Supplementary Material for “Provable ICA with Unknown Gaussian Noise,
with Implications for Gaussian Mixtures and Autoencoders”

A Omitted proofs in Section 2
Lemma A.1 (Denoising Lemma). P(u) =23 7 (u” A)}

Proof: The crucial observation is that u”y = u? Az + u”'n is the sum of two independent ran-
dom variables, Az and n and that P(u) = —k4(ul Az + uTn) = —ky(uTAz) — Ka(uTn) =
—k4(ul Az). So in fact, the functional P(u) is invariant under additive Gaussian noise indepen-
dent of the variance matrix 3. This vastly simplifies our computation:

B{(u” A2)"] = Y (u” A)! Elal] + 6 Y (u” A2 (u” A)? Ela?] Els?)

= _Zn:(uTA)i‘ +6 (uAWTA); = -2 (uA)f +3(u" AATu)?

i<j i=1
Furthermore E[(u” Ax)?)? = (u” AATu)? and we conclude that

P(u) = —ks(uTy) = — E[(u” Az)?] + 3E[(u” Az)?)* = QZ(UTA)4.

i
i=1

|
Claim A.2. [Ifug is chosen uniformly at random then with high probability for all i,
logn

n
1111:111 [ 4i[3n* < Da(uo))ii < I?Eilx [EnE

Proof: We can bound max?"_; |A;-u| by max]" ; || 4;||2 k’% thus the bound for max(’_; (D a(uo))i,i
follows. Note that with high probability the minimum absolute value of n Gaussian random variables
is at least 1/n?, hence min}_; (D4 (uo));; > min}_; || A;||3n=%. B

Lemma A.3. If ug is chosen uniformly at random and furthermore we are given 2N =
poly(n,1/e,1/Amin(A), ||All2, |X|l2) samples of y, then with high probability we will have that

(1 — €)AD A(ug)AT < H(P(up)) = (1 + €)AD 4 (ug)AT.

Proof: First we consider each entry of the matrix updates. For example, the variance of any entry
in H((uTy)*) = 12(uTy)?yy” can be bounded by ||y||5, which we can bound by El||y||§] <
O(E[||Az||5 + ||n]/5]). This can be bounded by O(n*(||A||5 + [|X]|3)). This is also an upper bound

for the variance (of any entry) of any of the other matrix updates when computing H(P(uy)).

Applying standard concentration bounds, poly(n, 1/€¢', || A|l2, ||X]|2) samples suffice to guarantee
that all entries of H(P(uo)) are € close to H(P(u)). The smallest eigenvalue of H(P(u))
AD 4 (ug)AT is at least Apin(A)?minl", || A;]|3n~* where here we have used Claim 2.9.
we choose € = poly(1/n, Apnin(A),€), then we are also guaranteed (1 — €)AD 4 (ug)AT
H(P(ug)) = (14 €)AD 4(ug) AT holds. B

A=

Lemma A.4. Suppose that (1 — ) AD 4(ug) AT < M < (14 €)AD 4 (uo) AT, and let M = BBT.
Then there is a rotation matrix R* such that | B~ AD 4(ug)'/? — R*||p < v/ne.

Proof: Let M = AD 4 (ug)AT and let C = AD 4(ug)'/2, and so M = CCT and M = BBT. The
condition (1 — €)M =< M =< (1 + €)M is well-known to be equivalent to the condition that for all
vectors z, (1 — €)x? Max < 2T Mz < (1 + €)xT M.

Suppose for the sake of contradiction that S = B~'C has a singular value outside the range [1 —
€,1 + €]. Assume (without loss of generality) that S has a singular value strictly larger than 1 + €
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(and the complementary case can be handled analogously). Hence there is a unit vector y such
that y7SSTy > 1 + e. But since BSSTBT = CCT, if we set 27 = yTB~! then we have
"Mz = 2TBBTz = yT'y =1buta" Mz = 27CCTx = 2" BSSTBTx = yTSSTy > 1 + e
This is a contradiction and so we conclude that all of the singular values of B~'C are in the range
[1—¢€1+¢.

