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Abstract

We consider the problem of Bayesian inference for continuous-time multi-stable
stochastic systems which can change both their diffusion and drift parameters at
discrete times. We propose exact inference and sampling methodologies for two
specific cases where the discontinuous dynamics is given by aPoisson process
and a two-state Markovian switch. We test the methodology onsimulated data,
and apply it to two real data sets in finance and systems biology. Our experimental
results show that the approach leads to valid inferences andnon-trivial insights.

1 Introduction

Continuous-time stochastic models play a prominent role inmany scientific fields, from biology to
physics to economics. While it is often possible to easily simulate from a stochastic model, it is often
hard to solve inference or parameter estimation problems, or to assess quantitatively the fit of a model
to observations. In recent years this has motivated an increasing interest in the machine learning
and statistics community in Bayesian inference approachesfor stochastic dynamical systems, with
applications ranging from biology [1–3] to genetics [4] to spatio-temporal systems [5].

In this paper, we are interested in modelling and inference for systems exhibiting multi-stable be-
havior. These systems are characterized by stable periods and rapid transitions between different
equilibria. Very common in physical and biological sciences, they are also highly relevant in eco-
nomics and finance, where unexpected events can trigger sudden changes in trading behavior [6].

While there have been a number of approaches to Bayesian change-point inference [7–9] most of
them expect the observations to be independent and coming directly from the change-point process.
In many systems this is not the case because observations areonly available from a dynamic pro-
cess whose parameters are change-point processes. There have been other algorithms for detecting
indirectly observed change-point processes [10], but we emphasize that we are also (and sometimes
mostly) interested in the dynamical parameters of the system.

We present both an exact and an MCMC-based approach for Bayesian inference in multi-stable
stochastic systems. We describe in detail two specific scenarios: the classic change-point process
scenario whereby the latent process has a new value at each jump and a bistable scenario where the
latent process is a stochastic telegraph process. We test extensively our model on simulated data,
showing good convergence properties of the sampling algorithm. We then apply our approach to
two very diverse data sets in finance and systems biology, demonstrating that the approach leads to
valid inferences and interesting insights in the nature of the system.
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2 The generative model

We consider a system ofN stochastic differential equations (SDE)

dxi = (Ai(t) − λixi)dt+ σi(t)dWi, (1)

of the Ornstein-Uhlenbeck type fori = 1, . . . , N , which are driven by independent Wiener pro-
cessesWi(t). The time dependencies in the driftAi(t) and in the diffusion termsσi(t) will account
for sudden changes in the system and will be further modelledby stochastic Markov jump processes.
Our prior assumption is that change points, whereAi andσi change their values, constitutePoisson
events. This means that the times∆t between consecutive change points are independent expo-
nentially distributed random variables with densityp(∆t) = f exp(−f∆t), wheref denotes their
expected number per time unit. We will consider two different models for the values ofAi andσi in
this paper:

• Model 1 assumes that at each of the change pointsAi andσi are drawn independently from
fixed prior densitiespA(·) andpσ(·). The number of change points up to timet is counted
by thePoisson processµ(t), so thatAi(t) = A

µ(t)
i andσi(t) = σ

µ(t)
i are piecewise constant

functions of time.

• Model 2 restricts the parametersAi(t) andσi(t) to two possible valuesA0
i , A1

i , σ0
i , and

σ1
i , which are time independent random variables with corresponding priors. We select the

parameters according to thetelegraph processµ(t), which switches betweenµ = 0 and
µ = 1 at each change point.

For both models,Ai(t) andσi(t) are unobserved. However, we have a data set ofM noisy ob-
servationsY ≡ {y1, . . . ,yM} of the processx(t) = (x1(t), . . . , xN )(t) at discrete timestj ,
j = 1, . . . ,M , i.e. we assume thatyj = x(tj)+ξξξj with independent Gaussian noiseξξξj ∼ N (0, σ2

o).

