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Abstract

Log-linear models are widely used probability models for statistical pattern recog-
nition. Typically, log-linear models are trained according to a convex criterion.
In recent years, the interest in log-linear models has greatly increased. The opti-
mization of log-linear model parameters is costly and therefore an important topic,
in particular for large-scale applications. Different optimization algorithms have
been evaluated empirically in many papers. In this work, we analyze the opti-
mization problem analytically and show that the training of log-linear models can
be highly ill-conditioned. We verify our findings on two handwriting tasks. By
making use of our convergence analysis, we obtain good results on a large-scale
continuous handwriting recognition task with a simple and generic approach.

1 Introduction

Log-linear models, also known as maximum entropy models or multiclass logistic regression, have
found a wide range of applications in machine learning. Special cases of log-linear models include
logistic regression for binary class problems and conditional random fields [10] for structured data,
in particular sequential data. In recent years, the interest in log-linear models has increased greatly.
Different models of log-linear form have been applied to natural language processing tasks, e.g. for
segmentation [10], parsing [21], and information extraction [16], and many other tasks.

The most frequently mentioned advantages of log-linear models are, first, their discriminative nature,
and second, the possibility to use arbitrary and correlated features in log-linear models. Furthermore,
the conventional training of log-linear models is a strictly convex optimization problem. Thus,
the global optimum of the training criterion is unique and no other local optima exist. Steepest
descent and other gradient-based optimization algorithms are guaranteed to converge to the unique
global optimum from any initialization. The probabilistic approach of log-linear models is beneficial
in many practical applications. For example, log-linear models are directly defined as multiclass
models and can be integrated into more complex classifiers.

For large datasets, the costs of training log-linear models are very high and limit their application
range. Therefore, the efficient optimization of log-linear models is of great interest. The most
widely used algorithms for this problem can be divided into three categories. Bound optimization
algorithms, as generalized iterative scaling (GIS) [4] and variants of GIS have been used in earlier
works. Later it has been found by several authors [17, 14, 21] that these algorithms converge very
slowly and are inferior to gradient-based optimization algorithms. First-order optimization algo-
rithms require the evaluation of the gradient of the objective function. The simplest algorithm of
this category is steepest descent. The more sophisticated conjugate gradient (CG) and L-BFGS are
now the standard choices for the training of log-linear models. Newton’s method converges rapidly
in a neighborhood of the optimum. For large-scale problems it is in general not applicable, because
it requires the evaluation and storage of the Hessian matrix.
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So far, a rigorous mathematical analysis of the optimization problem encountered in training of log-
linear models has been missing. From optimization theory it is known that the convergence rate of
first-order optimization algorithms depends on the condition number of the Hessian matrix at the
optimum.1 The dependence of the convergence behavior on the condition number is strongest for
steepest descent. For high condition numbers, steepest descent is useless in practice [3, Chapter 9.3].
It can be shown that more sophisticated gradient-based optimization algorithms as CG and L-BFGS
depend on the condition number as well [18, Chapter 5.1],[18, Chapter 9.1]. Apart from numerical
reasons, the convergence behavior of Newton’s method is completely independent of the condition
number. In practice, it is not, because computing Newton’s search direction requires solving a
system of linear equations, which is more difficult for problems with high condition number [3,
Chapter 9.5].

In this paper, we derive an estimate for the condition number of the objective function used for
training of log-linear models. Our analysis shows that convergence can be accelerated by feature
transformations. We verify our analytic results on two classification tasks. One is a small digit
recognition task, the other a large-scale continuous handwriting recognition task with real-life data.
The experiments show that in extreme cases, log-linear training can be so ill-conditioned that a
usable model can only be found from a reasonable initialization. On the other hand, when care is
taken, we obtain good results with a conceptually simple and generic approach.

The remaining paper is structured as follows: In the next section, we introduce the log-linear model
and the training criterion. In Section 3, we give an overview on related work. Our novel convergence
analysis is presented in Section 4. Experimental results are reported in Section 5. In the last section,
we discuss our results.

