A Appendix

The problem in Equation (2) is a convex optimization problem. It can be rewritten as

minimize max o AR an + A, subject to a > 0. (A1)
a b1 + « by, + «

Equation (A.1) is a convex optimization problem because the first term of the objective function is
the sum of a pointwise maximum of convex functions, a;/(b; + «), which is convex in .

Theorem 1. The sequence {f(x?)};—1.2,... provided by Equation (7) converges to the local maxi-
mum of the density field.

Proof. f(x) shown in Equation (3) is a bounded function because it is the sum of finite bounded ker-
nel density functions. To prove the theorem, it is sufficient to show that the sequence { f(x?)};=1.2,...
is strictly monotonically increasing, i.e., f(x7) < f(x/T1), if x/ # x/+1.

From Equation (3),
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If a function, ¢(z), is convex, the following inequality holds:

D(22) = d(21) > ¢'(21)(22 — 21), (A.3)

where ¢’ is the derivative of ¢.

The profile, k(z), of the Gaussian kernel density function is convex and it satisfies Equation (A.3):
k(z2) —k(z1) > K'(21)(z2 — 21). (A.4)
||z||? is a convex function in z where z is a vector and thus,
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The perspective distance vector function, d(1;, z), is also convex in z because it is a linear-fractional
function [1, 2] which perserves the convexity and thus,
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From Equation (A.5) and (A.6), the following inequality holds:
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Equation (A.2) can be rewritten as,
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because Zw xI Tt = Zu) x! from Equation (6) (A.13)
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Since the profile, k(z), is monotonically decreasing, k’(z) < 0. This leads the weight w’ to be
strictly positive. As a result, the right hand side of Inequality (A.14) is strictly positive if x/ # x/+1,

Thus, f(x/T1) — f(x7) > 0. O
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