3 Bayesian Inference

Given dataY we are interested in the posterior distribution of all unobserved quantities, which are
the paths of the stochastic processesX ≡ x[0:T ], Z ≡ (A[0:T ],σ[0:T ]) in a time interval[0 : T ] and
the model parametersΛ = ({λi}). For simplicity, we have not used a prior for the ratef and treated
it as a fixed quantity. The joint probability of these quantities is given by

p(Y,X,Z,Λ) = p(Y |X)p(X|Z,Λ)p(Z)p(Λ) (2)

A Gibbs sampling approach to this distribution is nontrivial, because the sample paths are infinite
dimensional objects, and a naive temporal discretization may lead to potential extra errors.

Inference is greatly facilitated by the fact thatconditionedonZ andΛ,X is an Ornstein-Uhlenbeck
process, i.e. a Gaussian Markov process. Since also the datalikelihood p(Y |X) is Gaussian, it is
possible to integrate out the processX analytically leading to a marginal posterior

p(Z|Y,Λ) ∝ p(Y |Z,Λ)p(Z) (3)

over the simpler piecewise constant sample paths of the jumpprocesses. Details on how to compute
the likelihoodp(Y |Z,Λ) are given in the supplementary material.

When inference on posterior valuesX is required, we can use the fact thatX|Y,Z,Λ is an in-
homogeneous Ornstein-Uhlenbeck process, which allows foran explicitanalytical computationof
marginal means and variances at each time.

The jump processesZ = {τττ ,Θ} are completely determined by the set of change pointsτττ ≡ {τj}
and the actual values ofΘ ≡ {Aj ,σj} to which the system jumps at the change points. Since
p(Z) = p(Θ|τττ)p(τττ) andp(Θ|τ, Y,Λ) ∝ p(Y |Z,Λ)p(Θ|τττ), we can see that conditioned on a set
of, saym change points, the distribution ofΘ is a finite (and usually relatively low) dimensional
integral from which one can draw samples using standard methods. In fact, if the prior density of
the drift valuespA is a Gaussian, then it is easy to see that also the posterior isGaussian.
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4 MCMC sampler architecture

We use a Metropolis-within-Gibbs sampler, which alternates between sampling the parametersΛ,
Θ from p(Λ|Y,τττ ,Θ), p(Θ|Y,τττ ,Λ) and the positionsτττ of change points fromp(τττ |Y,Θ,Λ).

Sampling fromp(Λ|Y,τττ ,Θ) as well as sampling theσis fromp(Θ|Y,τττ ,Λ) is done by a Gaussian
random walk Metropolis-Hastings sampler on the logarithm of the parameters, to ensure positivity.
Sampling theAis on the other hand can be done directly if the priorp(Ai) is Gaussian, because then
p(Ai|Y,τττ ,Λ, {σi}) is also Gaussian.

Finally, we need to draw change points from their densityp(τττ |Y,Θ,Λ) ∝ p(Y |Z,Λ)p(Θ|τττ)p(τττ).
Their numberm is a random variable with a Poisson prior distribution and for fixedm, eachτi is
uniformly distributed in[0 : T ]. Therefore the prior probability of the sorted listτ1, . . . , τm is given
by

p(τ1, . . . , τm|f) ∝ fm e−fT . (4)

For sampling change points we use a Metropolis-Hastings step, which accepts a proposalτττ∗ for the
positions of the change points with probability

A = min

(

1,
p(τττ∗|Y,Θ,Λ)

p(τττ |Y,Θ,Λ)

q(τττ |τττ∗)

q(τττ∗|τττ)

)

, (5)

whereq(τττ∗|τττ) is the proposal probability to generateτττ∗ starting fromτττ . Otherwise the old sample
is used again. As proposal for a newτττ -path we choose one of three (model 1) or five (model 2)
possible actions, which modify the current sample:

• Moving a change point: One change point is chosen at random with equal probabilityand
the new jump time is drawn from a normal distribution with theold jump time as the mean.
The normal distribution is truncated at the neighboring jump times to ensure that the order
of jump times stays the same.