2 Model Definition and Training Criterion

In this section, the log-linear model is defined and the necessary notation is introduced. Let X ⊂ Rd
denote the observation space and C = {1, . . . , C} a finite set of classes. A log-linear model with
parameters Λ ∈ Rd×C = (λ1; . . . ;λC) is a model for class-posterior probabilities of the form

pΛ(c|x) =
exp(λTc x)∑
c′∈C exp(λTc′x)

. (1)

A log-linear model induces a decision rule via

r : X → C, x 7→ argmax
c∈C

pΛ(c|x) = argmax
c∈C

λTc x. (2)

The decision boundaries of log-linear models are linear. Non-linear decision boundaries can
be achieved by embedding observations into a higher dimensional space. The penalized maxi-
mum likelihood criterion is regarded as the natural training criterion for log-linear models. Let
(xn, cn)n=1,...,N denote the training sample. Then the training criterion of log-linear models is an
unconstrained optimization problem of the form

Λ̂ = argmin
Λ∈Rd×C

F(Λ),with F : Rd×C → R, Λ 7→ − 1

N

N∑
n=1

log pΛ(cn|xn) +
α

2
‖Λ‖22 (3)

Here, F is the objective function, and α ≥ 0 the regularization constant. In the following, we refer
to the optimization of the parameters of log-linear models as log-linear training.

The first and second partial derivatives of the objective function for 1 ≤ c, c̄ ≤ C and 1 ≤ j, ̄ ≤ d
are:

∂F
∂λc,j

(Λ) =
1

N

N∑
n=1

(pΛ(c|xn)− δ(c, cn))xn,j + αλc,j , (4)

∂2F
∂λc,j∂λc̄,̄

(Λ) =
1

N

N∑
n=1

pΛ(c|xn)(δ(c, c̄)− pΛ(c̄|xn)) xn,jxn,̄ + α δ(c, c̄)δ(j, ̄) . (5)

1Recall that the condition number of a positive definite matrix A is the ratio of its largest and its smallest
eigenvalues: κ(A) = λmax(A)/λmin(A)
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Here, δ denotes the Kronecker delta. It can be shown that the Hessian matrix of F is positive
semidefinite, and strictly positive definite for α > 0. Thus, the optimization problem (3) is convex,
respectively strictly convex (see e.g. [22]).

3 Related Work

In earlier works, e.g. [16, 10], the optimization problem (3) has been solved with generalized it-
erative scaling (GIS) [4] or improved iterative scaling [10]. Since then, it has been shown in sev-
eral works that gradient-based optimization algorithms are far superior to iterative scaling methods.
Minka [17] showed for logistic regression that iterative scaling methods perform poorly in com-
parison to conjugate gradient (CG). Although Minka performed his experiments only on artificial
data with quite low dimensional features and a small number of observations, other authors came to
similar findings. Malouf [14] performed experiments with (multiclass) log-linear models on typical
natural language processing tasks. As Minka, he found that CG outperforms iterative scaling meth-
ods. Furthermore, he obtained best results with L-BFGS [12], which today is considered as the best
algorithm for log-linear training. One of the first applications of CRFs to large-scale problems is by
Sha and Pereira [21]. They confirmed again that L-BFGS is superior to CG and far superior to GIS.

All of the above mentioned papers concentrated on the empirical comparison of the performance
of various optimization algorithms. The theoretical analysis of the optimization problem is very
limited. Salakhutdinov [20] derived a convergence analysis for bound optimization algorithms as
GIS and showed that GIS converges extremely slowly when features are highly correlated and are
far from the origin. The disadvantage of Salakhutdinov’s analysis is that, for log-linear models, it
concerns only GIS which now is known to perform very badly in practice. The effect of correlation
on the difficulty of the optimization problem has been noted by several authors, though not analyzed
in detail, e.g. by Minka [17].

An interesting connection is the convergence analysis by LeCun et al. for neural network training
[11]. Their analysis differs in a number of aspects from our analysis. Interestingly, we come to
similar conclusions for the convergence behavior of log-linear training as LeCun et al. for neural
network training. A comparison to their work is given in the discussion.

