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Abstract

We consider the problem of Bayesian inference for contistione multi-stable

stochastic systems which can change both their diffusiahdaift parameters at
discrete times. We propose exact inference and samplingogelogies for two

specific cases where the discontinuous dynamics is given Pgisson process
and a two-state Markovian switch. We test the methodologgiomlated data,
and apply it to two real data sets in finance and systems hjiol@gr experimental
results show that the approach leads to valid inferencesi@ndrivial insights.

1 Introduction

Continuous-time stochastic models play a prominent rolmamy scientific fields, from biology to
physics to economics. While it is often possible to easilysate from a stochastic model, it is often
hard to solve inference or parameter estimation problents,assess quantitatively the fit of a model
to observations. In recent years this has motivated anasurg interest in the machine learning
and statistics community in Bayesian inference approafdrestochastic dynamical systems, with
applications ranging from biology [1-3] to genetics [4] mafo-temporal systems [5].

In this paper, we are interested in modelling and inferenceystems exhibiting multi-stable be-
havior. These systems are characterized by stable penmbsapid transitions between different
equilibria. Very common in physical and biological sciesicthey are also highly relevant in eco-
nomics and finance, where unexpected events can triggeeswiiéinges in trading behavior [6].

While there have been a number of approaches to Bayesianeipang inference [7—9] most of
them expect the observations to be independent and comigflglifrom the change-point process.
In many systems this is not the case because observationslgravailable from a dynamic pro-
cess whose parameters are change-point processes. Theteclea other algorithms for detecting
indirectly observed change-point processes [10], but wehasize that we are also (and sometimes
mostly) interested in the dynamical parameters of the syste

We present both an exact and an MCMC-based approach for Bayiegerence in multi-stable
stochastic systems. We describe in detail two specific smnahe classic change-point process
scenario whereby the latent process has a new value at eaphajud a bistable scenario where the
latent process is a stochastic telegraph process. We testsérely our model on simulated data,
showing good convergence properties of the sampling dkgori We then apply our approach to
two very diverse data sets in finance and systems biologypdstmating that the approach leads to
valid inferences and interesting insights in the naturdefdystem.



2 The generative model

We consider a system &¥ stochastic differential equations (SDE)
dl‘i = (Al (t) — AzIL)dt + Ui(t)dWi, (1)

of the Ornstein-Uhlenbeck type for= 1,..., N, which are driven by independent Wiener pro-
cessedV;(t). The time dependencies in the drift(¢) and in the diffusion terms; (¢) will account

for sudden changes in the system and will be further modblfestochastic Markov jump processes.
Our prior assumption is that change points, whéreando; change their values, constituReisson
events This means that the time&t between consecutive change points are independent expo-
nentially distributed random variables with densiyAt) = fexp(—fAt), wheref denotes their
expected number per time unit. We will consider two difféneodels for the values od; ando; in

this paper:

e Model 1 assumes that at each of the change poiptando; are drawn independently from
fixed prior densitiep 4 () andp, (-). The number of change points up to timis counted
by thePoisson process(t), so that4; (t) = Af(t) ando;(t) = af(” are piecewise constant
functions of time.

e Model 2 restricts the parameters;(t) ando;(¢) to two possible valuesl?, A}, +?, and
o}, which are time independent random variables with cornesiog priors. We select the
parameters according to thelegraph procesg(t), which switches between = 0 and

1 = 1 at each change point.

For both modelsA;(t) ando;(t) are unobserved. However, we have a data sét/ofioisy ob-
servationsY = {yi,...,ym} of the procesx(t) = (z1(t),...,zn)(t) at discrete times;,
j=1,...,M,i.e. we assume that, = x(t,)-+&; with independent Gaussian nogse~ N (0, 2).

3 Bayesian Inference

Given dataY” we are interested in the posterior distribution of all uresked quantities, which are
the paths of the stochastic proces&es= x(o.7), Z = (A[o:1), oj0.7]) in atime interval0 : 7] and
the model parameters = ({\;}). For simplicity, we have not used a prior for the régitand treated
it as a fixed quantity. The joint probability of these quaestis given by

p(Y,X, ZvA) :p(Y‘X)p(X‘Z,A)p(Z)p(A) 2

A Gibbs sampling approach to this distribution is nonttdivizecause the sample paths are infinite
dimensional objects, and a naive temporal discretizatiap i®ad to potential extra errors.