Let UX VT be the singular value decomposition of B~1C. If we set all of the diagonal entries in ¥
to 1 we obtain a rotation matrix R* = UV, And since the singular values of B~1C are all in the
range [1 — ¢, 1 + €], we can bound the Froebenius norm of B~1C' — R*: ||[B~'C — R*||r < v/ne,
as desired. W

B Omitted proofs in Section 3

Theorem B.1. Suppose we are given samples of the form y = Ax + n where x is uniform on
{+1,-1}", A is an n X n matrix, 7 is an n-dimensional Gaussian random variable independent
of x with unknown covariance matrix X.. There is an algorithm that with high probability recovers

|A — Alldiag(k;)||r < € where 11 is some permutation matrix and each k; € {+1,—1} and

also recovers ||E Y||F < e Furthermore the running time and number of samples needed are
poly(n, 1/¢, [[Ally, [[%]ly, 1/ Amin(A))

Proof: In Step 1, by Lemma 2.11 we know once we use z = B ’1y, the whitened function P’(u)
is inverse polynomially close to P*(u). Then by Lemma 5.3, the function P’(u) we get in Step 2
is inverse polynomially close to P’(u) and P*(u). Theorem 4.6 and Lemma 5.5 show that given
P'(u) inverse polynomially close to P*(u), Algorithm 2: : ALLOPT finds all local maxima with
inverse polynomial precision. Finally by Theorem 5.6 we know A and W are recovered correctly up
to additive € error in Frobenius norm. The running time and sampling complexity of the algorithm
is polynomial because all parameters in these Lemmas are polynomially related. B

C Omitted proofs in Section 4

Lemma C.1. Given vy, v, ..., Vg, each y-close respectively to local maxima vy, vs, ..., v}, (this
is without loss of generality because we can permute the index of local maxima), then there is an
orthonormal basis Vg1, Vgt2, ..., Uy, for the orthogonal space of span{vi,va, ..., vi} such that for

. —k n—k . n—k *
any unit vector w € R"™%, Y77 P wyvg 1 is 3y/ny close to Y 1 wi vy .

Proof: Let S; be span{vi, va, ..., v}, S2 be span{vi, v}, ...,v}} and Si-, S5 be their orthogonal
subspaces respectively. We first prove that for any unit vector v € Si-, there is another unit vector
v' € S5 sothat vT'v’ > 1 — 4nv2. In fact, we can take v’ to be the unit vector along the projection
of vin Sy. To bound the length of the projection, we instead bound the length of projection to
Sy. Since we know vlv' = 0 for i < kand ||v; —v}|| < 7, it must be that (v])Tv" < 2v when
v < 0.01. So the pro_]ectlon of v’ in Sy has length at most 2,/nry and hence the projection of v/ in
S5 has length at least 1 — 4n~2.

Next, we prove that there is a pair of orthornormal basis {¥yy1,¥kt2,-..,9n} for Si and
Z ~ ~ ko~ . B
{v*k41, V* k42, .., 0¥, } for S5 such that Y1 " wyOp is close to ;" wyv* ;. Once we have

such a pair, we can simultaneously rotate the two basis so that the latter becomes vy, 1, ..., v;,.