4 Convergence Analysis of Log-Linear Model Training

This section contains our theoretical result. We derive an estimate of the eigenvalues of the Hessian
of log-linear training, which determine the convergence behavior of gradient-based optimization
algorithms. First, we calculate the eigenvalues of the Hessian in terms of the eigenvalues of the
uncentered covariance matrix. Our new Theorems 1 and 2 give lower and upper bounds for the
condition number of the uncentered covariance matrix. The analysis of the case with regularization
is based on the analysis of the unregularized case.

4.1 The Unregularized Case

Let Λ∗ be the limit of the optimization algorithm applied to problem (3) without regularization
(α = 0). The Hessian matrix of the objective function at the optimum depends on the posterior
probabilities pΛ∗(c|x), which are of course unknown. In the following, we consider a simpler prob-
lem. We derive the eigenvalues of the Hessian at Λ0 = 0. If the quadratic approximation of F at Λ0

is good, the Hessian does not change strongly from Λ0 to Λ∗, and the eigenvalues of HF (Λ0) are
close to those of HF (Λ∗). This enables us to draw conclusions about the convergence behavior of
gradient-based optimization algorithms. The experiments in Section 5 justify our assumption. All
experimental results are in accordance to the theoretical results.

For Λ0 = 0, the posterior probabilities are uniform, i.e. pΛ0(c|x) = C−1. Hence,

∂2F
∂λc,j∂λc̄,̄

(Λ0) = C−1
(
δ(c, c̄)− C−1

) 1

N

N∑
n=1

xn,jxn,̄ . (6)

The Hessian matrix can be written as a Kronecker product (see e.g. [8]): HF (Λ0) = S⊗X . Here,
S ∈ RC×C is defined by S = C−1

(
IC − C−11C

)
, where IC ∈ RC×C is the identity matrix, and

1C ∈ RC×C denotes the matrix, where all entries are equal to one. The matrix X ∈ Rd×d is the
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uncentered covariance matrix: X = 1
N

∑N
n=1 xnx

T
n . The eigenvalues of S can be computed easily:

µ1(S) = 0, µ2(S) = C−1 . (7)

Let 0 ≤ µ1(X) ≤ . . . ≤ µd(X) denote the eigenvalues of X . The eigenvalues of the Kronecker
product S ⊗X are of the form µi(S)µj(X) (see [8, Theorem 4.2.12]). Therefore, the spectrum of
the Hessian is determined by the eigenvalues of X:

σ(HF (Λ0)) = {0} ∪ {C−1µ1(X), . . . , C−1µd(X)} . (8)

A difficulty in the analysis of the unregularized case is that the objective function is only convex, but
not strictly convex. This is caused by the invariances of log-linear models. For instance, shifting all
parameter vectors by a constant does not change the posterior probabilities. In addition, singularities
appear as a result of linear dependencies in the features. Thus, one of the eigenvalues of the Hessian
at the optimum is zero and the condition number is not defined. Intuitively, the convergence rate
should not depend on the eigenvalue zero, since the objective function is constant in the direction
of the corresponding eigenvectors. The classic proof about the convergence rate of steepest descent
for quadratic functions with the Kantorovich inequality (see [13, p218]) can directly be generalized
to the singular case. The convergence rate depends on the ratio of the largest and the smallest
non-zero eigenvalue. Because of space constraints we omit this proof here. An analog result was
shown by Notay [19] for the application of CG for solving systems of linear equations, which is
equivalent to the minimization of quadratic functions. All results about the convergence behavior of
conjugate gradient extend to the singular case, if instead of the complete spectrum only the non-zero
eigenvalues are considered. Therefore, Notay defines the condition number of a singular matrix as
the ratio of its largest eigenvalue and its smallest non-zero eigenvalue. In the following, we adopt
this definition of the condition number. The condition number of the Hessian is then:

κ(HF (Λ0)) = κ(X) =
µd(X)

mini:µi(X)6=0 µi(X)
. (9)

In the following subsection, we analyze the condition number κ(X).