Inference is greatly facilitated by the fact tltainditionedon Z andA, X is an Ornstein-Uhlenbeck
process, i.e. a Gaussian Markov process. Since also thdilddiaood p(Y'|X) is Gaussian, it is
possible to integrate out the proce$sanalyticallyleading to a marginal posterior

p(Z|Y, A) o p(Y|Z, A)p(Z) ®3)

over the simpler piecewise constant sample paths of the progesses. Details on how to compute
the likelihoodp(Y'|Z, A) are given in the supplementary material.

When inference on posterior valués is required, we can use the fact th&tY, Z A is an in-
homogeneous Ornstein-Uhlenbeck process, which allowarf@axplicitanalytical computatiorof
marginal means and variances at each time.

The jump processe8 = {r,©} are completely determined by the set of change paints {r; }

and the actual values @ = {A7,07} to which the system jumps at the change points. Since
p(Z) = p(O]r)p(T) andp(O|1,Y,A) x p(Y|Z, N)p(O|r), we can see that conditioned on a set
of, saym change points, the distribution éf is a finite (and usually relatively low) dimensional
integral from which one can draw samples using standardadsthin fact, if the prior density of
the drift valuesp 4 is a Gaussian, then it is easy to see that also the postefEaussian.



4 MCMC sampler architecture

We use a Metropolis-within-Gibbs sampler, which alteredietween sampling the parametars
O from p(A]Y,7,0), p(©]Y, 7, A) and the positions of change points from(7|Y, 0, A).

Sampling fromp(A|Y, 7, ©) as well as sampling the;s from p(©|Y, 7, A) is done by a Gaussian

random walk Metropolis-Hastings sampler on the logarittrthe parameters, to ensure positivity.
Sampling thed;s on the other hand can be done directly if the ppiot;) is Gaussian, because then
p(4;Y, 7, A, {0;}) is also Gaussian.

Finally, we need to draw change points from their dengity]Y, ©, A) « p(Y'|Z, A)p(O|T)p(T).
Their numbermn is a random variable with a Poisson prior distribution andfiieed m, eachr; is
uniformly distributed inf0 : T'|. Therefore the prior probability of the sorted list . . ., 7,,, is given
by

p(Tl,...,Tm|f)O(fm€_fT. 4)
For sampling change points we use a Metropolis-Hastings stieich accepts a proposal for the
positions of the change points with probability

: p(T*Y,©,7) q(TIT*))
A =min (1, , 5
(1 Fo s ©
whereg(7*|7) is the proposal probability to generaté starting fromr. Otherwise the old sample

is used again. As proposal for a newpath we choose one of thremddel 1) or five (model 2
possible actions, which modify the current sample:

e Moving a change point One change point is chosen at random with equal probahititly
the new jump time is drawn from a normal distribution with tie jump time as the mean.
The normal distribution is truncated at the neighboringguimes to ensure that the order
of jump times stays the same.

e Adding a change point We use a uniform distribution over the whole time interigad 7]
to draw the time of the added jump. In casemddel 1the parameter s&, for the new
interval stays the same and is only changed in the followijndate of all thed sets. For
model 2it is randomly decided if the telegraph process) is inverted before or after the
new change point. This is necessary to aljoto change on both ends.

e Removing a change point The change point to remove is chosen at random.nkadtel
1 the newly joined interval inherits the parameters with éguabability from the interval
before or after the removed change point. As for adding agdanint, when usinghodel
2 we choose to either invert after or before the removed jump time.

Formodel 2we also need the option to add or remove two jumps, becausegaoidremoving one
jump will result in inverting the whole process after or befat, which leads to poor acceptance
rates. When adding or removing two jumps instgadnly changes between these two jumps.

e Adding two change points The first change point is drawn as for adding a single one,
the second one is drawn uniformly from the interval betwéwmnrntew and the next change
point.

e Removing two change pointsWe choose one of the change points, except the last one, at
random and delete it along with the following one.

While the proposal does not use any information from the dtaitayery fast to compute and quickly
converges to reasonable states, although we initializehhage points simply by drawing from
p(T).