To get this set of basis we consider the projection operator to S5~ for vectors in Si-. The squared

length of the projection is a quadratic form over the vectors in Si-. So there is a symmetric PSD
2

matrix M such that HPYOJ'SQL (v) H = v Mu forv € Si-. Let {¥k11, Opy2, ..., Un } be the eigenvec-
2

tors of this matrix M. As we showed the eigenvalues must be at least 1 — 8n~2. The basis for Sy
will just be unit vectors along directions of projections of ¥; to S5-. They must also be orthogonal
because the projection operator is linear and

2

n—~k n—~k
Projs;( E WiV +i) E ’IUZPYOJSL Dkti ) § \w?
i=1 2 i=1 2
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The second equality cannot hold if these vectors are not orthogonal. And for any w,

n—k T n—k n—k
(Z wk@kﬂ) <Z wkv*k+z’> = Z W (i) 0% pgs > 1 — 8ny?
i=1 i=1

i=1
So we conclude that the distance between these two vectors is at most 3y/ny. B

Lemma C.2. Let g* be the projection of f* into the space spanned by the rest of local maxima, then
9" (w) — g(w)| < 6/8+ /20 < &'/8.

Proof: The proof is straight forward because |g*(w) — g(w)| < |f*(u) — f(uw)| + |f*(u) — f* ()]
for some ||u — u'||, < 3+/n7y, we know the first one is at most /8 and the second one is at most
4’ /20 by Lipschitz Condition. l

Theorem C.3. Suppose function f*(u) : R™ — R satisfies the following properties

1. Orthogonal Local Maxima: The function has n local maxima vj and they are orthogonal
to each other.

2. Locally Improvable: f* is (v, 8,8) Locally Improvable.

3. Improvable Projection: The projection of the function to any subspace spanned by a subset
of local maxima is (v, 8',0") Locally Improvable. The step size &' > 100.

4. Lipschitz: If two points |ju — u'||, < 3y/nvy, then the function value | f*(u) — f*(u')| <
¢’ /20.

5. Attraction Radius: Let Rad > 3\/ny + ', for any local maximum v}, let T be min f*(u)
for ||u —v}||y < Rad, then there exist a set U containing ||u — v}, < 3v/ny + " and

does not contain any other local optima, such that for every u that is not in U but is [ close
toU, f*(u) <T.

If we are given function f such that | f(u) — f*(u)| < §/8 and f is both (8, 9) and (', ") Locally
Approximable, then Algorithm 2 can find all local optima of f* within distance ~.

Proof: By Theorem 4.4 the first column is indeed ~ close to a local maximum. We then prove by
induction that if vy, ve, ..., Vi are 7y close to different local maxima, then v must be close to a
new local maximum.

By Lemma 4.8 we know gx11 is (7, 8’,¢") Locally Improvable, and because it is a projection of f
its derivatives are also bounded so it is (', §’) Locally Approximable. By Theorem 4.4 u/ must be
~' close to local maximum for the projected function. Then since the projected space is close to the
space spanned by the rest of local maxima, v’ is in fact 7" + 3/n-y close to v}, , (here again we are
reindexing the local maxima wlog.).

Now we use the Attraction Radius property, since w is currently in U, f*(u) > T, and each step we
go to a point v’ such that ||u’ — u|| < B and f*(u') > f*(u) > T. The local search in Algorithm 1
can never go outside U, therefore it must find the local maximum v}, i1 |

D Omitted proofs in Section 5

Theorem D.1 ([5]). When 8 < dpin/10d 002, the function P*(u) is (3v/nf3, 3, P*(u)3%/100)
Locally Improvable and (B, dpin/32/100n) Locally Approximable. Moreover; the local maxima of
the function is exactly {+ R} }.

Proof: The proof appears in [5]. Here for completeness we show the proof using our notations.

First we establish that P*(u) is Locally Improvable.Observe that this desirada is invariant under
rotation, so we need only prove the theorem for P*(v) = > | d;v}. The gradient of the function is
VP*(v) = 4(d1v3, dav3, ..., dnv3). The inner product of VP*(v) and v is exactly 4> | d;vi =
4P*(v). Therefore the projected gradient ¢ = Proj, ,VP*(v) has coordinate ¢; = 4v;(d;v? —
P*(v)z). Furthermore, the Hessian H = 3{(P*(v)) is a diagonal matrix whose (7,7)*" entry is
12di’0i .
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Consider the case in which ||¢|| > P*(v)3/4. We can obtain an improvement to P*(v)3%/100
because we can take ¢ in the direction of ¢ and with |||, = /3/20. The contribution of the Hessian

term is nonnegative and the third term —2P*(u) ||€ ||§ is small in comparison.

