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Supplementary Material for “Provable ICA with Unknown Gaussian Noise,
with Implications for Gaussian Mixtures and Autoencoders”

A Omitted proofs in Section 2

Lemma A.1 (Denoising Lemma). P (u) = 2
∑n
i=1(uTA)4

i

Proof: The crucial observation is that uT y = uTAx + uT η is the sum of two independent ran-
dom variables, Ax and η and that P (u) = −κ4(uTAx + uT η) = −κ4(uTAx) − κ4(uT η) =
−κ4(uTAx). So in fact, the functional P (u) is invariant under additive Gaussian noise indepen-
dent of the variance matrix Σ. This vastly simplifies our computation:

E[(uTAx)4] =

n∑
i=1

(uTA)4
i E[x4

i ] + 6
∑
i<j

(uTA)2
i (u

TA)2
j E[x2

i ]E[x2
j ]

=

n∑
i=1

(uTA)4
i + 6

∑
i<j

(uTA)2
i (u

TA)2
j = −2

n∑
i=1

(uTA)4
i + 3(uTAATu)2

Furthermore E[(uTAx)2]2 = (uTAATu)2 and we conclude that

P (u) = −κ4(uT y) = −E[(uTAx)4] + 3E[(uTAx)2]2 = 2

n∑
i=1

(uTA)4
i .

�

Claim A.2. If u0 is chosen uniformly at random then with high probability for all i,

n
min
i=1
‖Ai‖22n−4 ≤ DA(u0))i,i ≤

n
max
i=1
‖Ai‖22

log n

n

Proof: We can bound maxni=1 |Ai ·u| by maxni=1 ‖Ai‖2
logn√
n

thus the bound for maxni=1(DA(u0))i,i
follows. Note that with high probability the minimum absolute value of nGaussian random variables
is at least 1/n2, hence minni=1(DA(u0))i,i ≥ minni=1 ‖Ai‖22n−4. �

Lemma A.3. If u0 is chosen uniformly at random and furthermore we are given 2N =
poly(n, 1/ε, 1/λmin(A), ‖A‖2, ‖Σ‖2) samples of y, then with high probability we will have that
(1− ε)ADA(u0)AT � H(P̂ (u0)) � (1 + ε)ADA(u0)AT .

Proof: First we consider each entry of the matrix updates. For example, the variance of any entry
in H((uT y)4) = 12(uT y)2yyT can be bounded by ‖y‖82, which we can bound by E[‖y‖82] ≤
O(E[‖Ax‖82 + ‖η‖82]). This can be bounded by O(n4(‖A‖82 + ‖Σ‖42)). This is also an upper bound
for the variance (of any entry) of any of the other matrix updates when computing H(P̂ (u0)).

Applying standard concentration bounds, poly(n, 1/ε′, ‖A‖2, ‖Σ‖2) samples suffice to guarantee
that all entries of H(P̂ (u0)) are ε′ close to H(P (u)). The smallest eigenvalue of H(P (u)) =
ADA(u0)AT is at least λmin(A)2 minni=1 ‖Ai‖22n−4 where here we have used Claim 2.9. If
we choose ε′ = poly(1/n, λmin(A), ε), then we are also guaranteed (1 − ε)ADA(u0)AT �
H(P̂ (u0)) � (1 + ε)ADA(u0)AT holds. �

Lemma A.4. Suppose that (1− ε)ADA(u0)AT � M̂ � (1 + ε)ADA(u0)AT , and let M̂ = BBT .
Then there is a rotation matrix R∗ such that ‖B−1ADA(u0)1/2 −R∗‖F ≤

√
nε.

Proof: Let M = ADA(u0)AT and let C = ADA(u0)1/2, and so M = CCT and M̂ = BBT . The
condition (1 − ε)M � M̂ � (1 + ε)M is well-known to be equivalent to the condition that for all
vectors x, (1− ε)xTMx ≤ xT M̂x ≤ (1 + ε)xTMx.

Suppose for the sake of contradiction that S = B−1C has a singular value outside the range [1 −
ε, 1 + ε]. Assume (without loss of generality) that S has a singular value strictly larger than 1 + ε

10
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(and the complementary case can be handled analogously). Hence there is a unit vector y such
that yTSST y > 1 + ε. But since BSSTBT = CCT , if we set xT = yTB−1 then we have
xT M̂x = xTBBTx = yT y = 1 but xTMx = xTCCTx = xTBSSTBTx = yTSST y > 1 + ε.
This is a contradiction and so we conclude that all of the singular values of B−1C are in the range
[1− ε, 1 + ε].