• Adding a change point: We use a uniform distribution over the whole time interval[0 : T ]
to draw the time of the added jump. In case ofmodel 1 the parameter setΘi for the new
interval stays the same and is only changed in the following update of all theΘ sets. For
model 2 it is randomly decided if the telegraph processµ(t) is inverted before or after the
new change point. This is necessary to allowµ to change on both ends.

• Removing a change point: The change point to remove is chosen at random. Formodel
1 the newly joined interval inherits the parameters with equal probability from the interval
before or after the removed change point. As for adding a change point, when usingmodel
2 we choose to either invertµ after or before the removed jump time.

For model 2we also need the option to add or remove two jumps, because adding or removing one
jump will result in inverting the whole process after or before it, which leads to poor acceptance
rates. When adding or removing two jumps instead,µ only changes between these two jumps.

• Adding two change points: The first change point is drawn as for adding a single one,
the second one is drawn uniformly from the interval between the new and the next change
point.

• Removing two change points: We choose one of the change points, except the last one, at
random and delete it along with the following one.

While the proposal does not use any information from the data,it is very fast to compute and quickly
converges to reasonable states, although we initialize thechange points simply by drawing from
p(τττ).

5 Exact inference

In the case of small systems described bymodel 2 it is also feasible to calculate the marginal prob-
ability distributionq(µ, x, t) for the state variablesx, µ at timet of the posterior process directly.
For that purpose, we use a smoothing algorithm, which is quite similar to the well-known method
for state inference in hidden Markov models. In order to improve clarity we only discuss the case of
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Figure 1: Comparison of the results of the MCMC sampler and the exact inference: (top left) True
path ofx (black) and the noisy observations (blue crosses). (bottom left) True path ofµ (black)
and posterior ofp(µ = 1) from the exact inference (green) and the MCMC sampler (red dashed).
(right) Convergence of the sampler. Mean difference between sampler result and exact inference of
p(µ = 1) for different number of samples (red crosses) and the resultof power law regression for
more than 100 samples (green).

a one-dimensional Ornstein-Uhlenbeck processx(t) here, but the generalization to multiple dimen-
sions is straightforward.

As our model has the Markov property, the exact marginal posterior is given by

q(µ, x, t) =
1

L
p(µ, x, t)ψ(µ, x, t). (6)

Herep(µ, x, t) denotes the marginal filtering distribution, which is the probability density of the
state(x, µ) at timet conditioned on the observations up to timet. The normalization constantL is
equal to the total likelihood of all observations. And the last factorψ(µ, x, t) is the likelihood of the
observations after timet under the condition that the process started with state(x, µ) at timet.

The initial condition for theforward messagep(µ, x, t) is the prior over the initial state of the system.
The time evolution of the forward message is given by theforward Chapman-Kolmogorovequation

[

∂

∂t
+

∂

∂x
(Aµ − λx) −

σ2
µ

2

∂2

∂x2

]

p(µ, x, t) =
∑

ν 6=µ

[fν→µ p(ν, x, t) − fµ→ν p(µ, x, t)] . (7)

Herefν→µ denotes the transition rate from discrete stateν to discrete stateµ ∈ {0, 1} of model 2,
which has the values

f0→1 = f1→0 = f, f0→0 = f0→0 = 0. (8)

Including an observationyj at timetj leads to a jump of the filtering distribution,

p(µ, x, t+j ) = p(µ, x, t−j )p(yj |x), (9)

where p(yj |x) denotes the local likelihood of that observation given by the noise model and
p(µ, x, t∓j ) are the values of the forward message directly before and after time pointtj . By in-
tegrating equation (7) forward in time from the first observation to the last, we obtain the exact
solution to the filtering problem of our model.

