
Appendix A

Proof of Theorem 1

The proof of Theorem 1 consists of two main steps. First, we show that there must be
an optimal solution to equation 8 with at least as many 1s as the solution found by our
algorithm. This is clearly a necessary condition for Theorem 1 to hold. Next we show that,
for any possible solution found by our algorithm, there will be one such optimal solution
which will indeed agree with our solution on all its 1s. This proves the theorem. The first
step is proven in proposition 5 below, which requires supporting results that we prove first.
The theorem is then proved in the sequence.

Lemma 3 Let Y ∗
k = argmaxy y

TA[k],ny, where A[k],n is such that diag(A[k],n) := diag(A)−
2yn

k+�yn�2 and Aij = �θij , Cij� for i �= j, with θij ≥ 0 and Cij ≥ 0. Now let l ≥ k and define

similarly Y ∗
l . Then for every y∗k ∈ Y ∗

k there exists a y∗l ∈ Y ∗
l such that y∗k ⊙ y∗l = y∗k (and,

conversely, for every y∗l ∈ Y ∗
l there exists a y∗k ∈ Y ∗

k such that y∗k ⊙ y∗l = y∗k).

Proof The claim states that for any optimal solution y∗k ∈ Y ∗
k , its 1s will also be present

in some optimal solution y∗l ∈ Y ∗
l . The proof is by contradiction, assuming that there

exists y∗k ∈ Y ∗
k and an index i such that y∗k(i) = 1 and y∗l (i) = 0 for all y∗l ∈ Y ∗

l . Now
consider the binary vector zl which agrees with y∗l everywhere except in i, i.e. zl(j) = y∗l (j)

for j �= i and zl(i) = 1. This implies that zlTA[l],nzl = y∗l
TA[l],ny∗l + A[l],n

ii +
�

j:j �=i A
[l],n
ij .

Now note that we necessarily have
�

j:j �=i A
[l],n
ij + A[l],n

ii ≥ 0. This holds because, first,
�

j:j �=i A
[k],n
ij + A[k],n

ii ≥ 0 (otherwise y∗k would not be optimal), second, A[l],n
ii ≥ A[k],n

ii and

third that A[l],n
ij = A[k],n

ij for i �= j. Therefore zlTA[l],nzl ≥ y∗l
TA[l],ny∗l , which implies that

zl ∈ Y ∗
l , which contradicts the assumption that for all y∗l ∈ Y ∗

l , y
∗
l (i) = 0. The converse is

proved analogously.

Intuitively, the above result says that due to the non-negativity of the off-diagonal elements
of A, the new objective function arisen from an increase in the diagonal of A surely has some
maximiser which includes all 1s already present in any maximiser of the previous objective
function, prior to the increase in the diagonal.

Corollary 4 Let l ≥ k. Then maxy yTA[l],ny ≥ maxy yTA[k],ny.

Proof Note that the set of 1s potentially present in a y∗l but not in a y∗k for which y∗l ⊙y∗k = y∗k
necessarily has non-negative contribution to the objective function yTA[l],ny (otherwise y∗l
would not be optimal), jointly with the fact that the same is true for the set of 1s present

both in y∗l and y∗k since A[l],n
ii ≥ A[k],n

ii for any i.

We are now ready to prove that there exists an optimal solution to the constraint generation
problem in equation 8 which contains at least kmax 1s.

Proposition 5 Let k� ≥ kmax, where kmax is as instantiated in Algorithm 2. Then there
exists an optimal solution y∗n ∈ argmaxy y

TAn(y)y such that for some k�, we have y∗n ∈
argmaxy∈Yk� y

TA[k�],ny.

Proof This follows from equation 9 and from the claim that for all k ≤ kmax,
maxy∈Ykmax

yTA[kmax],ny ≥ maxy∈Yk y
TA[k],ny, which we now prove. We know that

maxy yTA[kmax],ny = maxy∈Ykmax
yTA[kmax],ny holds since, from lines 8 and 10 of Algorithm

2, we have kmax = |y∗nkmax
|. On the other hand, we have maxy yTA[k],ny ≥ maxy∈Yk y

TA[k],ny
since Yk ⊆ Y. Both facts, when put together with corollary 4, prove the claim.

We are now able to give a proof of Theorem 1.