Let UΣV T be the singular value decomposition of B−1C. If we set all of the diagonal entries in Σ
to 1 we obtain a rotation matrix R∗ = UV T . And since the singular values of B−1C are all in the
range [1− ε, 1 + ε], we can bound the Froebenius norm of B−1C − R∗: ‖B−1C − R∗‖F ≤

√
nε,

as desired. �

B Omitted proofs in Section 3

Theorem B.1. Suppose we are given samples of the form y = Ax + η where x is uniform on
{+1,−1}n, A is an n × n matrix, η is an n-dimensional Gaussian random variable independent
of x with unknown covariance matrix Σ. There is an algorithm that with high probability recovers
‖Â − AΠdiag(ki)‖F ≤ ε where Π is some permutation matrix and each ki ∈ {+1,−1} and
also recovers ‖Σ̂ − Σ‖F ≤ ε. Furthermore the running time and number of samples needed are
poly(n, 1/ε, ‖A‖2 , ‖Σ‖2 , 1/λmin(A))

Proof: In Step 1, by Lemma 2.11 we know once we use z = B−1y, the whitened function P ′(u)

is inverse polynomially close to P ∗(u). Then by Lemma 5.3, the function P̂ ′(u) we get in Step 2
is inverse polynomially close to P ′(u) and P ∗(u). Theorem 4.6 and Lemma 5.5 show that given
P̂ ′(u) inverse polynomially close to P ∗(u), Algorithm 2: : ALLOPT finds all local maxima with
inverse polynomial precision. Finally by Theorem 5.6 we knowA andW are recovered correctly up
to additive ε error in Frobenius norm. The running time and sampling complexity of the algorithm
is polynomial because all parameters in these Lemmas are polynomially related. �

C Omitted proofs in Section 4

Lemma C.1. Given v1, v2, ..., vk, each γ-close respectively to local maxima v∗1 , v
∗
2 , ..., v

∗
k (this

is without loss of generality because we can permute the index of local maxima), then there is an
orthonormal basis vk+1, vk+2, ..., vn for the orthogonal space of span{v1, v2, ..., vk} such that for
any unit vector w ∈ Rn−k,

∑n−k
i=1 wkvk+i is 3

√
nγ close to

∑n−k
i=1 wkv

∗
k+i.

Proof: Let S1 be span{v1, v2, ..., vk}, S2 be span{v∗1 , v∗2 , ..., v∗k} and S⊥1 , S⊥2 be their orthogonal
subspaces respectively. We first prove that for any unit vector v ∈ S⊥1 , there is another unit vector
v′ ∈ S⊥2 so that vT v′ ≥ 1− 4nγ2. In fact, we can take v′ to be the unit vector along the projection
of v in S⊥2 . To bound the length of the projection, we instead bound the length of projection to
S2. Since we know vTi v

′ = 0 for i ≤ k and ‖vi − v∗i ‖ ≤ γ, it must be that (v∗i )T v′ ≤ 2γ when
γ < 0.01. So the projection of v′ in S2 has length at most 2

√
nγ and hence the projection of v′ in

S⊥2 has length at least 1− 4nγ2.

Next, we prove that there is a pair of orthornormal basis {ṽk+1, ṽk+2, ..., ṽn} for S⊥1 and
{ṽ∗k+1, ṽ∗k+2, ..., ṽ∗n} for S⊥2 such that

∑n−k
i=1 wkṽk+i is close to

∑n−k
i=1 wkṽ∗k+i. Once we have

such a pair, we can simultaneously rotate the two basis so that the latter becomes v∗k+1, ..., v
∗
n.

To get this set of basis we consider the projection operator to S⊥2 for vectors in S⊥1 . The squared
length of the projection is a quadratic form over the vectors in S⊥1 . So there is a symmetric PSD

matrix M such that
∥∥∥ProjS⊥2 (v)

∥∥∥2

2
= vTMv for v ∈ S⊥1 . Let {ṽk+1, ṽk+2, ..., ṽn} be the eigenvec-

tors of this matrix M . As we showed the eigenvalues must be at least 1 − 8nγ2. The basis for S⊥2
will just be unit vectors along directions of projections of ṽi to S⊥2 . They must also be orthogonal
because the projection operator is linear and∥∥∥∥∥ProjS⊥2 (

n−k∑
i=1

wiṽk+i)

∥∥∥∥∥
2

2

=

∥∥∥∥∥
n−k∑
i=1

wiProjS⊥2 (ṽk+i)

∥∥∥∥∥
2

2

=

n−k∑
i=1

λiw
2
i

11
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The second equality cannot hold if these vectors are not orthogonal. And for any w,(
n−k∑
i=1

wkṽk+i

)T (n−k∑
i=1

wkṽ∗k+i

)
=

n−k∑
i=1

w2
k(ṽk+i)

T ṽ∗k+i ≥ 1− 8nγ2

So we conclude that the distance between these two vectors is at most 3
√
nγ. �

Lemma C.2. Let g∗ be the projection of f∗ into the space spanned by the rest of local maxima, then
|g∗(w)− g(w)| ≤ δ/8 + δ′/20 ≤ δ′/8.