Similarly we integrate backward in time from the last observation at timeT to the first one in order
to computeψ(µ, x, t). The initial condition here isψ(µ, x, t+N ) = 1. Between observations the time
evolution of the backward message is given by thebackward Chapman-Kolmogorov equation

[

∂

∂t
+ (Aµ − λx)

∂

∂x
+
σ2

µ

2

∂2

∂x2

]

ψ(µ, x, t) =
∑

ν 6=µ

fµ→ν [ψ(µ, x, t) − ψ(ν, x, t)] . (10)

And each observation is taken into account by the jump condition

ψ(µ, x, t−j ) = ψ(µ, x, t+j )p(yj |x(tj)). (11)

4



0 500 1000 1500 2000
t

5

10

x

0 500 1000 1500 2000
t

0

1×
10
-2

2×
10
-2

3×
10
-2

4×
10
-2

5×
10
-2

6×
10
-2

ju
m

p 
pr

ob
ab

ili
ty

t0

5×
10
-2

1×
10
-1

A

0 500 1000 1500
t

0

5×
10
-2

1×
10
-1

A

0 500 100015002000
t

0

2×
10
-2

4×
10
-2

σ2

0 500 1000 1500
t

0

1×
10
-2

2×
10
-2

σ2

0 500 100015002000
t

Figure 2: Synthetic results on a four-dimensional diffusion process with diagonal diffusion matrix:
(top left) true paths with subsampled data points (dots); (top right) intensity of the posterior point
process (the probability of a change point in a given interval is given by the integral of the intensity).
Actual change points are shown as vertical dotted lines. (bottom row) posterior processes forA
(left) andσ2 (right) with a one standard deviation confidence interval. True paths are shown as
black dashed lines.

Afterwards,Lq(µ, x, t) can be calculated by multiplying forward messagep(µ, x, t) and backward
messageψ(µ, x, t). Normalizing that quantity according to

∫

∑

µ

q(µ, x, t)dx = 1 (12)

then gives us the marginal posterior as well as the total likelihoodL = p(y1, . . . , yN |A, b, . . . ) of all
observations. Note, that we only need to calculateL for one time point, as it is a time-independent
quantity. Minimizing− logL as a function of the parameters can then be used to obtain maximum
likelihood estimates. As an analytical solution for both equations (7) and (10) does not exist, we
have to integrate them numerically on a grid. A detailed description is given in the supplementary
material.

6 Results

6.1 Synthetic Data

As a first consistency check, we tested the model on simulateddata. The availability of an exact
solution to the inference problem provides us with an excellent way of monitoring convergence
of our sampler. Figure 1 shows the results of sampling on datagenerated frommodel 2, with
parameter settings such that only the diffusion constant changes, making it a fairly challenging
problem. Despite the rather noisy nature of the data (top left panel), the approach gives a reasonable
reconstruction of the latent switching process (left panel, bottom). The comparison between exact
inference and MCMC is also instructive, showing that the sampled posterior does indeed converge
to the true posterior after a relatively short burn in period(Figure 1 right panel). A power law
regression of the mean absolute difference between exact and MCMC (after burn in) on the number
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Figure 3: Stochastic gene expression during competence: (left) fluorescence intensity for comS
protein over 36 hrs; (right) inferred comK activation profile using model 2 (see text)

of samples yields a decrease with approximately the square root of the number of samples (exponent
0.48), as expected.

To test the performance of the inference approach onmodel 1, we simulated data from a four-
dimensional diffusion process with diagonal diffusion with change points in the drift and diffusion
(at the same times). The results of the sampling based inference are shown in Figure 2. Once
again, the results indicate that the sampled distribution was able to accurately identify the change
points (top right panel) and the values of the parameters (bottom panels). The results are based
on 260,000 samples and were obtained in approximately twelve hours on a standard workstation.
Unfortunately in this higher dimensional example we do not have access to the true posterior, as
numerical integration of a high dimensional PDE proved computationally prohibitive.

