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Abstract

The CUR matrix decomposition is an important extension of Nyström approxima-
tion to a general matrix. It approximates any data matrix in terms of a small num-
ber of its columns and rows. In this paper we propose a novel randomized CUR
algorithm with an expected relative-error bound. The proposed algorithm has the
advantages over the existing relative-error CUR algorithms that it possesses tighter
theoretical bound and lower time complexity, and that it can avoid maintaining the
whole data matrix in main memory. Finally, experiments on several real-world
datasets demonstrate significant improvement over the existing relative-error al-
gorithms.

1 Introduction

Large-scale matrices emerging from stocks, genomes, web documents, web images and videos ev-
eryday bring new challenges in modern data analysis. Most efforts have been focused on manipu-
lating, understanding and interpreting large-scale data matrices. In many cases, matrix factorization
methods are employed to construct compressed and informative representations to facilitate com-
putation and interpretation. A principled approach is the truncated singular value decomposition
(SVD) which finds the best low-rank approximation of a data matrix. Applications of SVD such as
eigenface [20, 21] and latent semantic analysis [4] have been illustrated to be very successful.

However, the basis vectors resulting from SVD have little concrete meaning, which makes it very
difficult for us to understand and interpret the data in question. An example in [10, 19] has well
shown this viewpoint; that is, the vector [(1/2)age − (1/

√
2)height + (1/2)income], the sum of the

significant uncorrelated features from a dataset of people’s features, is not particularly informative.
The authors of [17] have also claimed: “it would be interesting to try to find basis vectors for all
experiment vectors, using actual experiment vectors and not artificial bases that offer little insight.”
Therefore, it is of great interest to represent a data matrix in terms of a small number of actual
columns and/or actual rows of the matrix.

The CUR matrix decomposition provides such techniques, and it has been shown to be very useful
in high dimensional data analysis [19]. Given a matrix A, the CUR technique selects a subset of
columns of A to construct a matrix C and a subset of rows of A to construct a matrix R, and
computes a matrix U such that Ã = CUR best approximates A. The typical CUR algorithms [7,
8, 10] work in a two-stage manner. Stage 1 is a standard column selection procedure, and Stage 2
does row selection from A and C simultaneously. Thus Stage 2 is more complicated than Stage 1.

The CUR matrix decomposition problem is widely studied in the literature [7, 8, 9, 10, 12, 13, 16,
18, 19, 22]. Perhaps the most widely known work on the CUR problem is [10], in which the authors
devised a randomized CUR algorithm called the subspace sampling algorithm. Particularly, the
algorithm has (1 + ϵ) relative-error ratio with high probability (w.h.p.).
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Unfortunately, all the existing CUR algorithms require a large number of columns and rows to be
chosen. For example, for an m × n matrix A and a target rank k ≤ min{m,n}, the state-of-
the-art CUR algorithm — the subspace sampling algorithm in [10] — requires exactly O(k4ϵ−6)
rows or O(kϵ−4 log2 k) rows in expectation to achieve (1 + ϵ) relative-error ratio w.h.p. Moreover,
the computational cost of this algorithm is at least the cost of the truncated SVD of A, that is,
O(min{mn2, nm2}).1 The algorithms are therefore impractical for large-scale matrices.

In this paper we develop a CUR algorithm which beats the state-of-the-art algorithm in both theory
and experiments. In particular, we show in Theorem 5 a novel randomized CUR algorithm with
lower time complexity and tighter theoretical bound in comparison with the state-of-the-art CUR
algorithm in [10].

The rest of this paper is organized as follows. Section 3 introduces several existing column selection
algorithms and the state-of-the-art CUR algorithm. Section 4 describes and analyzes our novel
CUR algorithm. Section 5 empirically compares our proposed algorithm with the state-of-the-art
algorithm.