Proof: The proof is straight forward because |g∗(w)− g(w)| ≤ |f∗(u)− f(u)|+ |f∗(u)− f∗(u′)|
for some ‖u− u′‖2 ≤ 3

√
nγ, we know the first one is at most δ/8 and the second one is at most

δ′/20 by Lipschitz Condition. �

Theorem C.3. Suppose function f∗(u) : Rn → R satisfies the following properties

1. Orthogonal Local Maxima: The function has n local maxima v∗i and they are orthogonal
to each other.

2. Locally Improvable: f∗ is (γ, β, δ) Locally Improvable.

3. Improvable Projection: The projection of the function to any subspace spanned by a subset
of local maxima is (γ′, β′, δ′) Locally Improvable. The step size δ′ ≥ 10δ.

4. Lipschitz: If two points ‖u− u′‖2 ≤ 3
√
nγ, then the function value |f∗(u) − f∗(u′)| ≤

δ′/20.

5. Attraction Radius: Let Rad ≥ 3
√
nγ + γ′, for any local maximum v∗i , let T be min f∗(u)

for ‖u− v∗i ‖2 ≤ Rad, then there exist a set U containing ‖u− v∗i ‖2 ≤ 3
√
nγ + γ′ and

does not contain any other local optima, such that for every u that is not in U but is β close
to U , f∗(u) < T .

If we are given function f such that |f(u)− f∗(u)| ≤ δ/8 and f is both (β, δ) and (β′, δ′) Locally
Approximable, then Algorithm 2 can find all local optima of f∗ within distance γ.

Proof: By Theorem 4.4 the first column is indeed γ close to a local maximum. We then prove by
induction that if v1, v2, ..., vk are γ close to different local maxima, then vk+1 must be close to a
new local maximum.

By Lemma 4.8 we know gk+1 is (γ′, β′, δ′) Locally Improvable, and because it is a projection of f
its derivatives are also bounded so it is (β′, δ′) Locally Approximable. By Theorem 4.4 u′ must be
γ′ close to local maximum for the projected function. Then since the projected space is close to the
space spanned by the rest of local maxima, u′ is in fact γ′ + 3

√
nγ close to v∗k+1 (here again we are

reindexing the local maxima wlog.).

Now we use the Attraction Radius property, since u is currently in U , f∗(u) ≥ T , and each step we
go to a point u′ such that ‖u′ − u‖ ≤ β and f∗(u′) > f∗(u) ≥ T . The local search in Algorithm 1
can never go outside U , therefore it must find the local maximum v∗k+1. �

D Omitted proofs in Section 5

Theorem D.1 ([5]). When β < dmin/10dmaxn
2, the function P ∗(u) is (3

√
nβ, β, P ∗(u)β2/100)

Locally Improvable and (β, dminβ
2/100n) Locally Approximable. Moreover, the local maxima of

the function is exactly {±R∗i }.

Proof: The proof appears in [5]. Here for completeness we show the proof using our notations.

First we establish that P ∗(u) is Locally Improvable.Observe that this desirada is invariant under
rotation, so we need only prove the theorem for P ∗(v) =

∑n
i=1 div

4
i . The gradient of the function is

∇P ∗(v) = 4(d1v
3
1 , d2v

3
2 , ..., dnv

3
n). The inner product of ∇P ∗(v) and v is exactly 4

∑n
i=1 div

4
i =

4P ∗(v). Therefore the projected gradient φ = Proj⊥v∇P ∗(v) has coordinate φi = 4vi(div
2
i −

P ∗(v)). Furthermore, the Hessian H = H(P ∗(v)) is a diagonal matrix whose (i, i)th entry is
12div

2
i .

12
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Consider the case in which ‖φ‖ ≥ P ∗(v)β/4. We can obtain an improvement to P ∗(v)β2/100
because we can take ξ in the direction of φ and with ‖ξ‖2 = β/20. The contribution of the Hessian
term is nonnegative and the third term −2P ∗(u) ‖ξ‖22 is small in comparison.

Hence, we can assume ‖φ‖ ≤ P ∗(v)β/4. Now let us write out the expression of ‖φ‖2

n∑
i=1

v2
i (div

2
i − P ∗(v))2 ≤ β2(P ∗(v))2/16.