5 Exactinference

In the case of small systems describediydel 2it is also feasible to calculate the marginal prob-
ability distributiong(u, , t) for the state variables, 1 at timet of the posterior process directly.
For that purpose, we use a smoothing algorithm, which isairilar to the well-known method
for state inference in hidden Markov models. In order to iowerclarity we only discuss the case of
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Figure 1: Comparison of the results of the MCMC sampler aedettact inference:tdp lef) True
path ofx (black) and the noisy observations (blue crossebnttém lefi True path ofu (black)
and posterior op(u = 1) from the exact inference (green) and the MCMC sampler (resthetd).
(right) Convergence of the sampler. Mean difference between samgdult and exact inference of
p(p = 1) for different number of samples (red crosses) and the resplower law regression for
more than 100 samples (green).

a one-dimensional Ornstein-Uhlenbeck procegs here, but the generalization to multiple dimen-
sions is straightforward.

As our model has the Markov property, the exact marginalgsastis given by

ali0,2,6) = 7ol 7, (). ©)

Herep(u, z,t) denotes the marginal filtering distribution, which is thelmbility density of the
state(z, ) at timet conditioned on the observations up to timerhe normalization constardt is
equal to the total likelihood of all observations. And thstfactory(u, z, t) is the likelihood of the
observations after timeunder the condition that the process started with gtatg) at timet.

The initial condition for théorward messagg(u, x, t) is the prior over the initial state of the system.
The time evolution of the forward message is given byfthesard Chapman-Kolmogorogquation

O 2 a0 - B ) = X (o b0r.8) — (8. (D)
at ax H 2 31'2 b, , - = V—»up s Ly u—»up M, T, .
Here f,_,,, denotes the transition rate from discrete state discrete statg € {0,1} of model 2
which has the values

Jo—1 = fimo = [, fo—o = fo—o = 0. (8)

Including an observatiop; at timet; leads to a jump of the filtering distribution,

p(p, 2, 1)) = p(u, 2,5 )p(y;|©), 9)

where p(y;|xz) denotes the local likelihood of that observation given bg tibise model and

p(p, x th) are the values of the forward message directly before armd &fte pointt;. By in-
tegratmg equation (7) forward in time from the first obséiwa to the last, we obtaln the exact
solution to the filtering problem of our model.

Similarly we integrate backward in time from the last obs¢ion at timeT” to the first one in order
to computey (1, z, ). The initial condition here ig) (1, z,t};) = 1. Between observations the time
evolution of the backward message is given bylihekward Chapman-Kolmogorov equation

Q+(A —A)Q+—ia—2 zt)=> f x,t) — (v, z,t)] (10)
ot H or 2 8 ,uv = p—v /~L7 ) s Ly .
And each observation is taken into account by the jump cimmdit
s, t5) = (6 )p(y;le(t))). (11)

4



%, %, o
0% Yoo Xov Yoo Xov Yov
: : : T :
1

&

jump probability
X

%

1500 2000

PR R e S 1St AN N R
500 1(%00 1500 500 1(%0015002000

Figure 2: Synthetic results on a four-dimensional diffagiwocess with diagonal diffusion matrix:
(top lef) true paths with subsampled data points (dot®)p fight) intensity of the posterior point
process (the probability of a change point in a given intids/given by the integral of the intensity).
Actual change points are shown as vertical dotted lind®ttgm rowy posterior processes fot
(left) and o2 (right) with a one standard deviation confidence interval. Truégare shown as
black dashed lines.

Afterwards,Lq(u, x, t) can be calculated by multiplying forward messagge, «, t) and backward
message’(u, x, t). Normalizing that quantity according to

/Zq(u,x,t)d:c =1 (12)
m

then gives us the marginal posterior as well as the totdifiked L = p(y1,...,yn|A4,b,...) of all
observations. Note, that we only need to calculatier one time point, as it is a time-independent
guantity. Minimizing— log L as a function of the parameters can then be used to obtaimmuaxi
likelihood estimates. As an analytical solution for botluatipns (7) and (10) does not exist, we
have to integrate them numerically on a grid. A detailed dpson is given in the supplementary
material.

6 Results

6.1 Synthetic Data

As a first consistency check, we tested the model on simulddésl The availability of an exact
solution to the inference problem provides us with an ereglivay of monitoring convergence
of our sampler. Figure 1 shows the results of sampling on daterated froonmodel 2, with
parameter settings such that only the diffusion constaahgés, making it a fairly challenging
problem. Despite the rather noisy nature of the data (tapéefel), the approach gives a reasonable
reconstruction of the latent switching process (left pahettom). The comparison between exact
inference and MCMC is also instructive, showing that the [gach posterior does indeed converge
to the true posterior after a relatively short burn in per{@@ure 1 right panel). A power law
regression of the mean absolute difference between exddl@MC (after burn in) on the number
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Figure 3: Stochastic gene expression during competere#) fluorescence intensity for comS
protein over 36 hrs;right) inferred comK activation profile using model 2 (see text)

of samples yields a decrease with approximately the sqoatef the number of samples (exponent
0.48), as expected.