2 Notations

For a matrix A = [aij ] ∈ Rm×n, let a(i) be its i-th row and aj be its j-th column. Let ∥A∥1 =∑
i,j |aij | be the ℓ1-norm, ∥A∥F = (

∑
i,j a

2
ij)

1/2 be the Frobenius norm, and ∥A∥2 be the spectral
norm. Moreover, let Im denote an m×m identity matrix, and 0mn denotes an m× n zero matrix.

Let A = UAΣAVT
A =

∑ρ
i=0 σA,iuA,iv

T
A,i = UA,kΣA,kV

T
A,k + UA,k⊥ΣA,k⊥V

T
A,k⊥ be the

SVD of A, where ρ = rank(A), and UA,k, ΣA,k, and VA,k correspond to the top k singular values.
We denote Ak = UA,kΣA,kV

T
A,k. Furthermore, let A† = UA,ρΣ

−1
A,ρV

T
A,ρ be the Moore-Penrose

inverse of A [1].

3 Related Work

Section 3.1 introduces several relative-error column selection algorithms related to this work. Sec-
tion 3.2 describes the state-of-the-art CUR algorithm in [10]. Section 3.3 discusses the connection
between the column selection problem and the CUR problem.

3.1 Relative-Error Column Selection Algorithms

Given a matrix A ∈ Rm×n, column selection is a problem of selecting c columns of A to construct
C ∈ Rm×c to minimize ∥A − CC†A∥F . Since there are (nc ) possible choices of constructing C,
so selecting the best subset is a hard problem. In recent years, many polynomial-time approximate
algorithms have been proposed, among which we are particularly interested in the algorithms with
relative-error bounds; that is, with c ≥ k columns selected from A, there is a constant η such that

∥A−CC†A∥F ≤ η∥A−Ak∥F .

We call η the relative-error ratio. We now present some recent results related to this work.

We first introduce a recently developed deterministic algorithm called the dual set sparsification
proposed in [2, 3]. We show their results in Lemma 1. Furthermore, this algorithm is a building
block of some more powerful algorithms (e.g., Lemma 2), and our novel CUR algorithm also relies
on this algorithm. We attach the algorithm in Appendix A.
Lemma 1 (Column Selection via Dual Set Sparsification Algorithm). Given a matrix A ∈ Rm×n

of rank ρ and a target rank k (< ρ), there exists a deterministic algorithm to select c (> k) columns
of A and form a matrix C ∈ Rm×c such that∥∥∥A−CC†A

∥∥∥
F
≤

√
1 +

1

(1−
√

k/c)2

∥∥∥A−Ak

∥∥∥
F
.

1Although some partial SVD algorithms, such as Krylov subspace methods, require only O(mnk) time,
they are all numerical unstable. See [15] for more discussions.
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Moreover, the matrix C can be computed in TVA,k
+O(mn+nck2), where TVA,k

is the time needed
to compute the top k right singular vectors of A.

There are also a variety of randomized column selection algorithms achieving relative-error bounds
in the literature: [3, 5, 6, 10, 14].

An randomized algorithm in [2] selects only c = 2k
ϵ (1 + o(1)) columns to achieve the expected

relative-error ratio (1 + ϵ). The algorithm is based on the approximate SVD via random projec-
tion [15], the dual set sparsification algorithm [2], and the adaptive sampling algorithm [6]. Here we
present the main results of this algorithm in Lemma 2. Our proposed CUR algorithm is motivated
by and relies on this algorithm.

Lemma 2 (Near-Optimal Column Selection Algorithm). Given a matrix A ∈ Rm×n of rank ρ, a
target rank k (2 ≤ k < ρ), and 0 < ϵ < 1, there exists a randomized algorithm to select at most

c =
2k

ϵ

(
1 + o(1)

)
columns of A to form a matrix C ∈ Rm×c such that

E2∥A−CC†A∥F ≤ E∥A−CC†A∥2F ≤ (1 + ϵ)∥A−Ak∥2F ,

where the expectations are taken w.r.t. C. Furthermore, the matrix C can be computed in O((mnk+
nk3)ϵ−2/3).

