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Abstract

We consider feature selection and weighting for nearest neighbor classifiers. A
technical challenge in this scenario is how to cope with discrete update of nearest
neighbors when the feature space metric is changed during the learning process.
This issue, called the target neighbor change, was not properly addressed in the
existing feature weighting and metric learning literature. In this paper, we propose
a novel feature weighting algorithm that can exactly and efficiently keep track of
the correct target neighbors via sequential quadratic programming. To the best
of our knowledge, this is the first algorithm that guarantees the consistency be-
tween target neighbors and the feature space metric. We further show that the
proposed algorithm can be naturally combined with regularization path tracking,
allowing computationally efficient selection of the regularization parameter. We
demonstrate the effectiveness of the proposed algorithm through experiments.

1 Introduction

Nearest neighbor (NN) classifiers would be one of the classical and perhaps the simplest non-linear
classification algorithms. Nevertheless, they have gathered considerable attention again recently
since they are demonstrated to be highly useful in state-of-the-art real-world applications [1, 2]. For
further enhancing the accuracy and interpretability of NN classifiers, feature extraction and feature
selection are highly important. Feature extraction for NN classifiers has been addressed by the name
of metric learning [3–6], while feature selection for NN classifiers has been studied by the name of
feature weighting [7–11].

One of the fundamental approaches to feature extraction/selection for NN classifiers is to learn the
feature metric/weights so that instance pairs in the same class (‘must-link’) are close and instance
pairs in other classes (‘cannot-link’) are far apart [12, 13]. Although this approach tends to provide
simple algorithms, it does not have direct connection to the classification loss for NN classifiers, and
thus its validity is not clear.

However, directly incorporating the NN classification loss involves a significant technical challenge
called the target neighbor (TN) change. To explain this, let us consider binary classification by a
3NN classifier (see Figure 1). Since the classification result is determined by the majority vote from
3 nearest instances, the classification loss is defined using the distance to the 2nd nearest instance
in each class (which is referred to as a TN; see Section 2 for details). However, since ‘nearest’
instances are generally changed when feature metric/weights are updated, TNs must also be updated
to be kept consistent with the learned feature metric/weights during the learning process.

Although the TN change is a fundamental requirement in feature extraction/selection for NN classi-
fiers, existing methods did not handle this issue properly. For example, in a seminal feature weight-
ing method called Relief [7, 8], the fixed TNs determined based on the uniform weights (i.e., the
Euclidean distance) are used throughout the learning process. Thus, the TN-weight consistency is
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Left: (a) The Euclidean feature space
with w1 = w2 = 1/2. The horizontal
feature 1 and the vertical feature 2 are
regarded as equally important.
Right: (b) A weighted feature space
with w1 = 2/3 and w2 = 1/3. The
horizontal feature 1 is regarded as more
important than the vertical feature 2.

Figure 1: Illustration of target neighbors (TNs). An instance 0© in the middle is correctly classified
in 3NN classification if the distance to the 2nd nearest instance in the same class (called 2nd target
hit and denoted by h2

0) is smaller than the distance to the 2nd nearest instance in different classes
(called 2nd target miss and denoted by m2

0). In the Euclidean feature space (a), the 2nd target
hit/miss are given by (h2

0,m
2
0) = ( 2©, 6 ). Since d(x0, x2|w) > d(x0, x6|w), the instance 0© is

misclassified. On the other hand, in the weighted feature space (b), the 2nd target hit/miss are given
by (h2

0,m
2
0) = ( 1©, 5 ). Since d(x0, x1|w) < d(x0, x5|w), the instance 0© is correctly classified.

not guaranteed (large-margin metric learning [5] also suffers from the same drawback). The Simba
algorithm [9] is a maximum-margin feature weighting method which adaptively updates TNs in
the online learning process. However, the TN-weight consistency is not still guaranteed in Simba.
I-Relief [10, 11] is a feature weighting method which cleverly avoids the TN change problem by
considering a stochastic variant of NN classifiers (neighborhood component analysis [4] also intro-
duced similar stochastic approximation). However, since the behavior of stochastic NN classifiers
tends to be significantly different from the original ones, the obtained feature metric/weights are not
necessarily useful for the original NN classifiers.