To test the performance of the inference approachmmdel 1, we simulated data from a four-
dimensional diffusion process with diagonal diffusioniwithange points in the drift and diffusion
(at the same times). The results of the sampling based iderare shown in Figure 2. Once
again, the results indicate that the sampled distributias @able to accurately identify the change
points (top right panel) and the values of the parametergdimopanels). The results are based
on 260,000 samples and were obtained in approximately éalebwirs on a standard workstation.
Unfortunately in this higher dimensional example we do rmteéhaccess to the true posterior, as
numerical integration of a high dimensional PDE proved cotagponally prohibitive.

6.2 Characterization of noise in stochastic gene expressio

Recent developments in microscopy technology have lecetsttrtling discovery that stochasticity
plays a crucial role in biology [11]. A particularly intetésy development is the distinction between
intrinsic andextrinsicnoise [12]: given a biological system, intrinsic noise esias a consequence of
fluctuations due to the low numbers of the molecular spe@egposing the system, while extrinsic
noise is caused by external changes influencing the systenteoést. A currently open question
is how to characterize mathematically the difference betwiatrinsic and extrinsic noise, and a
widely mooted opinion is that either the amplitude or thectfaé characteristics of the two types
of noise should be different [13]. To provide a proof-offmiple investigation into these issues, we
tested our model on real stochastic gene expression dgecstdextrinsic noise iBacillus subtilis
[14]. Here, single-cell fluorescence levels of the proteam8& were assayed through time-lapse
microscopy over a period of 36 hours. During this period pgifsgein was subjected to extrinsic noise
in the form of activation of the regulator comK, which corgroomS expression with a switch-like
behavior (Hill coefficient 5). Activation of comS producestaking phenotype calledompetence
whereby the cell stops dividing, becoming visibly much lenthan sister cells. The data used is
shown in Figure 3, left panel.

To determine whether the noise characteristics are diffarethe presence of comK activity, we
modelled the data using two different modetsodel 2, where both the offsefl and the diffusion

o can take two different values, and a constrained versianaxfel 2where the diffusion constant
cannot switch (as in [15]). In both cases we sampled 500,06tepor samples, discarding an initial
burn-in of 10,000 samples. Both models predict two cleangkaoints representing the activation
and inactivation of comK at approximately 5 and 23 hrs reipaly (Figure 3 right panel, showing
model 2results). Also both models are in close agreement on ther@dinetic parameterd, b,
and\ (Figure 4, left panel, showing a comparison of thposteriors), consistently with the fact that
the mean trajectory for both models must be the same.

Naturally,model 2predicted two different values for the diffusion constagpending on the activity
state of comK (Figure 4, central panel). The two posteristriiutions foros; ando, appear to be
well separated, lending support to the unconstrained aeisi model 2being a better description



400

Figure 4: Stochastic gene expression during competetefd): fosterior estimates of (solid) for
switchingo (red) and non-switching? (blue) with common prior (dashed);énte) posterior es-
timates ofo? (red solid),o2 (green solid) and non-switchingposterior (blue solid) with common
prior (dashed); rfght) posterior distribution off (A, b, o1, 02) (see text), indicating the incompati-
bility of the simple birth-death model of steady state wiik tlata.

of the data. While this is an interesting result in itselfsiperhaps not surprising. We can gain some
insights by considering the underlying discrete dynamfasomS protein counts, which our model
approximates as a continuous variable [16]. As we are dgalith bacterial cells, transcription and
translation are tightly coupled, so that we can reasonadgyrae that protein production is given by
a Poisson process. At steady state in the absence of comprdtection of comS proteins will be
given by a birth-death process with birth ratand death rate, while in the presence of comK the
birth rate would change td + b. Defining

b A+b
— == - 1
o ) P1 2\ (3)

this simple birth-death model implies a Poisson distrinutf the steady state comS protein levels
in the two comK states, with parameters p; respectively. Unfortunately, we only measure the
counts of comS protein up to a proportionality constant (@uthe arbitrary units of fluorescence);

this means that the basic property of Poisson distributadrtsaving the same mean and variance
cannot be tested easily. However, if we consider the ratsigsfal to noise ratios in the two states,
we obtain a quantity which is independent of the fluorescemnéts, namely