3.2 The Subspace Sampling CUR Algorithm

Drineas et al. [10] proposed a two-stage randomized CUR algorithm which has a relative-error
bound w.h.p. Given a matrix A ∈ Rm×n and a target rank k, in the first stage the algorithm
chooses exactly c = O(k2ϵ−2 log δ−1) columns (or c = O(kϵ−2 log k log δ−1) in expectation) of
A to construct C ∈ Rm×c; in the second stage it chooses exactly r = O(c2ϵ−2 log δ−1) rows (or
r = O(cϵ−2 log c log δ−1) in expectation) of A and C simultaneously to construct R and U. With
probability at least 1 − δ, the relative-error ratio is 1 + ϵ. The computational cost is dominated by
the truncated SVD of A and C.

Though the algorithm is ϵ-optimal with high probability, it requires too many rows get chosen: at
least r = O(kϵ−4 log2 k) rows in expectation. In this paper we seek to devise an algorithm with
mild requirement on column and row numbers.

3.3 Connection between Column Selection and CUR Matrix Decomposition

The CUR problem has a close connection with the column selection problem. As aforementioned,
the first stage of existing CUR algorithms is simply a column selection procedure. However, the
second stage is more complicated. If the second stage is naı̈vely solved by a column selection
algorithm on AT , then the error ratio will be at least (2 + ϵ).

For a relative-error CUR algorithm, the first stage seeks to bound a construction error ratio of
∥A−CC†A∥F

∥A−Ak∥F
, while the section stage seeks to bound ∥A−CC†AR†R∥F

∥A−CC†A∥F
given C. Actually, the first

stage is a special case of the second stage where C = Ak. Given a matrix A, if an algorithm solv-
ing the second stage results in a bound ∥A−CC†AR†R∥F

∥A−CC†A∥F
≤ η, then this algorithm also solves the

column selection problem for AT with an η relative-error ratio. Thus the second stage of CUR is a
generalization of the column selection problem.

4 Main Results

In this section we introduce our proposed CUR algorithm. We call it the fast CUR algorithm because
it has lower time complexity compared with SVD. We describe it in Algorithm 1 and give a theoret-
ical analysis in Theorem 5. Theorem 5 relies on Lemma 2 and Theorem 4, and Theorem 4 relies on
Theorem 3. Theorem 3 is a generalization of [6, Theorem 2.1], and Theorem 4 is a generalization
of [2, Theorem 5].
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Algorithm 1 The Fast CUR Algorithm.
1: Input: a real matrix A ∈ Rm×n, target rank k, ϵ ∈ (0, 1], target column number c = 2k

ϵ

(
1+o(1)

)
, target

row number r = 2c
ϵ

(
1 + o(1)

)
;

2: // Stage 1: select c columns of A to construct C ∈ Rm×c

3: Compute approximate truncated SVD via random projection such that Ak ≈ ŨkΣ̃kṼk;
4: Construct U1 ← columns of (A− ŨkΣ̃kṼk); V1 ← columns of ṼT

k ;
5: Compute s1 ← Dual Set Spectral-Frobenius Sparsification Algorithm (U1, V1, c− 2k/ϵ);
6: Construct C1 ← ADiag(s1), and then delete the all-zero columns;
7: Residual matrix D← A−C1C

†
1A;

8: Compute sampling probabilities: pi = ∥di∥22/∥D∥2F , i = 1, · · · , n;
9: Sampling c2 = 2k/ϵ columns from A with probability {p1, · · · , pn} to construct C2;

10: // Stage 2: select r rows of A to construct R ∈ Rr×n

11: Construct U2 ← columns of (A− ŨkΣ̃kṼk)
T ; V2 ← columns of ŨT

k ;
12: Compute s2 ← Dual Set Spectral-Frobenius Sparsification Algorithm (U2, V2, r − 2c/ϵ);
13: Construct R1 ← Diag(s2)A, and then delete the all-zero rows;
14: Residual matrix B← A−AR†

1R1; Compute qj = ∥b(j)∥22/∥B∥2F , j = 1, · · · ,m;
15: Sampling r2 = 2c/ϵ rows from A with probability {q1, · · · , qm} to construct R2;
16: return C = [C1,C2], R = [RT

1 ,R
T
2 ]

T , and U = C†AR†.