In this paper, we focus on the feature selection (i.e., feature weighting) scenario, and propose a
novel method that can properly address the TN change problem. More specifically, we formulate
feature weighting as a regularized empirical risk minimization problem, and develop an algorithm
that exactly and efficiently keeps track of the correct TNs via sequential quadratic programming.
To the best of our knowledge, this is the first algorithm that systematically handles TN-changes and
guarantees the TN-weight consistency. We further show that the proposed algorithm can be naturally
combined with regularization path tracking [14], allowing computationally efficient selection of
the regularization parameter. Finally, we demonstrate the effectiveness of the proposed algorithm
through experiments.

Throughout the paper, the superscript > indicates the transpose of vectors or matrices. We use R
and R+ to denote the sets of real numbers and non-negative real numbers, respectively, while we
use Nn := {1, . . . , n} to denote the set of natural numbers. The notations 0 and 1 indicate vectors
or matrices with all 0 and 1, respectively. The number of elements in a set S is denoted by |S|.

2 Preliminaries

In this section, we formulate the problem of feature weighting for nearest neighbor (NN) classifica-
tion, and explain the fundamental concept of target neighbor (TN) change.

Consider a classification problem from n training instances with ` features. Let xi :=
[xi1 . . . xi`]> ∈ R` be the i-th training instance and yi be the corresponding label. The squared
Euclidean distance between two instances xi and xi′ is

∑
j∈N`

(xij − xi′j)2, while the weighted
squared Euclidean distance is written as

d(xi, xi′ |w) :=
∑
j∈N`

wj(xij − xi′j)2 = ε>i,i′w, (1)

where w := [w1 . . . w`] ∈ [0, 1]` is an `-dimensional vector of non-negative weights and εi,i′ :=
[(xi1 − xi′1)2 . . . (xi` − xi′`)2]> ∈ R`, (i, i′) ∈ Nn × Nn, is introduced for notational simplicity.

We develop a feature weighting algorithm within the framework of regularized empirical risk mini-
mization, i.e., minimizing the linear combination of a loss term and a regularization term. In order to
formulate the loss term for NN classification, let us introduce the notion of target neighbors (TNs):
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Definition 1 (Target neighbors (TNs)) Define Hi := {h ∈ Nn|yh = yi, h 6= i} and Mi := {m ∈
Nn|ym 6= yi} for i ∈ Nn. Given a weight vector w, an instance h ∈ Hi is said to be the κ-th target
hit of an instance i if it is the κ-th nearest instance among Hi, and m ∈ Mi is said to be the λ-th
target miss of an instance i if it is the λ-th nearest instance among Mi, where the distance between
instances are measured by the weighted Euclidean distance (1). The κ-th target hit and λ-th target
miss of an instance i ∈ Nn are denoted by hκ

i and mλ
i , respectively. Target hits and misses are

collectively called as target neighbors (TNs) 1.

Using TNs, the misclassification rate of a binary kNN classifier when k is odd is formulated as
LkNN(w) := n−1

∑
i∈Nn

I{d(xi, xhκ
i
|w) > d(xi, xmλ

i
|w)} with κ = λ = (k + 1)/2, where I(·)

is the indicator function with I(z) = 1 if z is true and I(z) = 0 otherwise. For example, in binary
3NN classification, an instance is misclassified if and only if the distance to the 2nd target hit is
larger than the distance to the 2nd target miss (see Figure 1). The misclassification cost of a multi-
class problem can also be formulated by using TNs similarly, but we omit the details for the sake of
simplicity.

Since the indicator function I(·) included in the loss function LkNN(w) is hard to directly deal with,
we introduce the nearest neighbor (NN) margin2 as a surrogate:

Definition 2 (Nearest neighbor (NN) margin) Given a weight vector w, the (κ, λ)-neighbor mar-
gin is defined as d(xi, xmλ

i
|w)− d(xi, xhκ

i
|w) for i ∈ Nn, κ ∈ N|Hi|, and λ ∈ N|Mi|.

Based on the NN margin, our loss function is defined as L(w) := n−1
∑

i∈Nn

(
d(xi, xhκ

i
|w) −

d(xi, xmλ
i
|w)

)
. By minimizing L(w), the average (κ, λ)-neighbor margin over all instances is max-

imized. This loss function allows us to find feature weights such that the distance to the κ-th target
hit is as small as possible, while the distance to the λ-th target miss is as large as possible.

A regularization term is introduced for incorporating our prior knowledge on the weight vector. Let
w̄ ∈ [0, 1]` be our prior weight vector, and we use the regularization term of the form Ω(w) :=
1
2 ||w− w̄||22. For example, if we choose w̄ := `−11, it implies that our baseline choice of the feature
weights is uniform, i.e., the Euclidean distance metric [6].