In particular every term v2
i (div

2
i − P ∗(v))2 must be at most β2(P ∗(v))2/16.. Thus for any i, either

v2
i ≤ β2 or (div

2
i − P ∗(v))2 ≤ (P ∗(v))2/16.

If there are at least 2 coordinates k and l such that (div
2
i − P ∗(v))2 ≤ (P ∗(v))2/16, then we

know for these two coordinates v2
i ∈ [0.75P ∗(v)/di, 1.25P ∗(v)/di]. We choose the vector ξ so

that ξk = τvl and ξl = −τvk. Wlog assume ξ · φ ≥ 0 otherwise we use −ξ. Take τ so that
τ2(v2

l + v2
k) = β2. Clearly ‖ξ‖ = β and ξ · v = 0 so ξ is a valid solution. Also τ2 is lower bounded

by β2/(v2
l + v2

k) ≥ 4
5

β2

P∗(u)(1/dl+1/dk) .

Consider the function we are optimizing:

φ · ξ + 1/2ξTHξ − 2P ∗(u) ‖ξ‖2 ≥ 1/2ξTHξ − 2P ∗(u)β2 = 6τ2v2
kv

2
l (dk + dl)− 2P ∗(u)β2

≥ 27

8
τ2P ∗(u)2 dk + dl

dkdl
− 2P ∗(u)β2 ≥ 7

10
P ∗(u)β2.

In the remaining case, all of the coordinates except for at most one satisfy v2
i ≤ β2. Since we

assumed β2 < 1
n , there must be one of the coordinate vk that is large, and it is at least 1 − nβ2.

Thus the distance of this vector to the local maxima ek is at most 3
√
nβ. �

Claim D.2. Z = O(d2
minλmin(A)8‖Σ‖42 + d2

min).

Proof: We will start by bounding E[(zizjzkzl)
2] ≤ E[(z8

i + z8
j + z8

k + z8
l )]. Furthermore E[z8

i ] ≤
O(E[(B−1Ax)8

i + (B−1η)8
i ]). Next we bound E[(B−1η)8

i ], which is just the eighth moment of a
Gaussian with variance at most ‖B−1ΣB−T ‖2 ≤ ‖B−1‖22‖Σ‖2 ≤ d

1/2
minλmin(A)−2‖Σ‖2. Hence

we can bound this term byO(‖B−1ΣB−T ‖42) = O(d2
minλmin(A)8‖Σ‖42). Finally the remaining

term E[(B−1Ax)8
i ] can be bounded by O(d2

min) because the variance of this random variable is
only larger if we instead replace x by an n-dimensional standard Gaussian. �

Lemma D.3. Given 2N samples y1, y2, ..., yN , y
′
1, y
′
2, ..., y

′
N , suppose columns of R′ =

B−1ADA(u0)1/2 are ε close to the corresponding columns ofR∗, with high probability the function
P̂ ′(u) is O(dmaxn

1/2ε+ n2(N/Z log n)−1/2) close to the true function P ∗(u).

Proof: P̂ ′(u) is the empirical mean of F (u, y, y′) = −(uTB−1y)4 + 3(uTB−1y)2(uTB−1y′)2. In
Section 2 we proved that P ′(u) = Ey,y′ F (u, y, y′) =

∑n
i=1 2D

−1/2
i,i (uTRi)

4 =
∑n
i=1 λi(u

TRi)
4.

First, we demonstrate that P ′(u) is close to P ∗(u), and then using concentration bounds we show
that P̂ ′(u) is close to P ′(u) (with high probability) over all u.

The first part is a simple application of Cauchy-Schwartz:

|P ′(u)− P ∗(u)| =
n∑
i=1

di
[
(uTR′i)− (uTR∗i )

]
·
[
(uTR′i + uTR∗i )((u

TR′i)
2 + (uTR∗i )

2)
]

≤ dmax

√√√√ n∑
i=1

(uT (R′i −R∗i ))2 · (3
∥∥uTR′ + uTR∗

∥∥
2
) ≤ 6dmaxn

1/2ε.

The first inequality uses the fact that ((uTR′i)
2 + (uTR∗i )

2) ≤ 3, the second inequality uses the fact
that when ε is small enough,

∥∥uTR′∥∥
2
≤ 2.