4.1 Adaptive Sampling

The relative-error adaptive sampling algorithm is established in [6, Theorem 2.1]. The algorithm
is based on the following idea: after selecting a proportion of columns from A to form C1 by
an arbitrary algorithm, the algorithms randomly samples additional c2 columns according to the
residual A − C1C

†
1A. Boutsidis et al. [2] used the adaptive sampling algorithm to decrease the

residual of the dual set sparsification algorithm and obtained an (1 + ϵ) relative-error bound. Here
we prove a new bound for the adaptive sampling algorithm. Interestingly, this new bound is a
generalization of the original one in [6, Theorem 2.1]. In other words, Theorem 2.1 of [6] is a direct
corollary of our following theorem in which C = Ak is set.
Theorem 3 (The Adaptive Sampling Algorithm). Given a matrix A ∈ Rm×n and a matrix C ∈
Rm×c such that rank(C) = rank(CC†A) = ρ, (ρ ≤ c ≤ n), we let R1 ∈ Rr1×n consist of r1
rows of A, and define the residual B = A−AR†

1R1. Additionally, for i = 1, · · · ,m, we define

pi = ∥b(i)∥22/∥B∥2F .
We further sample r2 rows i.i.d. from A, in each trial of which the i-th row is chosen with probability
pi. Let R2 ∈ Rr2×n contains the r2 sampled rows and let R = [RT

1 ,R
T
2 ]

T ∈ R(r1+r2)×n. Then
the following inequality holds:

E∥A−CC†AR†R∥2F ≤ ∥A−CC†A∥2F +
ρ

r2
∥A−AR†

1R1∥2F ,

where the expectation is taken w.r.t. R2.

4.2 The Fast CUR Algorithm

Based on the dual set sparsification algorithm of of Lemma 1 and the adaptive sampling algorithm
of Theorem 3, we develop a randomized algorithm to solve the second stage of CUR problem. We
present the results of the algorithm in Theorem 4. Theorem 5 of [2] is a special case of the following
theorem where C = Ak.
Theorem 4 (The Fast Row Selection Algorithm). Given a matrix A ∈ Rm×n and a matrix C ∈
Rm×c such that rank(C) = rank(CC†A) = ρ, (ρ ≤ c ≤ n), and a target rank k (≤ ρ), the
proposed randomized algorithm selects r = 2ρ

ϵ (1 + o(1)) rows of A to construct R ∈ Rr×n, such
that

E∥A−CC†AR†R∥2F ≤ ∥A−CC†A∥2F + ϵ∥A−Ak∥2F ,
where the expectation is taken w.r.t. R. Furthermore, the matrix R can be computed in O((mnk +
mk3)ϵ−2/3) time.

Based on Lemma 2 and Theorem 4, here we present the main theorem for the fast CUR algorithm.
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Table 1: A summary of the datasets.

Dataset Type size Source
Redrocknatural image18000× 4000 http://www.agarwala.org/efficient gdc/
Arcene biology 10000× 900 http://archive.ics.uci.edu/ml/datasets/Arcene
Dexter bag of words 20000× 2600http://archive.ics.uci.edu/ml/datasets/Dexter

Theorem 5 (The Fast CUR Algorithm). Given a matrix A ∈ Rm×n and a positive integer k ≪
min{m,n}, the fast CUR algorithm (described in Algorithm 1) randomly selects c = 2k

ϵ (1 + o(1))
columns of A to construct C ∈ Rm×c with the near-optimal column selection algorithm of Lemma 2,
and then selects r = 2c

ϵ (1 + o(1)) rows of A to construct R ∈ Rr×n with the fast row selection
algorithm of Theorem 4. Then we have

E∥A−CUR∥F = E∥A−C(C†AR†)R∥F ≤ (1 + ϵ)∥A−Ak∥F .