Given the loss term L(w) and the regularization term Ω(w), the feature weighting problem we are
going to study in this paper is formulated as

min
w

θn−1
∑
i∈Nn

(
d(xi, xhκ

i
|w)− d(xi, xmλ

i
|w)

)
+

1
2
||w − w̄||22 s.t. 1>w = 1, w ≥ 0, (2)

where θ ∈ R+ is a regularization parameter for controlling the balance between the loss term L(w)
and the regularization term Ω(w). The first equality constraint restricts that the sum of the weights
to be one, while the second constraint indicates that the weights are non-negative. The former is
introduced for fixing the scale of the distance metric.

It is important to note that TNs {(hκ
i , mλ

i )}i∈Nn
are dependent on the weights w because the

weighted Euclidean distance (1) is used in their definitions. Thus, we need to properly update TNs
in the optimization process. We refer to this problem as the target neighbor change (TN-change)
problem. Since TNs change in a discrete fashion with respect to the weights w, the problem (2) has
a non-smooth and non-convex objective function. In the next section, we introduce an algorithm for
finding a local minimum solution of (2). An advantage of the proposed algorithm is that it monoton-
ically decreases the objective function in (2), while TNs are properly updated so that they are always
kept consistent with the feature space metric given by the weights w in the following sense:

Definition 3 (TN-weight Consistency) A weight vector w and n pairs of instances
{(hκ

i ,mλ
i )}i∈Nn are said to be TN-weight consistent if {(hκ

i , mλ
i )}i∈Nn are the TNs when

the distance is measured by the weighted Euclidean distance (1) using the weights w.
1The terminologies target hit and miss were first used in [7], in which only the 1st target hit and miss were

considered. We extend them to the κ-th target hit and λ-th target miss for general κ and λ. The terminology
target neighbors (TNs) was first used in [5].

2The notion of the nearest neighbor margin was first introduced in [9], where only the case of κ = λ = 1
was considered. We use an extended definition with general κ and λ.
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Figure 1 illustrates how TNs are defined. In the Euclidean feature space with w1 = w2 = 1/2, the
2nd target hit and miss of the instance 0© are given by (h2

0, m
2
0) = ( 2©, 6 ). Since d(x0, x2|w) >

d(x0, x6|w), the instance 0© is misclassified in 3NN classification. On the other hand, in the
weighted feature space with (w1, w2) = (2/3, 1/3), the 2nd target hit and miss of the instance
0© are given by (h2

0,m
2
0) = ( 1©, 5 ). Since d(x0, x1|w) < d(x0, x5|w) under this weighted metric,

the instance 0© is correctly classified in 3NN classification.

3 Algorithm

The problem (2) can be formulated as a convex quadratic program (QP) if TNs are regarded as fixed.
Based on this fact, our feature weighting algorithm solves a sequence of such QPs, while TNs are
properly updated to be always consistent.

3.1 Active Set QP Formulation

First, we study the problem (2) under the condition that TNs remain unchanged. Let us define the
following sets of indices:

Definition 4 Given a weight vector w and the consistent TNs {(hκ
i ,mλ

i )}i∈Nn , define the following
sets of index pairs for ‘∗’ being ‘<’, ‘=’, and ‘>’:

H[∗] := {(i, h) ∈ Nn ×Hi | d(xi, xh|w) ∗ d(xi, xhκ
i
|w)},

M[∗] := {(i,m) ∈ Nn ×Mi | d(xi, xm|w) ∗ d(xi, xmλ
i
|w)}.

They are collectively denoted by (H,M), where H := {H[<],H[=],H[>]} and M :=
{M[<],M[=],M[>]}. Furthermore, for each i ∈ Nn, we define H[∗]

i := {h|(i, h) ∈ H[∗]} and
M[∗]

i := {m|(i,m) ∈M[∗]}.

