The former two learn a single global metric and the latter two
a number of local metrics. In addition to the different metric learning methods, we also compare
PLML against multi-class SVMs in which we use the one-against-all strategy to determine the class
label for multi-class problems and select the best kernel with inner cross validation.

Since metric learning is computationally expensive for datasets with large number of features we
followed [15] and reduced the dimensionality of the USPS, Isolet and MINIST datasets by applying
PCA. In these datasets the retained PCA components explain 95% of their total variances. We
preprocessed all datasets by first standardizing the input features, and then normalizing the instances
to so that their L2-norm is one.

PLML has a number of hyper-parameters. To reduce the computational time we do not tune λ1
and λ2 of the weight learning optimization problem (4), and we set them to their default values of
λ1 = 1 and λ2 = 100. The Laplacian matrix L is constructed using the six nearest neighbors graph
following [19]. The anchor points U are the means of clusters constructed with k-means clustering.
The number m of anchor points, i.e. the number of basis metrics, depends on the complexity of
the learning problem. More complex problems will often require a larger number of anchor points
to better model the complexity of the data. As the number of classes in the examined datasets is
10 or 26, we simply set m = 20 for all datasets. In the basis metric learning problem (6), the
number of the dual parameters γ is the same as the number of triplet constraints. To speedup the
learning process, the triplet constraints are constructed only using the three same-class and the three
different-class nearest neighbors for each learning instance. The parameter α2 is set to 1, while
the parameter α1 is the only parameter that we select from the set {0.01, 0.1, 1, 10, 100} using
2-fold inner cross-validation. The above setting of basis metric learning for PLML is also used
with the SML and CBLML methods. For LMNN and LMNN-MM we use their default settings,
[15], in which the triplet constraints are constructed by the three nearest same-class neighbors and
all different-class samples. As a result, the number of triplet constraints optimized in LMNN and
LMNN-MM is much larger than those of PLML, SML, BoostMetric and CBLML. The local metrics
are initialized by identity matrices. As in [11], GLML uses the Gaussian distribution to model the
learning instances from the same class. Finally, we use the 1-NN rule to evaluate the performance
of the different metric learning methods. In addition as we already mentioned we also compare
against multi-class SVM. Since the performance of the latter depends heavily on the kernel with
which it is coupled we do automatic kernel selection with inner cross validation to select the best

1http://code.google.com/p/boosting
2http://www.cse.wustl.edu/∼kilian/code/code.html.
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(a) LMNN-MM (b) CBLML (c) GLML (d) PLML

Figure 1: The visualization of learned local metrics of LMNN-MM, CBLML, GLML and PLML.

Table 1: Accuracy results. The superscripts +−= next to the accuracies of PLML indicate the result
of the McNemar’s statistical test with LMNN, BoostMetric, SML, CBLML, LMNN-MM, GMLM
and SVM. They denote respectively a significant win, loss or no difference for PLML. The number
in the parenthesis indicates the score of the respective algorithm for the given dataset based on the
pairwise comparisons of the McNemar’s statistical test.

Single Metric Learning Baselines Local Metric Learning Baselines
Datasets PLML LMNN BoostMetric SML CBLML LMNN-MM GLML SVM

Letter 97.22+++|+++|+(7.0) 96.08(2.5) 96.49(4.5) 96.71(5.5) 95.82(2.5) 95.02(1.0) 93.86(0.0) 96.64(5.0)
Pendigits 98.34+++|+++|+(7.0) 97.43(2.0) 97.43(2.5) 97.80(4.5) 97.94(5.0) 97.43(2.0) 96.88(0.0) 97.91(5.0)
Optdigits 97.72===|+++|=(5.0) 97.55(5.0) 97.61(5.0) 97.22(5.0) 95.94(1.5) 95.94(1.5) 94.82(0.0) 97.33(5.0)
Isolet 95.25=+=|+++|=(5.5) 95.51(5.5) 89.16(2.5) 94.68(5.5) 89.03(2.5) 84.61(0.5) 84.03(0.5) 95.19(5.5)
USPS 98.26+++|+++|=(6.5) 97.92(4.5) 97.65(2.5) 97.94(4.0) 96.22(0.5) 97.90(4.0) 96.05(0.5) 98.19(5.5)
MNIST 97.30=++|+++|=(6.0) 97.30(6.0) 96.03(2.5) 96.57(4.0) 95.77(2.5) 93.24(1.0) 84.02(0.0) 97.62(6.0)
Total Score 37 25.5 19.5 28.5 14.5 10 1 32.5