Proof of Theorem 1 We show that for any solution y∗nkmax
found by Algorithm 2, we

have that y∗nkmax
⊙ y∗n = y∗nkmax

for some optimal solution y∗n having at least kmax 1s.
We proceed by contradiction, assuming that there is no optimal solution y∗n respecting
|y∗n| ≥ kmax such that y∗nkmax

⊙ y∗n = y∗nkmax
holds, for any y∗nkmax

. This is equivalent
to saying that for every y∗n respecting |y∗n| ≥ kmax there is an index i (which can be
different for different y∗n) such that y∗n(i) = 0 and y∗nkmax

(i) = 1 for any y∗nkmax
. Now

consider a vector z that agrees with y∗n everywhere except in index i, i.e., z(i) = 1. The
key observation now is that zTA[|z|],nz ≥ (y∗n)TA[|y∗n|],ny∗n, and therefore z should be
an optimal solution as well, which results in a contradiction. To see why this inequality

holds, first note that zTA[|z|],nz− (y∗n)TA[|y∗n|],ny∗n =
�

i(A
[|z|],n
ii −A[|y∗n|],n

ii) +
�

j �=i Aij ,
where the first sum accounts for the potential change in the diagonal due to the increase
in the cardinality of the solution, and the second sum accounts for the newly incorporated
off-diagonal terms as a result of z(i) = 1. The result then follows from the submodularity
assumption (Aij ≥ 0, ∀i �= j) and from the fact that the diagonal is non-decreasing with

respect to increases in the cardinality of the solution (A[|z|],n
ii − A[|y∗n|],n

ii ≥ 0, ∀i, since
|z| > |y∗n|).

Proof of Theorem 2 The theorem results directly from the fact that inequality 14
characterises the condition when the algorithm fails, as well as from the fact that
maxα βA,α ≥ βA,α and �V

kmax
|yn| ≥ γα.

Appendix B

Training time

The time the algorithm takes to train depends on the average time per iteration and on the
number of iterations.

At each iteration run time is dominated by the N calls to the constraint generation al-
gorithm, where each one may require at most V calls to the max-flow algorithm. The
computational complexity of the whole learning algorithm is therefore O(iNV 4), where i is
the number of iterations. In practice, however, it is much faster than that.

In Table 2 we summarise training times along the variables mentioned above, for the exper-
iments with all the features (rightmost bars in Figure 1). Note that our implementation is
multi-threaded, and scales almost linearly with the number of available cpus, so wall-clock
times can be much smaller.

Table 2: Training times

Dataset Training time i N V Time/call to Alg. 2
Yeast 47.8 cpu-seconds 205 1500 14 155 us
Enron 847.3 cpu-seconds 116 1123 53 6504 us

In comparison to RML[11], our method is 5.0 times slower in the Yeast dataset and 8.4 times
slower in the Enron dataset. Since it is a strict generalisation of RML, slower runtimes are
expected.

11

Appendix C

Adding positivity constraint to BMRM

BMRM ([18]) approximates the solution to an optimisation problem of the form

minimize
θ

�
Remp(θ) +

λ

2
�θ�2

�
(16a)

where Remp(θ) =
1

N

N�

n=1

l(xn, yn, θ) (16b)

by iteratively solving a linear program arising from a lower bound based on a first-order
Taylor approximation of l. Denoting ai+1 := ∂θRemp(θi) and bi+1 := Remp(θi)− �ai+1, θi�,
where i corresponds to the iteration number, the problem that is solved is

minimize
θ.ξ

λ

2
�θ�2 + ξ (17a)

subject to �aj , θ�+ bj ≤ ξ for all j ≤ i and ξ ≥ 0. (17b)

This is done by, at each iteration, solving the dual of eq. (17):

maximize
α

− 1

2λ
αTATAα+ αT b (18a)

s.t. 1Tα ≤ 0, α ≥ 0 (18b)

where A denotes the matrix [a1a2 . . . ai], b the vector [b1b2 . . . bi]T and θ = − 1
λAα.

Enforcing positivity in θ2 amounts to adding the additional constraint θ2 ≥ 0 to eq. (17),
and the corresponding dual problem now becomes:

maximize
α,γ

− 1

2λ

�
αTATAα+ γT γ − 2αTAT

1 γ
�
+ αT b (19a)

s.t. 1Tα ≤ 0, α ≥ 0, γ ≥ 0 (19b)

where A1 is the subset of the rows of A that correspond to the gradient w.r.t. θ2.

12

	Introduction
	The Model
	The Loss Function Derived from the F-Score
	Feature Maps and Parameterisation

	Learning Algorithm
	Certificate of Optimality
	Experimental Results
	Conclusion