Under the condition that {(hκ
i ,mλ

i )}i∈Nn remain to be TN-weight consistent, the problem (2) is
written as

min
w∈R`,ξ∈Rn,η∈Rn

θn−1
∑
i∈Nn

(ξi − ηi) +
1
2
||w − w̄||22 (3a)

s.t. 1>w = 1, w ≥ 0, (3b)

d(xi, xh|w) ≤ ξi, (i, h) ∈ H[<], d(xi, xm|w) ≤ ηi, (i,m) ∈M[<], (3c)

d(xi, xh|w) = ξi, (i, h) ∈ H[=], d(xi, xm|w) = ηi, (i,m) ∈M[=], (3d)

d(xi, xh|w) ≥ ξi, (i, h) ∈ H[>], d(xi, xm|w) ≥ ηi, (i,m) ∈M[>]. (3e)

In the above, we introduced slack variables ξi and ηi for i ∈ Nn which represent the weighted
distances to the target hit and miss, respectively. In (3), TN-weight consistency is represented by a
set of linear constraints (3c)–(3e)3.

Our algorithm handles TN change as a change in the index sets (H,M), and a sequence of convex
QPs in the form of (3) are (partially) solved every time the index sets (H,M) are updated. We
implement this approach by using an active set QP algorithm (see Chapter 16 in [15]). Briefly,
the active set QP algorithm repeats the following two steps: (step1) Estimate the optimal active
set4, and (step2) Solve an equality-constrained QP by regarding the constraints in the current active
set as equality constraints and all the other non-active constraints are temporarily disregarded. An
advantage of introducing the active set QP algorithm is that TN change can be naturally handled as
active set change. Specifically, a change of target hits is interpreted as an exchange of the members
betweenH[<] andH[=] or betweenH[>] andH[=], while a change of target misses is interpreted as
an exchange of the members betweenM[<] andM[=] or betweenM[>] andM[=].

3Note that the constraints for (H[<],H[=],H[>]) in (3c)–(3e) restrict that h must remain to be the target
hit of i for all (i, h) ∈ H[=] because those closer than the target hit must remain to be closer and those more
distant than the target hit must remain to be more distant. Similarly, the constraints for (M[<],M[=],M[>])

in (3c)–(3e) restrict that m must remain to be the target miss of i for all (i, m) ∈ M[=].
4A constraint satisfied with equality is called active and the set of active constraints is called active set.
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3.2 Sequential QP-based Feature Weighting Algorithm

Here, we present our feature weighting algorithm. We first formulate the equality-constrained QP
(EQP) of (3). Then we present how to update the EQP by changing the active sets.

In order to formulate the EQP of (3), we introduce another pair of index sets Z := {j|wj = 0}
and P := {j|wj > 0}. Suppose that we currently have a solution (w, ξ, η) and the active set
(H[=],M[=],Z). We first check whether the solution minimizes the loss function (3a) in the sub-
space defined by the active set. If not, we compute a step (∆w,∆ξ,∆η) by solving an EQP:

min
∆w,∆ξ,∆η

θn−1
∑
i∈Nn

((ξi + ∆ξi)− (ηi + ∆ηi)) +
1
2
||(w + ∆w)− w̄||22

s.t. 1>(w + ∆w) = 1, wj + ∆wj = 0, j ∈ Z, (4)

ε>i,h(w + ∆w) = ξi + ∆ξi, (i, h) ∈ H[=], ε>i,m(w + ∆w) = ηi + ∆ηi, (i,m) ∈M[=].

The solution of the EQP (4) can be analytically obtained by solving a small linear system (see
Supplement A).

Next, we decide how far we can move the solution along this direction. We set w ← w+τ∆w, ξ ←
ξ + τ∆ξ, η ← η + τ∆η, where τ ∈ [0, 1] is the step-length determined by the following lemma.

Lemma 5 The maximum step length that satisfies feasibility and TN-weight consistency is given by

τ := min
(

1, min
j∈P,∆wj<0

−wj

∆wj
,

min
(i,h)∈H[<],ε>

i,h∆w>∆ξi

−(ε>i,hw − ξi)

ε>i,h∆w −∆ξi
, min

(i,h)∈H[>],ε>
i,h∆w<∆ξi

−(ε>i,hw − ξi)

ε>i,h∆w −∆ξi
, (5)

min
(i,m)∈M[<],ε>

i,m∆w>∆ηi

−(ε>i,mw − ηi)
ε>i,m∆w −∆ηi

, min
(i,m)∈M[>],ε>

i,m∆w<∆ηi

−(ε>i,mw − ηi)
ε>i,m∆w −∆ηi

)
.

The proof of the lemma is presented in Supplement B.

