
A Appendix

The problem in Equation (2) is a convex optimization problem. It can be rewritten as

minimize
�

max

{
a1

b1 + �
, ⋅ ⋅ ⋅ , an

bn + �

}
+ ��, subject to � > 0. (A.1)

Equation (A.1) is a convex optimization problem because the first term of the objective function is
the sum of a pointwise maximum of convex functions, ai/(bi + �), which is convex in �.

Theorem 1. The sequence {f(xj)}j=1,2,⋅⋅⋅ provided by Equation (7) converges to the local maxi-
mum of the density field.

Proof. f(x) shown in Equation (3) is a bounded function because it is the sum of finite bounded ker-
nel density functions. To prove the theorem, it is sufficient to show that the sequence {f(xj)}j=1,2,⋅⋅⋅
is strictly monotonically increasing, i.e., f(xj) < f(xj+1), if xj ∕= xj+1.

From Equation (3),

f(xj+1)− f(xj) = c

N

N∑
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(
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∥d(li,xj+1)∥2

ℎ2i

)
− k

(
∥d(li,xj)∥2

ℎ2i

))
. (A.2)

If a function, �(z), is convex, the following inequality holds:

�(z2)− �(z1) ≥ �′(z1)(z2 − z1), (A.3)

where �′ is the derivative of �.

The profile, k(z), of the Gaussian kernel density function is convex and it satisfies Equation (A.3):

k(z2)− k(z1) ≥ k′(z1)(z2 − z1). (A.4)

∥z∥2 is a convex function in z where z is a vector and thus,

∥z2∥2 − ∥z1∥2 ≥ 2zT (z2 − z1) . (A.5)

The perspective distance vector function, d(li, z), is also convex in z because it is a linear-fractional
function [1, 2] which perserves the convexity and thus,

d(li, z2)− d(li, z1) ≥ ∇z(d(li, z1)) (z2 − z1) . (A.6)

From Equation (A.5) and (A.6), the following inequality holds:
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)
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.

(A.7)

1



Equation (A.2) can be rewritten as,

f(xj+1)− f(xj) ≥ c

N
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∥∥∥∥2
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by Inequality (A.4) (A.8)
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by Inequality (A.7) (A.9)

=
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by Equation (5) (A.10)
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by expansion (A.12)
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Since the profile, k(x), is monotonically decreasing, k′(x) < 0. This leads the weight wji to be
strictly positive. As a result, the right hand side of Inequality (A.14) is strictly positive if xj ∕= xj+1.
Thus, f(xj+1)− f(xj) > 0.
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