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1 Appendix
In this section we specify additional details of our Bayesian optimization algorithm which, for
brevity, were omitted from the paper. For more detail, the code used in this work is made pub-
licly available at http://www.cs.toronto.edu/˜jasper/software.html. The code
is designed to be flexible and accessible such that other researchers can use it to optimize the hyper-
parameters of any desired machine learning model.

1.1 Optimizing the Acquisition Function

We start by projecting the observations to the unit hypercube, as defined by bounds of the opti-
mization. Gaussian process hyperparameters, θ, are sampled using the slice sampling algorithm
of Murray and Adams [2]. In order to find the maximum of the multimodal acquisition function
a(x ; {xn, yn}, θ) in a continuous domain, first discrete candidate points are densely sampled in the
unit hypercube using a low discrepancy Sobol sequence [1]. Each of these candidates is then sub-
jected to a bounded optimization over the integrated acquisition function. Precisely, the minimum of
the acquisition function, averaged over GP hyperparameter samples, is computed with the input ini-
tialized at each of the candidate points. As the acquisition functions in this work can all be expressed
analytically in closed form, standard gradient descent techniques can be used. This yields a new set
of candidate points, each of which is located at a local optimum of the integrated acquisition func-
tion. The next point to be evaluated in the Bayesian optimization procedure is then selected as the
candidate point with the highest integrated acquisition function. Algorithm 1 outlines the procedure
for selecting the next candidate point to evaluate while integrating over hyperparameter samples. In
the event of pending experiments, {xj}Jj=1, fantasized corresponding outcomes, {yj}Jj=1, can be
efficiently sampled from the Gaussian process posterior for each hyperparameter sample and added
to the observation set, before computing the integrated acquisition function.

1.2 Hyperparameter Priors

After choosing the form of the Gaussian process covariance, we must also manage the hyperparame-
ters that govern its behavior. In our empirical evaluation, unless otherwise specified, we have D + 3
Gaussian process hyperparameters: D length scales θ1:D, the covariance amplitude θ0, the obser-
vation noise ν, and a constant mean m. For a fully-Bayesian treatment of hyperparameters, it is
desirable to marginalize over hyperparameters and compute the integrated acquisition function. As
stated in the paper, a Monte Carlo estimate of the integrated acquisition function is computed via
slice sampling [2]. Appropriate priors for each of the hyperparameters are chosen for use within the
context of the slice sampling algorithm, which we will clarify here. We specify a uniform prior for
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the mean, m, and width 2 top-hat priors for each of the D length scale parameters. As we expect
the observation noise generally to be close to or exactly zero, ν is given a horseshoe prior [3]. The
covariance amplitude θ0 is given a zero mean, unit variance lognormal prior, θ0 ∼ lnN (0, 1).

Algorithm 1 Selecting the next point to evaluate

Input: Observations {xn, yn}Nn=1
{Generate a set of M candidate points from the Sobol sequence [1]}
Xcand = Sobol(M)
{Generate H Gaussian process hyperparameter samples [2]}
for h = 1 to H do

Sample θh {See Section 1.2}
end for
for xm in Xcand do
xm = maxx

∑H
h=1 a(xm ; {xn, yn}, θh)

end for
xnext = argmaxx

∑H
h=1 a(Xcand ; {xn, yn}, θh)

return xnext
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