4.2 The Eigenvalues of X

The dependence of the convergence behavior on the properties ofX is in accordance to experimental
observations. Other researchers have noted before, that the use of correlated features leads to slower
convergence [21]. Minka [17] noted that convergence slows down when adding a constant to the
features, because this “introduces correlation, in the sense that” X “has significant off-diagonals.”.
How can we verify these findings formally? The following theorem concerns the case of uncorre-
lated features. The proof is an application of Weyl’s inequalities (see [9, Theorem 4.3.7]).
Theorem 1. Suppose the features xi, 1 ≤ i ≤ d, are uncorrelated with respect to the empirical
distribution. Let µi and σ2

i denote the empirical mean and variance of xi for 1 ≤ i ≤ d. Without
loss of generality, we assume that the features are ordered such that σ2

1 ≤ . . . ≤ σ2
d. Then the

condition number of X = 1
N

∑N
n=1 xnx

T
n is bounded by

max{σ2
1 + ‖µ‖22, σ2

d + µ2
d}

min{σ2
2 , σ

2
1 + µ2

1}
≤ κ(X) ≤ σ2

d + ‖µ‖22
σ2

1

. (10)

Proof of Theorem 1. Since the features are uncorrelated, we have

X = diag(σ2
1 , . . . , σ

2
d) + µµT

def
= A+B . (11)

The eigenvalues of the sum of two Hermitian matrices can be estimated with Weyl’s inequalities.
Let λj(M) denote the j-th eigenvalue in ascending order of a Hermitian d × d-matrix M . Weyl’s
inequalities state that for all Hermitian d× d-matrices A,B and all j, k:

λj+k−d(A+B) ≤ λj(A) + λk(B) , (12)
λj+k−1(A+B) ≥ λj(A) + λk(B) . (13)

The eigenvalues of A are the diagonal elements λj(A) = σ2
j . B is a rank-one matrix with the

eigenvalues λd(B) = ‖µ‖22 and λj(B) = 0 for 1 ≤ j ≤ d − 1. The bounds for κ(X) follow
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with the application of (13) and (12) to the smallest and largest eigenvalue. For instance, the upper
bound on the condition number follows from the application of (12) with j = k = d to the largest
eigenvalue and (13) with j = k = 1 to the lowest eigenvalue. The proof of the lower bound is
analogous. The bound is sharpened by using the fact that every diagonal element of X is an upper
bound for the smallest eigenvalue and a lower bound for the largest eigenvalue (see [9, p181]).

Analyzing the general case of correlated and unnormalized features is more difficult. The idea of the
following theorem is regarding the off-diagonals as a perturbation of the diagonal matrix. This case
can be analyzed with Geršgorin’s circle theorem [9, Theorem 6.1.1], which states that all eigenvalues
lie in circles around the diagonal entries of the matrix.
Theorem 2. Let µi and σ2

i denote the empirical mean and variance of xi for 1 ≤ i ≤ d and assume
that σ2

1 ≤ . . . ≤ σ2
d. Let

Ri =
∑
j,j 6=i

|Cov (xj , xi) | (14)

denote the radius of the i-th Geršgorin circle. Then, the largest and smallest eigenvalues of X =
1
N

∑N
n=1 xnx

T
n are bounded by:

σ2
1 −R1 ≤ λ1(X) ≤ min{σ2

1 + µ2
1, σ

2
d +Rd} , (15)

max{σ2
d + µ2

d, σ
2
1 −R1 + ‖µ‖22} ≤ λd(X) ≤ σ2

d +Rd + ‖µ‖22 . (16)

The proof of Theorem 2 is a direct generalization of Theorem 1. In contrast to Theorem 1, only the
bounds for the eigenvalues of A obtained by Geršgorin’s theorem are known instead of the exact
eigenvalues. For strongly correlated features, the eigenvalues can be distributed almost arbitrarily
according to the bounds (15) and (16). For weakly correlated features, the bounds are tighter. In
particular, for normalized features and R1 < 1, Theorem 2 implies:

1 ≤ κ(X) ≤ 1 +Rd
1−R1

. (17)

This shows that the best conditioning of the optimization problem is obtained for uncorrelated and
normalized features. Conversely, our analysis shows that log-linear training can be accelerated by
decorrelating the features and normalizing their means and variances, i.e. after whitening of the data.