Next we prove that the empirical mean P̂ ′(u) is close to P ′(u). The key point here is we need
to prove this for all points u since a priori we have no control over which directions local search

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

will choose to explore. We accomplish this by considering P̂ ′(u) as a degree-4 polynomial over u
and prove that the coefficient of each monomial in P̂ ′(u) is close to the corresponding coefficient
in P ′(u). This is easy: the expectation of each coefficient of F (u, y, y′) is equal to the correct
coefficient, and the variance is bounded by O(Z). The coefficients are also sub-Gaussian so by
Bernstein’s inequality the probability that any coefficient of P̂ ′(u) deviates by more than ε′ (from
its expectation) is at most e−Ω(ε′2N/Z). Hence when N ≥ O(Z log n/ε′2) with high probability all
the coefficients of P̂ ′(u) and P ′(u) are ε′ close. So for any u:

|P ′(u)− P̂ ′(u)| ≤ ε′(
n∑
i=1

|ui|)4 ≤ ε′n2.

Therefore P̂ ′(u) and P ∗(u) are O(dmaxn
1/2ε+ n2(N/Z log n)−1/2) close. �

This proof can also be used to show that the derivatives of the function P̂ ′(u) is concentrated to
the derivatives of the true function P ∗(u) because the derivatives are only related to coefficients,
therefore P̂ ′(u) is also (β, dminβ

2/100n) Locally Approximable.

Lemma D.4. For any ‖u − u′‖2 ≤ r, |P ∗(u) − P ∗(u′)| ≤ 5dmaxn
1/2r. All local maxima of P ∗

has attraction radius Rad ≥ dmin/100dmax.

Proof: The Lipschitz condition follows from the same Cauchy-Schwartz as appeared above. When
two points u and u′ are of distance r, |P ∗(u) − P ∗(u′)| ≤ 5dmaxn

1/2r. Finally for the Attraction
Radius, we know when 3

√
nγ + γ′ ≤ dmin/100dmax, we can just take the set U to be uTR∗i ≥

1 − dmin/50dmax. For all u such that uTR∗i ∈ [1 − dmin/25dmax, 1 − dmin/50dmax] (which
contains the β neighborhood of U ), we know the value of P ∗(u) ≤ T . �

Theorem D.5. Given a matrix R̂ such that there is permutation matrix Π and ki ∈ {±1} with
‖R̂i − ki(R∗Π)i‖2 ≤ γ for all i, Algorithm 3 returns matrix Â such that ‖Â − AΠDiag(ki)‖F ≤
O(γ ‖A‖22 n3/2/λmin(A)). If γ ≤ O(ε/ ‖A‖22 n3/2λmin(A)) × min{1/ ‖A‖2 , 1}, we also have
‖Σ̂− Σ‖F ≤ ε.

Proof: By Lemma 2.11 we know the columns of R′ is close the the columns of R (the parameters
will be set so that the error is much smaller than γ), thus ‖R̂i − ki(R

′Π)i‖2 ≤ γ. Applying
Lemma 5.3 we obtain: |P̂ ′(R̂i) − P ∗(R̂i)| � γ. Furthermore, when ‖R̂i − kiR∗Π−1(i)‖2 ≤ γ we

know that P ∗(R̂i)/dΠ−1(i) ∈ [1−3γ, 1+3γ] (here we are abusing notation and use the permutation
matrix as a permutation). Hence D̂A(u)i,i/ (DA(u))Π−1(i),Π−1(i) ∈ [1− 3γ, 1 + 3γ]. We have:

Âi = BR̂iD̂A(u)
−1/2
i,i and (AΠDiag(ki))i = BR′Π−1(i) (DA(u))

−1/2
Π−1(i),Π−1(i)

and their difference is at most O(γ ‖B‖2 (DA(u))
−1/2
Π−1(i),Π−1(i)). Hence we can bound the to-

tal error by O(γ ‖B‖2
∥∥DA(u)−1/2

∥∥
F

). We also know ‖B‖2 ≤ ‖A‖2 ‖DA(u)1/2‖2 because

BBT ≈ ADA(u)AT , so this can be bounded byO(γ ‖A‖2 ‖DA(u)‖1/22 ‖DA(u)−1/2‖F ). Applying
Claim 2.9, we conclude that (with high probability) the ratio of the largest to smallest diagonal entry
of DA(u) is at most n2 ‖A‖22 /λmin(A)2. So we can bound the error by O(γ ‖A‖22 n3/2/λmin(A)).

Consider the error for Σ: Using concentration bounds similar but much simpler than those used in
Lemma 5.3, we obtain that ‖Ĉ −C‖F ≤ 1/2ε, so ‖Σ̂−Σ‖F ≤ ‖Ĉ −C‖F − ‖ÂÂT −AAT ‖F ≤
ε/2 + 2 ‖A‖2 ‖AΠDiag(ki)− Â‖F + ‖AΠDiag(ki)− Â‖2F ≤ ε. �
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