kernel and parameter setting. The kernels were chosen from the set of linear, polynomial (degree 2,3
and 4), and Gaussian kernels; the width of the Gaussian kernel was set to the average of all pairwise
distances. Its C parameter of the hinge loss term was selected from {0.1, 1, 10, 100}.
To estimate the classification accuracy for Pendigits, Optdigits, Isolet and MNIST we used the de-
fault train and test split, for the other datasets we used 10-fold cross-validation. The statistical
significance of the differences were tested with McNemar’s test with a p-value of 0.05. In order to
get a better understanding of the relative performance of the different algorithms for a given dataset
we used a simple ranking schema in which an algorithm A was assigned one point if it was found
to have a statistically significantly better accuracy than another algorithm B, 0.5 points if the two
algorithms did not have a significant difference, and zero points if A was found to be significantly
worse than B.

4.1 Results

In Table 1 we report the experimental results. PLML consistently outperforms the single global
metric learning methods LMNN, BoostMetric and SML, for all datasets except Isolet on which
its accuracy is slightly lower than that of LMNN. Depending on the single global metric learning
method with which we compare it, it is significantly better in three, four, and five datasets ( for
LMNN, SML, and BoostMetric respectively), out of the six and never singificantly worse. When
we compare PLML with CBLML and LMNN-MM, the two baseline methods which learn one local
metric for each cluster and each class respectively with no smoothness constraints, we see that it is
statistically significantly better in all the datasets. GLML fails to learn appropriate metrics on all
datasets because its fundamental generative model assumption is often not valid. Finally, we see
that PLML is significantly better than SVM in two out of the six datasets and it is never significantly
worse; remember here that with SVM we also do inner fold kernel selection to automatically select
the appropriate feature speace. Overall PLML is the best performing methods scoring 37 points over
the different datasets, followed by SVM with automatic kernel selection and SML which score 32.5
and 28.5 points respectively. The other metric learning methods perform rather poorly.

Examining more closely the performance of the baseline local metric learning methods CBLML and
LMNN-MM we observe that they tend to overfit the learning problems. This can be seen by their
considerably worse performance with respect to that of SML and LMNN which rely on a single
global model. On the other hand PLML even though it also learns local metrics it does not suffer
from the overfitting problem due to the manifold regularization. The poor performance of LMNN-
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(a) Letter (b) Pendigits (c) Optdigits

(d) USPS (e) Isolet (f) MNIST

Figure 2: Accuracy results of PLML and CBLML with varying number of basis metrics.

MM is not in agreement with the results reported in [15]. The main reason for the difference is the
experimental setting. In [15], 30% of the training instance of each dataset were used as a validation
set to avoid overfitting.

To provide a better understanding of the behavior of the learned metrics, we applied PLML LMNN-
MM, CBLML and GLML, on an image dataset containing instances of four different handwritten
digits, zero, one, two, and four, from the MNIST dataset. As in [15], we use the two main principal
components to learn. Figure 1 shows the learned local metrics by plotting the axis of their corre-
sponding ellipses(black line). The direction of the longer axis is the more discriminative. Clearly
PLML fits the data much better than LMNN-MM and as expected its local metrics vary smoothly.
In terms of the predictive performance, PLML has the best with 82.76% accuracy. The CBLML,
LMNN-MM and GLML have an almost identical performance with respective accuracies of 82.59%,
82.56% and 82.51%.

Finally we investigated the sensitivity of PLML and CBLML to the number of basis metrics, we
experimented with m ∈ {5, 10, 15, 20, 25, 30, 35, 40}. The results are given in Figure 2. We see
that the predictive performance of PLML often improves as we increase the number of the basis
metrics. Its performance saturates when the number of basis metrics becomes sufficient to model the
underlying training data. As expected different learning problems require different number of basis
metrics. PLML does not overfit on any of the datasets. In contrast, the performance of CBLML gets
worse when the number of basis metrics is large which provides further evidence that CBLML does
indeed overfit the learning problems, demonstrating clearly the utility of the manifold regularization.

5 Conclusions

Local metric learning provides a more flexible way to learn the distance function. However they are
prone to overfitting since the number of parameters they learn can be very large. In this paper we
presented PLML, a local metric learning method which regularizes local metrics to vary smoothly
over the data manifold. Using an approximation error bound of the metric matrix function, we
parametrize the local metrics by a weighted linear combinations of local metrics of anchor points.
Our method scales to learning problems with tens of thousands of instances and avoids the overfitting
problems that plague the other local metric learning methods. The experimental results show that
PLML outperforms significantly the state of the art metric learning methods and it has a performance
which is significantly better or equivalent to that of SVM with automatic kernel selection.
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