4.3 The Regularized Case

In the following, we investigate the regularized training criterion, i.e. the objective function (3) with
α > 0. Since the Hessian of the `2-regularization term is a multiple of the identity, the eigenvalues
of the regularization term and the loss-term can be added. This has an important consequence. In the
unregularized case, all non-zero eigenvalues depend on the eigenvalues ofX . In the regularized case,
the eigenvalue zero changes to α, which is then the smallest non-zero eigenvalue of the Hessian.
Therefore, the condition number depends only on the largest eigenvalue of X

κ(HF (Λ0)) =
C−1µd(X) + α

α
. (18)

This shows that for large regularization parameters, the condition number is close to one and con-
vergence is fast. On the other hand, for small regularization parameters, the condition number gets
very large, even if X is well-conditioned. On first glance, it seems paradoxical that a small modi-
fication of the objective function can change the convergence behavior completely. But for a small
regularization constant, the objective function has a very flat optimum instead of being constant in
these directions. Finding the exact optimum is indeed very hard. On the other hand, the optimiza-
tion is dominated by the unregularized part of the objective function. Therefore, the iterates of the
optimization algorithm will be close to an optimum of the unregularized objective function. Since
the regularization term is only small, the iterates already correspond to good models according to
the objective function.

5 Experimental Results

In this section, we validate the theoretical results on two classification tasks. The first one is the
well-known USPS task for handwritten digit recognition. The second task, IAM, is a large-scale
continuous handwriting recognition task with real-life data. Our main interest is the large-scale task,
since this is a task for which log-linear models are especially useful.
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Table 1: Results on the USPS task for different feature transformations and regularization parameters
α. The columns “separation” and “termination” list the number of passes through the dataset until
separation of the training data, respectively the termination of the optimization algorithm.

Preprocessing αN Train error (%) Separation Termination

Whitening and mean norm. 0.0 0.0 21 66
Mean and variance norm. 0.0 0.0 61 116
None 0.0 0.0 356 513
None 0.01 0.03 - 731
None 0.1 0.43 - 358
None 1.0 2.08 - 174
None 10.0 4.29 - 100

5.1 Handwritten Digit Recognition

The USPS dataset2 consists of 7291 training and 2007 test images from ten classes of handwritten
digits. We trained a log-linear classifier directly on the whole image with 16× 16 pixels.

We used the L-BFGS algorithm for optimization, which is considered as the best algorithm for log-
linear training. For all experiments, we used a a backtracking line search and a history length of ten,
which is a standard value given in literature [14, 21]. We stopped the optimization, when the relative
change in the objective was below ε = 10−5, i.e.

(F(Λk−1)−F(Λk))/F(Λk) < ε . (19)

Table 1 contains the results on the USPS task. The results reflect our analysis of the condition num-
ber. Without normalizing mean and variance, the optimization problem is not well-conditioned. It
requires more than 500 passes through the dataset until the termination criterion is reached. The opti-
mization takes even longer, when a very small non-zero regularization constant is used. This is what
we expected by analyzing the condition number – the objective function has a very flat optimum,
which slows down convergence. On the other hand, for higher regularization parameters, the opti-
mization is much faster. We applied the normalizations only to the unregularized models, because
the feature transformations affect the regularization term. Therefore, results with regularization are
not comparable when feature transformations are applied. The mean and variance normalization re-
duced the computational costs greatly, from 513 to 116 iterations. The application of the whitening
transformation further reduced the number of iterations to 66. Often, the classification error on the
training data reaches its minimum before the optimization algorithm terminates, so one might argue
that it is not necessary to run the optimization until the termination criterion is reached. The USPS
training data is linearly separable and for all unregularized trainings, a zero classification error on
the training set is reached. It turns out that the effect of the feature transformations is even stronger
when the number of iterations until the training data is separated is compared (see Table 1).