If τ < 1, the constraint for which the minimum in (5) is achieved (called the blocking constraint) is
added to the active set. For example, if (i, h) ∈ H[>] achieved the minimum in (5), (i, h) is moved
fromH[>] toH[=]. We repeat this by adding constraints to the active set until we reach the solution
(w, ξ, η) that minimizes the objective function over the current active set.

Next, we need to consider whether the objective function of (2) can be further decreased by removing
constraints in the active set. Our algorithm and the standard active set QP algorithm are different
in this operation: in our algorithm, an active constraint is allowed to be inactive only when the κ-th
target hit remains to be a member ofH[=] and the λ-th target miss remains to be a member ofM[=].
Let us introduce the Lagrange multipliers α ∈ R|Z|, β ∈ R|H[=]|, and γ ∈ R|M[=]| for the 2nd, the
3rd, and the 4th constraint in (4), respectively (see Supplement A for details). Then the following
lemma tells us which active constraint should be removed.

Lemma 6 The objective function in (2) can be further decreased while satisfying feasibility and
TN-weight consistency by removing one of the constraints in the active set with the following rules5:

• If αj > 0 for j ∈ Z , then move {j} to P;

• If β(i,h) < 0, |H[<]
i | ≤ κ− 2 and |H[=]

i | ≥ 2 for (i, h) ∈ H[=], then move (i, h) toH[<];

• If β(i,h) > 0, |H[>]
i | < |Hi| − κ and |H[=]

i | ≥ 2 for (i, h) ∈ H[=], then move (i, h) toH[>];

• If γ(i,m) < 0, |M[<]
i | ≤ λ− 2 and |M[=]

i | ≥ 2 for (i,m) ∈M[=], then move (i,m) toM[<];

• If γ(i,m) > 0, |M[>]
i | < |Mi| − λ and |M[=]

i | ≥ 2 for (i,m) ∈M[=], then move (i,m) toM[>].

5If multiple active constraints are selected by these rules, the one with the largest absolute Lagrange multi-
plier is removed from the active set.
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The proof of the lemma is presented in Supplement C.

The proposed feature weighting algorithm, which we call Sequential QP-based Feature Weighting
(SQP-FW) algorithm, is summarized in Algorithm 1. The proposed SQP-FW algorithm possesses

Algorithm 1 Sequential QP-based Feature Weighting (SQP-FW) Algorithm
Inputs: The training instances {(xi, yi)}i∈Nn , the neighborhood parameters (κ, λ), regularization
parameter θ, and initial weight vector w̄;
Initialize w ← w̄, (ξ, η) and (H,M,Z,P);
for t = 1, 2, . . . do

Solve (4) to find (∆w,∆ξ,∆η);
if (∆w, ∆ξ,∆η) = 0 then

Compute Lagrange multipliers α, β, and γ;
if none of the active constraints satisfies the rules in Lemma 6 then

stop with solution w∗ = w;
else

Update (H,M,Z,P) according to the rule in Lemma 6;
else

Compute the step size τ as in Lemma 5;
if there are blocking constraints then

Update (H,M,Z,P) by adding one of the blocking constraints in Lemma 5;
Outputs: A local optimal vector of feature weights w∗.

the following useful properties.

Optimality conditions: We can characterize a local optimal solution of the non-smooth and non-
convex problem (2) in the following theorem (its proof is presented in Supplement D):

Theorem 7 (Optimality condition) Consider a weight vector w satisfying 1>w = 1 and w ≥ 0,
the consistent TNs {(hκ

i ,mλ
i )}i∈Nn , and the index sets (H,M,Z,P). Then, w is a local minimum

solution of the problem (2) if and only if the EQP (4) has the solution (∆w, ∆ξ,∆η) = 0 and there
are no active constraints that satisfy the rules in Lemma 6.

This theorem is practically useful because it guarantees that the solution cannot be improved in its
neighborhood even if some of the current TNs are replaced with others. Without such an optimality
condition, we must check all possible combinations of TN change from the current solution in a trial
and error manner. The above theorem allows us to avoid such time-consuming procedure.

Finite termination property: It can be shown that the SQP-FW algorithm converges to a local
minimum solution characterized by Theorem 7 in a finite number of iterations based on the similar
argument as that in pages 477–478 in [15]. See Supplement E for details.