Moreover, the algorithm runs in time O
(
mnkϵ−2/3 + (m+ n)k3ϵ−2/3 +mk2ϵ−2 + nk2ϵ−4

)
.

Since k, c, r ≪ min{m,n} by the assumptions, so the time complexity of the fast CUR algorithm
is lower than that of the SVD of A. This is the main reason why we call it the fast CUR algorithm.

Another advantage of this algorithm is avoiding loading the whole m × n data matrix A into main
memory. None of three steps — the randomized SVD, the dual set sparsification algorithm, and the
adaptive sampling algorithm — requires loading the whole of A into memory. The most memory-
expensive operation throughout the fast CUR Algorithm is computing the Moore-Penrose inverse
of C and R, which requires maintaining an m × c matrix or an r × n matrix in memory. In
comparison, the subspace sampling algorithm requires loading the whole matrix into memory to
compute its truncated SVD.

5 Empirical Comparisons

In this section we provide empirical comparisons among the relative-error CUR algorithms on sev-
eral datasets. We report the relative-error ratio and the running time of each algorithm on each data
set. The relative-error ratio is defined by

Relative-error ratio =
∥A−CUR∥F
∥A−Ak∥F

,

where k is a specified target rank.

We conduct experiments on three datasets, including natural image, biology data, and bags of words.
Table 1 briefly summarizes some information of the datasets. Redrock is a large size natural image.
Arcene and Dexter are both from the UCI datasets [11]. Arcene is a biology dataset with 900
instances and 10000 attributes. Dexter is a bag of words dataset with a 20000-vocabulary and 2600
documents. Each dataset is actually represented as a data matrix, upon which we apply the CUR
algorithms.

We implement all the algorithms in MATLAB 7.10.0. We conduct experiments on a workstation
with 12 Intel Xeon 3.47GHz CPUs, 12GB memory, and Ubuntu 10.04 system. According to the
analysis in [10] and this paper, k, c, and r should be integers far less than m and n. For each data
set and each algorithm, we set k = 10, 20, or 50, and c = αk, r = αc, where α ranges in each set of
experiments. We repeat each set of experiments for 20 times and report the average and the standard
deviation of the error ratios. The results are depicted in Figures 1, 2, 3.

The results show that the fast CUR algorithm has much lower relative-error ratio than the subspace
sampling algorithm. The experimental results well match our theoretical analyses in Section 4. As
for the running time, the fast CUR algorithm is more efficient when c and r are small. When c and
r become large, the fast CUR algorithm becomes less efficient. This is because the time complexity
of the fast CUR algorithm is linear in ϵ−4 and large c and r imply small ϵ. However, the purpose
of CUR is to select a small number of columns and rows from the data matrix, that is, c ≪ n and
r ≪ m. So we are not interested in the cases where c and r are large compared with n and m, say
k = 20 and α = 10.
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(b) k = 20, c = αk, and r = αc.
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Figure 1: Empirical results on the Redrock data set.
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(b) k = 20, c = αk, and r = αc.
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Figure 2: Empirical results on the Arcene data set.
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Figure 3: Empirical results on the Dexter data set.