Nl/btdev 2 /A+ (14)
No/stdev (N,
This relationship is not enforced in our model, but, if theagie birth-death interpretation is sup-

ported by the data, it should emerge naturally in the pastelistributions. To test this, we plot in
Figure 4 right panel the posterior distribution of

FAD, 01, 09) = (A:/Z)I/UQ ﬂ/Ab”, (15)

the difference between the posterior estimate of the rétiwessignal to noise ratios in the two comK
states and the prediction from the birth-death model. Thevwelrelming majority of the posterior
probability mass is away from zero, indicating that the dhias not support the predictions of the
birth-death interpretation of the steady states. A posstablanation of this unexpected result is
that the continuous approximation breaks down in the lowndbuace state (corresponding to no
comK activation); the expected number of particles in thekanactive state is given by, and
has posterior mean 25.8. The breaking down of the OU appadiom for these levels of protein
expression would be surprising, and would sound a call fotica when using SDEs to model
single cell data as advocated in large parts of the liteedR]r An alternative and biologically more
exciting explanation would be that the assumption that #eay rates are the same irrespective of
the activity of comK is wrong. Notice that, if we assumed eliéint decay rates in the two states, the
first term in equation (15) would not change, while the secmndld scale with a factot/Ag/\;.
Our results would then predict that comK regulation at thegcriptional level alone cannot explain
the data, and that comS dynamics must be regulated botletigtienally and post-transcriptionally.
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6.3 Change point detection in financial data

As an example of another application of our methodology, melied model 1to financial data
taken from the German stock exchange (DAX). The data, shavwigure 5, consists of monthly
closing values; we subsampled it at quarterly values. Tlségpior processes fot ando are shown

in the central and right panels of Figure 5 respectively. @gpection of these results reveals several
interesting change points which can be related to knowntsvefor convenience, we highlight
a few of them in the central panel of Figure 5. Clearly eviderd the changes caused by the
introduction of theNeuer Markt(the German equivalent of the NASDAQ) in 1997, as well as the
dot-com bubble (and subsequent recession) in the earlys2@tidthe global financial crisis in 2008.
Interestingly, in our results the diffusion (or volatiligs is more commonly termed in financial
modelling) seems not to be particularly affected by receahts (after surging for the Neuer Markt).
A possible explanation is the rather long time interval ewdata points: volatility is expected to
be particularly high on the micro-time scale, or at best thdydscale. Therefore the effective
sampling rate we use may be too sparse to capture these shange

7 Discussion

In this paper, we proposed a Bayesian approach to inferenoaulti-stable system. The basic
model is a system of SDEs whose drift and diffusion coeffisieran change abruptly at random,
exponential distributed times. We describe the approadanspecial models: a system of SDEs
with coefficients changing at change points from a Poissacgss fhodel 1) and a system of
SDE whose coefficients can change between two sets of vatwesding to a random telegraph
process ifhodel 2). Each model is particularly suitable for specific appii@as: while model 1

is important in financial modelling and industrial applicat model 2extends a number of similar
models already employed in systems biology [3,15,17].ingstur model(s) in specific applications
reveals that it often leads to interpretable predictioms.dxample, in the analysis of DAX data, the
model correctly captures known important events such addheom bubble. In an application to
biological data, the model leads to non-obvious predistioiconsiderable biological interest.

In regard to the computational costs stated in this papéstto be noted that the sampler was
implemented in Matlab. A new implementation in C++ fodel 2 showed over 12 times faster

computational times for a data set with 10 OU processes amegraph processes. A similar

improvement is to be expected farodel 1

There are several interesting possible avenues to furttiemtork. While the inference scheme
we propose is practical in many situations, scaling to highmensional problems may become
computationally intensive. It would therefore be inteirggtto investigate approximate inference
solutions like the ones presented in [15]. Another intémgstlirection would be to extend the
current work to a factorial design; these can be importaattiqularly in biological applications
where multiple factors can interact in determining geneaesgion [17,18]. Finally, our models are
naturally non-parametric in the sense that the number afigdgoints is not a priori determined.
It would be interesting to explore further non-parametsteasions where the system can exist in
a finite but unknown number of regimes, in the spirit of nomapaetric models for discrete time
dynamical systems [19].
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