6.2 Characterization of noise in stochastic gene expression

Recent developments in microscopy technology have led to the startling discovery that stochasticity
plays a crucial role in biology [11]. A particularly interesting development is the distinction between
intrinsicandextrinsicnoise [12]: given a biological system, intrinsic noise arises as a consequence of
fluctuations due to the low numbers of the molecular species composing the system, while extrinsic
noise is caused by external changes influencing the system ofinterest. A currently open question
is how to characterize mathematically the difference between intrinsic and extrinsic noise, and a
widely mooted opinion is that either the amplitude or the spectral characteristics of the two types
of noise should be different [13]. To provide a proof-of-principle investigation into these issues, we
tested our model on real stochastic gene expression data subject to extrinsic noise inBacillus subtilis
[14]. Here, single-cell fluorescence levels of the protein comS were assayed through time-lapse
microscopy over a period of 36 hours. During this period, theprotein was subjected to extrinsic noise
in the form of activation of the regulator comK, which controls comS expression with a switch-like
behavior (Hill coefficient 5). Activation of comS produces astriking phenotype calledcompetence,
whereby the cell stops dividing, becoming visibly much longer than sister cells. The data used is
shown in Figure 3, left panel.

To determine whether the noise characteristics are different in the presence of comK activity, we
modelled the data using two different models:model 2, where both the offsetA and the diffusion
σ can take two different values, and a constrained version ofmodel 2where the diffusion constant
cannot switch (as in [15]). In both cases we sampled 500,000 posterior samples, discarding an initial
burn-in of 10,000 samples. Both models predict two clear change points representing the activation
and inactivation of comK at approximately 5 and 23 hrs respectively (Figure 3 right panel, showing
model 2 results). Also both models are in close agreement on the inferred kinetic parametersA, b,
andλ (Figure 4, left panel, showing a comparison of theλ posteriors), consistently with the fact that
the mean trajectory for both models must be the same.

Naturally,model 2predicted two different values for the diffusion constant depending on the activity
state of comK (Figure 4, central panel). The two posterior distributions forσ1 andσ2 appear to be
well separated, lending support to the unconstrained version of model 2being a better description
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Figure 4: Stochastic gene expression during competence: (left) posterior estimates ofλ (solid) for
switchingσ (red) and non-switchingσ2 (blue) with common prior (dashed); (center) posterior es-
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1 (red solid),σ2
2 (green solid) and non-switchingσ posterior (blue solid) with common

prior (dashed); (right) posterior distribution off(A, b, σ1, σ2) (see text), indicating the incompati-
bility of the simple birth-death model of steady state with the data.

of the data. While this is an interesting result in itself, it is perhaps not surprising. We can gain some
insights by considering the underlying discrete dynamics of comS protein counts, which our model
approximates as a continuous variable [16]. As we are dealing with bacterial cells, transcription and
translation are tightly coupled, so that we can reasonably assume that protein production is given by
a Poisson process. At steady state in the absence of comK, theproduction of comS proteins will be
given by a birth-death process with birth rateb and death rateλ, while in the presence of comK the
birth rate would change toA+ b. Defining

ρ0 =
b

λ
, ρ1 =

A+ b

λ
(13)

this simple birth-death model implies a Poisson distribution of the steady state comS protein levels
in the two comK states, with parametersρ0, ρ1 respectively. Unfortunately, we only measure the
counts of comS protein up to a proportionality constant (dueto the arbitrary units of fluorescence);
this means that the basic property of Poisson distributionsof having the same mean and variance
cannot be tested easily. However, if we consider the ratio ofsignal to noise ratios in the two states,
we obtain a quantity which is independent of the fluorescenceunits, namely

N̄1/stdev(N1)

N̄0/stdev(N0)
=

√

ρ1

ρ0
=

√

A+ b

b
. (14)