5.2 Handwritten Text Recognition

Our second task is the IAM handwriting database [15]. In contrast to USPS, where single images
are classified into a small number of classes, IAM defines a continuous handwriting recognition task
with unrestricted vocabulary, and is therefore much harder. The corpus has a predefined subdivision
into training, development, and testing folds. The training fold contains lines of handwritten text
with 53k words in total. With our feature extraction, this corresponds to 3, 592, 006 observations.
The development and test fold contain 9k respectively 25k words. The IAM database is a large-scale
learning problem in the sense that it is not feasible to run the optimization until convergence [2] and
the test error is strongly influenced by the optimization accuracy.

5.2.1 Baseline Model

For our baseline model, we use the conventional generative approach of a statistical classifier based
on hidden Markov models (HMMs) with Gaussian Mixture models (GMMs) as emission probabil-
ities. The generative classifier maps an observation sequence xT1 = (x1, . . . , xT ) ∈ X to a word

2ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/
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sequence ŵN1 = (ŵ1, . . . , ŵN ) ∈ W according to Bayes rule:

r : X → W , xT1 7→ ŵN1 = argmax
wN

1 ∈W
pθ(w

N
1 )γpθ(x

T
1 |wN1 ) . (20)

The prior probability pθ(wN1 ) is a smoothed trigram language model trained on the reference of the
training data and the three additional text corpora Lancaster-Oslo-Bergen, Brown, and Wellington,
as proposed in [1]. The language model scale γ > 0 has been optimized on the development set.
The visual model pθ(xT1 |wN1 ) is defined by an HMM, which is composed of submodels for each
character in the word sequence. In total there are 78 characters, which are modeled by five-state
left-to-right HMMs, resulting in 390 distinct states plus one state for the whitespace model. The
emission probabilities of the HMM are modeled by GMMs with a single shared covariance matrix.
The parameters of the visual model are optimized according to the maximum likelihood criterion
with the expectation-maximization (EM) algorithm and a splitting procedure. We obtained best
results with 25k mixture components in total. We only used basic deslanting and size normalization
for feature preprocessing, as it is commonly applied in handwriting recognition. An image slice was
extracted at every position. Seven features in a sliding window were concatenated and projected to a
thirty dimensional vector by a principal component analysis (PCA). The recognition lexicon consists
of the 50k most frequent words in the language model training data. The generative baseline system
achieves a word error rate (WER) of 32.8% on the development set and 39.4% on the test set, similar
to the results of the GMM/HMM-baseline systems by [1, 6, 5].

5.2.2 Hybrid LL/HMM Recognition System

The main component of the visual model of our baseline system is the GMM for the emission proba-
bilities pθ(x|s). Analogous to the use of neural network outputs by [6], we build a hybrid LL/HMM
recognition system by deriving the emission probabilities via pΛ(x|s) = pΛ(s|x)p(x)/p(s) . The
prior probability p(s) can be estimated easily as the relative frequency, and p(x) can be discarded in
recognition without changing the maximizing word sequence.

We used our baseline system for generating a state alignment, i.e. an assignment of the feature
vectors to an HMM state, and then trained a log-linear model on the resulting training sample
(xt, st)t=1,...,T analogous to the setup on USPS. Note that the training of the log-linear model is
conceptually exactly the same as for USPS and our convergence analysis applies.

On large-scale tasks as IAM, it is not practicable to run the optimization until convergence as on
USPS. Instead, we assume a limited training budget for all experiments, which allows for per-
forming 200 iterations, and compare the resulting classifiers. This procedure corresponds to the
characterization of large-scale learning tasks by Bottou and Bousquet [2].

The performance of a linear classifier on a complex task as IAM is quite limited. Therefore, we
used polynomial feature spaces of degree one (d = 30), two (d = 495) and three (d = 5455),
corresponding to polynomial kernels. In contrast to USPS, where the classification error on the
training data without regularization was zero, on IAM, the state-classification error on the training
data ranges from forty to sixty percent. Thus, the impact of regularization on the performance of
the classifier is only minor. In preliminary experiments, we obtained almost no improvements by
regularization. Therefore, we report only the results without regularization.