Hence, we can assume ||¢|| < P*(v)3/4. Now let us write out the expression of ||¢||?
va(divf = P*(v))* < B*(P*(v))*/16.

In particular every term v? (d v? — P*( ))2 must be at most 32(P*(v))?/16.. Thus for any 1, either
v} < B2 or (dv? — P*(v )) S( *(v))2/16.

If there are at least 2 coordinates k and [ such that (d;v} — P*(v))? < (P*(v))?/16, then we
know for these two coordinates v € [0.75P*(v)/d;,1.25P*(v)/d;]. We choose the vector £ so
that & = 7v; and & = —7vE. Wlog assume £ - ¢ > 0 otherwise we use —¢. Take 7 so that
72(vf +v3) = B2 Clearly ||£]| = B and £ - v = 0 s0 £ is a valid solution. Also 72 is lower bounded

27002 1 22\ > 4 8
by B/ (v + i) 2 S Fwa/aTia-
Consider the function we are optimizing:

¢ &+ 1/267HE — 2P (u) [|€ll, > 1/26T HE — 2P* (u) 8% = 670307 (d + d;) — 2P*(u)B?

27 dp+d
> 2 2 px* 2 Yk l_ * 2 pP*
> Brp i tl o > Pt

In the remaining case, all of the coordinates except for at most one satisfy v? < 2. Since we
assumed 3% < %, there must be one of the coordinate vy, that is large, and it is at least 1 — n32.
Thus the distance of this vector to the local maxima ey, is at most 3,/nS3. B

Claim D.2. Z = O(d?,;, A\min(A)3|2]|3 + d2,;,).

Proof: We will start by bounding E[(z;2j21.21)°] < E[(2} + 2§ + 2§ + 2}')]. Furthermore E[2}] <
O(E[(B~1Ax)8 + (B~'1)%]). Next we bound E[(B~11)%], which is just the eighth moment of a
Gaussian with variance at most |[B"LSB~T ||y < || B~L|2|IZ]l2 < d~/2 Ain(A)"2||Z|2. Hence

min

we can bound this term byO(||B~*~B~T||3 ) O(d2,;,, Amin(A)®||2]|3). Finally the remaining

term E[(B~!Az)%] can be bounded by O(d2,,,) bec;lllzsré the variance of this random variable is

only larger if we instead replace x by an n-dimensional standard Gaussian. l

Lemma D.3. Given 2N samples y1,Y2,...,YN,Y1sYs, -y Y, Suppose columns of R =
B7YAD 4(up) 1/2 gre € close to the corresponding columns of R*, with high probability the function
P'(u) is O(dymazn/?e + n%(N/Zlogn)~'/?) close to the true function P*(u).

Proof: P'(u) is the empirical mean of F(u,y,y') = —(u”B~1y)* + 3(uTB~1y)2(uTB~'y/)2. In
Section 2 we proved that P'(u) = By, F(u,y,y') = S0, 2D, /2 (u"R;)* = S0 Ai(u” Ry)*.
First, we demonstrate that P’(u) is close to P*(u), and then using concentration bounds we show
that P’ (u) is close to P’(u) (with high probability) over all u.

The first part is a simple application of Cauchy-Schwartz:

[P’ (u) u)| = Zd (W' R}) = (u" RD)] - [(u" Ry + u” R)((w” B})? + (u” R})?)]

S dmax (UT(R/ R* 3 ||UTR/ + UTR* || < de,m;’nl/ZE.