Computational complexity: When computing the solutions (∆w,∆ξ,∆η) and the Lagrange mul-
tipliers (α, β, γ) by solving the EQP (4), the main computational cost is only several matrix-vector
multiplications involving n× |P| and n× |Z| matrices, which is linear with respect to n (see Sup-
plement A for details). On the other hand, if the minimum step length τ is computed naively by
Lemma 5, it takes O(n2|P|) computations, which could be a bottleneck of the algorithm. However,
this bottleneck can be eased by introducing a working set approach: only a fixed number of con-
straints in the working set are evaluated at each step, while the working set is updated, say, every
100 steps. In our implementation, we introduced such working sets to H[>] and M[>]. For each
i ∈ Nn, these working sets contain, say, only top 100 nearest instances. This strategy is based on
a natural idea that those outside of the top 100 nearest instances would not become TNs in the next
100 steps. Such a working set strategy allows us to reduce the computational complexity toO(n|P|)
for computing the the minimum step length τ , which is linear with respect to n.

Regularization path tracking: The SQP-FW algorithm can be naturally combined with regular-
ization path tracking algorithm for computing a path of the solutions that satisfy the optimality
condition in Theorem 7 for a range of regularization parameter θ. Due to the space limitation, we
only describe the outline here (see Supplement F for details). The algorithm starts from a local
optimal solution for a fixed regularization parameter θ. Then, the algorithm continues finding the
optimal solutions when θ is slightly increased. It can be shown that the local optimal solution of (2)
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is a piecewise-linear function of θ as long as the TNs remain unchanged. If θ is further increased,
we encounter a point at which TNs must be updated. Such TN changes can be easily detected and
handled because the TN-weight consistency conditions are represented by a set of linear constraints
(see (3c)–(3e)), and we already have explicit rules (Lemmas 5 and 6) for updating the constraints.
The regularization path tracking algorithm provides an efficient and insightful approach for model
selection.

4 Experiments

In this section, we investigate the experimental performance of the proposed algorithm6.

4.1 Comparison Using UCI Data Sets

First, we compare the proposed SQP-FW algorithm with existing feature weighting algorithms,
which handle the TN-change problem in different ways.

• Relief [7, 8]: The Relief algorithm is an online feature weighting algorithm. The goal of Relief
is to maximize the average (1, 1)-neighbor margin over instances. The TNs {(h1

i ,m
1
i )}i∈Nn

are
determined by the initial Euclidean metric and fixed all through the training process.

• Simba [9]: Simba is also an online algorithm aiming to maximize the average (1, 1)-neighbor
margin. The key difference from Relief is that TNs {(h1

i ,m
1
i )}i∈Nn are updated in each step using

the current feature-space metric. The TN-change problem is alleviated in Simba by this reassign-
ment.

• MulRel: To mitigate the TN-weight inconsistency in Relief, we repeat the Relief procedure using
the TNs defined by the learned weights in the previous loop (see also [5]).

• NCA-D [4]: Neighborhood component analysis with diagonal metric, which is essentially the same
as I-Relief [10, 11]. Instead of discretely assigning TNs, the probability of an instance being TNs
is considered. Using these stochastic neighbors, the average margin is formulated as a continuous
(non-convex) function of the weights, by which the TN change problem is mitigated.

We compared the NN classification performance of these 4 algorithms and the SQP-FW algorithm
on 10 UCI benchmark data sets summarized in Table 1. In each data set, we randomly divided the
entire data set into the training, validation, and test sets with equal sizes. The number of neighbors
k ∈ {1, 3, 5} was selected based on the classification performance on the validation set.

In the SQP-FW algorithm, the neighborhood parameter (κ, λ) and the regularization parameter θ
were also determined to maximize the classification accuracy on the validation set. The neighbor-
hood parameter (κ, λ) were chosen from {(1, 1), (2, 2), (3, 3)}, while θ was chosen from 100 evenly
allocated candidates in log-scale between 10−3 and 100. The working set strategy was used when
n > 1000 with the working set size 100 and the working set update frequency 100.

All the 4 existing algorithms do not have explicit hyper-parameters. However, since these algorithms
also have the risk of overfitting, we removed features with small weights, following the recommen-
dation in [7, 11]. We implemented this heuristic for all the 4 existing algorithms by optimizing
the percentage of eliminating features (chosen from {0%, 1%, 2%, . . . , 99%}) based on the classi-
fication performance on the validation set. Since Simba and NCA are formulated as non-convex
optimization problems and solutions may be trapped in local minima, we ran these two algorithms
from five randomly selected starting points and the solution with the smallest training error was
adopted. The number of iterations in Relief (and the inner-loop iteration of MulRel as well) and
Simba was set to 1000, and the outer-loop iteration of MulRel was set to 100.