5.2.3 Results

The results on the IAM database (see Table 2) are again in accordance to our theoretical analysis.
The first-order features are already decorrelated, but without mean and variance normalization, the
convergence is slower, resulting in a worse WER on the development and test set. The difference
is moderate, when the parameters are initialized with zero, corresponding to a uniform distribution.
In a next experiment we initialized all parameters randomly with plus or minus one. This results
in a huge degradation for the unnormalized features and – with exactly the same random initial-
ization – has only a minor impact when normalized features are used. The differences are even
larger for the second-order experiments. This can be expected, since mean and variance take on
more extreme values when the features are squared, and the features are correlated. For the zero
initialization, the improvement from mean and variance normalization is only moderate in WER.
For the unnormalized features and random initialization, the optimization did not lead to a usable
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Table 2: Results on the IAM database for polynomial feature spaces of degree m ∈ {1, 2, 3} with
different initializations and preprocessings.

m Preprocessing Initialization WER / dev set (%) WER / test set (%)

1 none zero / random 49.9 / 68.3 60.1 / 75.5
1 mean and var. norm. zero / random 49.7 / 48.9 58.9 / 58.5

2 none zero / random 32.4 / >100.0 40.2 / >100.0
2 mean and var. norm. zero / random 30.2 / 34.4 38.5 / 41.3
2 mean and var. norm. 1st order 26.8 33.1
2 whitening and mean norm. zero / random 25.1 / 25.9 31.6 / 32.3

3 mean and var. norm. 2nd order 23.0 27.4

model for recognition at all. Fastest convergence and best results are obtained by the application
of the whitening transformation to the features. In addition, the influence of the initialization is the
smallest in this case. Because of the high dimension of the third-order features, the estimation of
the whitening transformation itself is already computationally very expensive. Therefore, we only
performed a mean and variance normalization of the third-order features, but initialized the models
incrementally from first to second to third-order features. In this manner, we obtain our best result
of 27.4% WER, which is a drastic improvement over the generative baseline system (39.4% WER).

Our hybrid LL/HMM system outperforms other systems based on HMMs with comparable prepro-
cessing. Bertolami and Bunke [1] obtain 32.9% WER with an ensemble-based HMM approach.
Dreuw et al. [5] obtain 30.0% WER with discriminatively trained GMMs and 29.0% WER with an
additional discriminative adaptation method. The system of Graves [7], which has a completely dif-
ferent architecture based on recurrent neural networks, outperforms our system with 25.9% WER.
The best published result of 21.2% WER on the IAM database is by España-Boquera et al. [6], who
use several specialized neural networks for preprocessing.

6 Discussion

In this paper, we presented a novel convergence analysis for the optimization of the parameters
of log-linear models. Our main results are first that the convergence of gradient-based optimiza-
tion algorithms depends on the eigenvalues of the uncentered empirical covariance matrix. For this
derivation we assumed that the quadratic term of the objective function at the optimum behaves sim-
ilar as at the initialization. Second, we analyzed the eigenvalues of the covariance matrix. According
to this analysis, it is important to normalize mean and variances of the features. Best convergence
behavior can be expected when, in addition, the features are decorrelated.

Interestingly, the same result is obtained by LeCun et al. [11] for neural network training, but their
analysis differs from ours in a number of aspects. First, LeCun et al. consider a simpler loss function.
In contrast to our analysis, they assume that all components of the observations have identical mean
and variance and that the components are independent. Furthermore, they fix the ratio of the number
of model parameters and the number of training observations. The derivation of the spectrum of the
Hessian is then performed in the limit of infinite training data, leading to a continuous spectrum.
This approach is more suited for the analysis of online learning. In the case of batch learning, the
training data as well as the model size is fixed.

We verified our findings on two handwriting recognition tasks and found that the theoretical analysis
predicted the observed convergence behavior very well. On IAM, a real-life dataset for continuous
handwriting recognition, our log-linear system outperforms other systems with comparable archi-
tecture and preprocessing. This is remarkable, because we use a generic and conceptually simple
method, which is simple to implement and allows for reproducing experimental results easily.

An interesting point for future work is the use of approximate decorrelation techniques, e.g. by as-
suming a structure for the covariance matrix. This will be useful for very high-dimensional features
for which the estimation of the whitening transformation is not feasible.
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