This relationship is not enforced in our model, but, if the simple birth-death interpretation is sup-
ported by the data, it should emerge naturally in the posterior distributions. To test this, we plot in
Figure 4 right panel the posterior distribution of

f(A, b, σ1, σ2) =
(A+ b)/σ2

b/σ1
−

√

A+ b

b
, (15)

the difference between the posterior estimate of the ratio of the signal to noise ratios in the two comK
states and the prediction from the birth-death model. The overwhelming majority of the posterior
probability mass is away from zero, indicating that the datadoes not support the predictions of the
birth-death interpretation of the steady states. A possible explanation of this unexpected result is
that the continuous approximation breaks down in the low abundance state (corresponding to no
comK activation); the expected number of particles in the comK inactive state is given byρ0 and
has posterior mean 25.8. The breaking down of the OU approximation for these levels of protein
expression would be surprising, and would sound a call for caution when using SDEs to model
single cell data as advocated in large parts of the literature [2]. An alternative and biologically more
exciting explanation would be that the assumption that the decay rates are the same irrespective of
the activity of comK is wrong. Notice that, if we assumed different decay rates in the two states, the
first term in equation (15) would not change, while the secondwould scale with a factor

√

λ0/λ1.
Our results would then predict that comK regulation at the transcriptional level alone cannot explain
the data, and that comS dynamics must be regulated both transcriptionally and post-transcriptionally.
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6.3 Change point detection in financial data

As an example of another application of our methodology, we applied model 1 to financial data
taken from the German stock exchange (DAX). The data, shown in Figure 5, consists of monthly
closing values; we subsampled it at quarterly values. The posterior processes forA andσ are shown
in the central and right panels of Figure 5 respectively. An inspection of these results reveals several
interesting change points which can be related to known events: for convenience, we highlight
a few of them in the central panel of Figure 5. Clearly evidentare the changes caused by the
introduction of theNeuer Markt(the German equivalent of the NASDAQ) in 1997, as well as the
dot-com bubble (and subsequent recession) in the early 2000s and the global financial crisis in 2008.
Interestingly, in our results the diffusion (or volatilityas is more commonly termed in financial
modelling) seems not to be particularly affected by recent events (after surging for the Neuer Markt).
A possible explanation is the rather long time interval between data points: volatility is expected to
be particularly high on the micro-time scale, or at best the daily scale. Therefore the effective
sampling rate we use may be too sparse to capture these changes.

7 Discussion

In this paper, we proposed a Bayesian approach to inference in multi-stable system. The basic
model is a system of SDEs whose drift and diffusion coefficients can change abruptly at random,
exponential distributed times. We describe the approach intwo special models: a system of SDEs
with coefficients changing at change points from a Poisson process (model 1) and a system of
SDE whose coefficients can change between two sets of values according to a random telegraph
process (model 2). Each model is particularly suitable for specific applications: whilemodel 1
is important in financial modelling and industrial application, model 2extends a number of similar
models already employed in systems biology [3,15,17]. Testing our model(s) in specific applications
reveals that it often leads to interpretable predictions. For example, in the analysis of DAX data, the
model correctly captures known important events such as thedot-com bubble. In an application to
biological data, the model leads to non-obvious predictions of considerable biological interest.

In regard to the computational costs stated in this paper, ithas to be noted that the sampler was
implemented in Matlab. A new implementation in C++ formodel 2 showed over 12 times faster
computational times for a data set with 10 OU processes and 2 telegraph processes. A similar
improvement is to be expected formodel 1.

There are several interesting possible avenues to further this work. While the inference scheme
we propose is practical in many situations, scaling to higher dimensional problems may become
computationally intensive. It would therefore be interesting to investigate approximate inference
solutions like the ones presented in [15]. Another interesting direction would be to extend the
current work to a factorial design; these can be important, particularly in biological applications
where multiple factors can interact in determining gene expression [17,18]. Finally, our models are
naturally non-parametric in the sense that the number of change points is not a priori determined.
It would be interesting to explore further non-parametric extensions where the system can exist in
a finite but unknown number of regimes, in the spirit of non-parametric models for discrete time
dynamical systems [19].
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