6 Conclusions

In this paper we have proposed a novel randomized algorithm for the CUR matrix decomposition
problem. This algorithm is faster, more scalable, and more accurate than the state-of-the-art algo-
rithm, i.e., the subspace sampling algorithm. Our algorithm requires only c = 2kϵ−1(1 + o(1))
columns and r = 2cϵ−1(1 + o(1)) rows to achieve (1+ϵ) relative-error ratio. To achieve the same
relative-error bound, the subspace sampling algorithm requires c = O(kϵ−2 log k) columns and
r = O(cϵ−2 log c) rows selected from the original matrix. Our algorithm also beats the subspace
sampling algorithm in time-complexity. Our algorithm costs O(mnkϵ−2/3 + (m + n)k3ϵ−2/3 +
mk2ϵ−2 + nk2ϵ−4) time, which is lower than O(min{mn2,m2n}) of the subspace sampling algo-
rithm when k is small. Moreover, our algorithm enjoys another advantage of avoiding loading the
whole data matrix into main memory, which also makes our algorithm more scalable. Finally, the
empirical comparisons have also demonstrated the effectiveness and efficiency of our algorithm.

A The Dual Set Sparsification Algorithm

For the sake of completeness, we attach the dual set sparsification algorithm here and describe
some implementation details. The dual set sparsification algorithms are deterministic algorithms
established in [2]. The fast CUR algorithm calls the dual set spectral-Frobenius sparsification al-
gorithm [2, Lemma 13] in both stages. We show this algorithm in Algorithm 2 and its bounds in
Lemma 6.
Lemma 6 (Dual Set Spectral-Frobenius Sparsification). Let U = {x1, · · · ,xn} ⊂ Rl, (l < n),
contains the columns of an arbitrary matrix X ∈ Rl×n. Let V = {v1, · · · ,vn} ⊂ Rk, (k < n),
be a decompositions of the identity, i.e.

∑n
i=1 viv

T
i = Ik. Given an integer r with k < r < n,

Algorithm 2 deterministically computes a set of weights si ≥ 0 (i = 1, · · · , n) at most r of which
are non-zero, such that

λk

( n∑
i=1

siviv
T
i

)
≥

(
1−

√
k

r

)2

and tr
( n∑

i=1

sixix
T
i

)
≤ ∥X∥2F .
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Algorithm 2 Deterministic Dual Set Spectral-Frobenius Sparsification Algorithm.
1: Input: U = {xi}ni=1 ⊂ Rl, (l < n); V = {vi}ni=1 ⊂ Rk, with

∑n
i=1 viv

T
i = Ik (k < n); k < r < n;

2: Initialize: s0 = 0m×1, A0 = 0k×k;
3: Compute ∥xi∥22 for i = 1, · · · , n, and then compute δU =

∑n
i=1 ∥xi∥22
1−
√

k/r
;

4: for τ = 0 to r − 1 do
5: Compute the eigenvalue decomposition of Aτ ;
6: Find an index j in {1, · · · , n} and compute a weight t > 0 such that

δ−1
U ∥xj∥22 ≤ t−1 ≤

vT
j

(
Aτ − (Lτ + 1)Ik

)−2

vj

ϕ(Lτ + 1,Aτ )− ϕ(Lτ ,Aτ )
− vT

j

(
Aτ − (Lτ + 1)Ik

)−1

vj ;

where

ϕ(L,A) =

k∑
i=1

(
λi(A)− L

)−1

, Lτ = τ −
√
rk;

7: Update the j-th component of sτ and Aτ : sτ+1[j] = sτ [j] + t, Aτ+1 = Aτ + tvjv
T
j ;

8: end for
9: return s =

1−
√

k/r

r
sr .

The weights si can be computed deterministically in O(rnk2 + nl) time.

Here we would like to mention the implementation of Algorithm 2, which is not described in detailed
by [2]. In each iteration the algorithm performs once eigenvalue decomposition: Aτ = WΛWT .
(Aτ is guaranteed to be positive semi-definite in each iteration). Since(

Aτ − αIk

)q

= WDiag
(
(λ1 − α)q, · · · , (λk − α)q

)
WT ,

we can efficiently compute (Aτ −(Lτ +1)Ik)
q based on the eigenvalue decomposition of Aτ . With

the eigenvalues at hand, ϕ(L,Aτ ) can also be computed directly.
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