The experiments were repeated 10 times with random data splitting, and the average performance
was reported. To see the statistical significance of the difference, paired-sample t-test was con-
ducted. All the features were standardized to have zero mean and unit variance. Table 1 summarizes
the results, showing that the SQP-FW algorithm compares favorably with other methods.

6See also Supplement G for an illustration of the behavior of the proposed algorithm using an artificial
dataset.
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Table 1: Average misclassification rate of kNN classifier on 10 UCI benchmark data sets.

Abbreviated Data Name S.S. ` N.C. SQP-FW Relief Simba MulRel NCA-D
Bre. Can. Dia. 569 30 2 *0.040 0.047 0.046 0.056 0.058

Con. Ben. 208 60 2 *0.221 0.227 0.230 0.294 0.276
Ima. Seg. 2310 18 7 0.052 *0.049 0.061 0.065 0.049

Ionosphere 351 33 2 0.122 0.162 0.115 0.138 *0.097
Pag. Blo. Cla. 5473 10 5 0.046 0.048 *0.044 0.053 0.044

Parkinson 195 22 2 *0.102 0.117 0.123 0.109 0.128
Pen. Rec. Han. Dig. 10992 16 10 *0.011 0.012 0.012 0.020 0.029

Spambase 4601 57 2 *0.104 0.108 0.110 0.117 0.112
Wav. Dat. Gen. ver1 5000 21 3 *0.184 0.202 0.217 0.227 0.195

Win. Qua. 6497 11 7 *0.463 0.499 0.471 0.494 0.495
’S.S.’ and ’N.C.’ stand for sample size and the number of classes, respectively. Asterisk ’*’ indicates the best
among 5 algorithms, while boldface means no statistical difference from the best (p-value ≥ 0.05).

Table 2: Results on Microarray Data Experiments

Microarray Data Name S.S. ` N.C.
Standard 1NN Weighted 1NN with SQP-FW

Error Error Med. #(genes)
Colon Cancer [16] 62 2000 2 0.180 ± 0.059 0.140 ± 0.065 20
Kidney Cancer [17] 74 4224 3 0.075 ± 0.043 0.050 ± 0.038 10

Leukemia [18] 72 7129 2 0.108 ± 0.022 0.088 ± 0.036 14
Prostate Cancer [19] 102 12600 2 0.230 ± 0.048 0.194 ± 0.052 24

respectively. ’Error’ represents the misclassification error rate of 1NN classifier, while ’Med. #(genes)’
indicates the median number of genes selected by SQP-FW algorithm over 10 runs.

4.2 Application to Feature Selection Problem in High-Dimensional Microarray Data

In order to illustrate feature selection performance, we applied the SQP-FW algorithm to microarray
study, in which simple classification algorithms are often preferred because the number of features
(genes) ` is usually much larger than the number of instances (patients) n. Since biologists are inter-
ested in identifying a set of genes that governs the difference among different biological phenotypes
(such as cancer subtypes), selecting a subset of genes that yields good NN classification performance
would be practically valuable.

For each of the four microarray data sets in Table 2, we divided the entire set into the training and
test sets with size ratio 2:1 [2]. We compared the test set classification performance between the
plain 1NN classifier (without feature weighting) and the weighted 1NN classifier with the weights
determined by the SQP-FW algorithm. In the latter, the neighborhood parameters were fixed to
κ = λ = 1 and θ was determined by 10-fold cross validation within the training set. We repeated
the data splitting 10 times and the average performance was reported.

Table 2 summarizes the results. The median numbers of selected genes (features with nonzero
weights) by the SQP-FW algorithm are also reported in the table. Although the improvements of the
classification performances were not statistically significant (we could not expect much improve-
ment by feature weighting because the misclassification rates of the plain 1NN classifier are already
very low), the number of genes used for NN classification can be greatly reduced. The results
illustrate the potential advantage of feature selection using the SQP-FW algorithm.

5 Discussion and Conclusion

TN change is a fundamental problem in feature extraction and selection for NN classifiers. Our
contribution in this paper was to present a feature weighting algorithm that can systematically handle
TN changes and guarantee the TN-weight consistency. An important future direction is to generalize
our TN-weight consistent feature weighting scheme to feature extraction (i.e., metric learning).
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