-

=1

The first inequality uses the fact that ((u” R})? + (uT R})?) < 3, the second inequality uses the fact
|, <2
5 <

Next we prove that the empirical mean P’ (u) is close to P’(u). The key point here is we need
to prove this for all points u since a priori we have no control over which directions local search
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will choose to explore. We accomplish this by considering P (u) as a degree-4 polynomial over u

and prove that the coefficient of each monomial in P (u) is close to the corresponding coefficient
in P'(u). This is easy: the expectation of each coefficient of F(u,y,y’) is equal to the correct
coefficient, and the variance is bounded by O(Z). The coefficients are also sub-Gaussian so by

Bernstein’s inequality the probability that any coefficient of P’ (u) deviates by more than € (from
its expectation) is at most e~2(*N/Z) Hence when N > O(Z log n/e'%) with high probability all
the coefficients of P’(u) and P’(u) are € close. So for any u:

[P'(u) = P'(w)] < €D uil)* < ¢'n®.

=1

Therefore P’ (u) and P*(u) are O(dmaen'/2e + n2(N/Z logn)~/2) close. B

This proof can also be used to show that the derivatives of the function P (u) is concentrated to
the derivatives of the true function P*(u) because the derivatives are only related to coefficients,

therefore P’ (u) is also (3, dpin32/100n) Locally Approximable.

Lemma D4. Forany ||u — u'||2 <, (u) — P*(u)| < 5dymazn'/?r. All local maxima of P*
has attraction radius Rad > dy,in/100d,,40

Proof: The Lipschitz condition follows from the same Cauchy-Schwartz as appeared above. When
two points u and u’ are of distance r, |P*(u) — P*(u’)| < 5dynazn'/?r. Finally for the Attraction
Radius, we know when 3v/n7y + v < dyin/100dm4., We can just take the set U to be u” R} >
1 — dmin/50dmaz. For all u such that ul' R} € [1 — dinin/25dmazs 1 — dmin/50dmaz] (Which
contains the /3 neighborhood of U), we know the value of P*(u) < 7. H

Theorem D.5. Given a matrix R such that there is permutation matrix I and k; € {1} with
|R; — ks(R*I);||2 < v for all i, Algorithm 3 returns matrix A such that | A — AllDiag(k;)||r <
O IAIZ 0%/ Amin(A)). I 7 < Oe/ AN 02 A (A)) x min{1/ |[All, 1}, we also have
I£-Sr <

Proof: By Lemma 2.11 we know the columns of R’ is close the the columns of R (the parameters
will be set so that the error is much smaller than ), thus |R: — ki (R )|l < 7. Applying
Lemma 5.3 we obtain: |P'(R;) — P*(R;)| < ~. Furthermore, when || R; — kziRl*T,l(i)Hg < v we
know that P*( i)/dii-1(y € [1—37,1+437] (here we are abusing notation and use the permutation

matrix as a permutation). Hence lA)A(u)i’i/ (Da(W)y-13y,m-1(;) € 1 — 37,1+ 37]. We have:
A; = BRiDa(u);}"* and (AlDiag(k;)); = BRpy 1 ;) (Da(u))y

/2
ot (@), (3)

and their difference is at most O(v || B||, (DA(u))Hl/lz(i) H,1(1.)). Hence we can bound the to-
tal error by O(y || Blly ||[Da(u)=*/2||,). We also know [|B|l, < [|A]l,|[Da(u)'/?||> because

BBT ~ AD 4 (u) AT, so this can be bounded by O(v [|A|l, || D (w13 *|D.a (1) ~2/2| 7). Applying
Claim 2.9, we conclude that (with high probability) the ratio of the largest to smallest diagonal entry
of D 4(u) is at most n2 || A||> /Amin(A)2. So we can bound the error by O(v || A||2 n3/2 / Apin(A)).

Consider the error for 3: Using concentration bounds similar but much simpler than those used in
Lemma 5.3, Weobtainthat IC—Cllr <1/2¢ 50 ||E — EHF <||IC = Cllr — |AAT — AAT || <
(ki) — Allp + | ATIDiag(k;) — A} < . W
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