
A Proofs

A.1 Proof of Thm. 1

Suppose we split the actions into c cliques C1, C2, . . . , Cc. First, let us consider the expected regret
of the exponentially weighted forecaster ran over any such clique. Denoting the actions of the clique
by 1, . . . , n, the forecaster works as follows: first, it initializes weights w1, . . . , wn to be 1. At each
round, it picks an action i with probability wi/

∑
wi, receives the reward gi(t), and observes the

noisy reward value ĝj(t) for each of the other actions. It then updates wi = wi exp(βĝi(t)) (for
some parameter β ∈ (0, 1/b)) for all i = 1, . . . , n.

The analysis of this algorithm is rather standard, with the main twist being that we only observe
unbiased estimates of the rewards, rather than the actual reward. For completeness, we provide this
analysis in the following lemma.

Lemma 1. The expected regret of the forecaster described above, with respect to the actions in
clique |Ci| and under the optimal choice of the parameter β is at most b

√
log(|Ci|)T .

Proof. We define the potential function Wt =
∑n
j=1 wj(t), and get that

Wt+1

Wt
≤

n∑
j=1

wj(t)∑n
l=1 wl(t)

exp(βg̃j(t)).

For notational convenience, let pj(t) =
wj(t)∑n
l=1 wl(t)

. Since g̃j(t) ≤ b, and β ≤ 1/b, we have
βg̃j(t) ≤ 1. Thus, we can use the inequality exp(x) ≤ 1 +x+x2 (which holds for any x ≤ 1), and
get the upper bound

n∑
j=1

pj(t)
(
1 + βg̃j(t) + 2β2g̃j(t)

2
)

= 1 + β

n∑
j=1

g̃j(t) + β2
n∑
j=1

pj(t)g̃j(t)
2.

Taking logarithms and using the fact that log(1 + x) ≤ x, we get

log

(
Wt+1

Wt

)
≤ β

n∑
j=1

pj(t)g̃j(t) + β2
n∑
j=1

pj(t)g̃j(t)
2.

Summing over all t, and canceling the resulting telescopic series, we get

log

(
WT+1

W1

)
≤

T∑
t=1

β n∑
j=1

pj(t)g̃j(t) + β2
n∑
j=1

pj(t)g̃j(t)
2

 . (6)

Also, for any fixed action i, we have

log

(
WT+1

W1

)
≥ log

(
wi(T + 1)

W1

)
= β

T∑
t=1

g̃i(t)− log(n). (7)

Combining Eq. (6) with Eq. (7) and rearranging, we get

T∑
t=1

g̃i(t)−
T∑
t=1

n∑
j=1

pj(t)g̃j(t) ≤
log(n)

β
+ β

T∑
t=1

n∑
j=1

pj(t)g̃j(t)
2.

Taking expectations on both sides, and using the facts that E[g̃j(t)] = gj(t) for all j, t, and |g̃j(t)| ≤
b with probability 1, we get

T∑
t=1

gi(t)−
T∑
t=1

n∑
j=1

pj(t)gj(t) ≤
log(n)

β
+ βb2T.

Thus, by picking β =
√
log(n)/b2T , we get that the expected regret is at most b

√
log(n)T .
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Now, we define each such forecaster (one per clique Ci) as a meta-action, and run the EXP3 al-
gorithm on the c meta-actions. By the standard guarantee for this algorithm (see corollary 3.2 in
[4]), the expected regret incurred by that algorithm with respect to any fixed meta-action is at most
3b
√
c log(c)T . Combining this with Lemma 1, we get that the total expected regret of the ExpBan

algorithm with respect to any single action is at most

max
i
b
√

log(|Ci|)T + 3b
√
c log(c)T ≤ b

√
log(k)T + 3b

√
c log(k)T ,

which is at most 4b
√

log(k)cT since c ≥ 1.

A.2 Proof of Thm. 2

To prove the theorem, we will need three lemmas. The first one is straightforward and follows from
the definition of g̃j(t). The second is a key combinatorial inequality. We were unable to find an
occurrence of this inequality in any previous literature, although we are aware of very special cases
proven in the context of cyclic sums (see for instance [5]). The third lemma allows us to derive a
more explicit bound by examining a particular choice of {si(t)}i∈[k],t∈[T ].
Lemma 2. For all fixed t, j, we have

E [g̃j(t)] = gj(t)

as well as

E

 k∑
j=1

pj(t)g̃j(t)
2

 ≤ b2 k∑
j=1

pj(t)∑
l∈Nj(t) pl(t)

.

Proof. It holds that

E
[
g̃ij(t)

]
=

k∑
i=1

pi(t)E[g̃j(t) | action i was picked] =
∑

i∈Nj(t)

pi(t)
gj(t)∑

l∈Nj(t) pl(t)
= gj(t).

As to the second part, we have

E

 k∑
j=1

pj(t)g̃j(t)
2

 =

k∑
i,j=1

pj(t)pi(t)E
[
g̃j(t)

2 | action i was picked
]

≤
k∑
j=1

∑
i∈Nj(t)

pj(t)pi(t)
b2(∑

l∈Nj(t) pl(t)
)2 = b2

k∑
j=1

pj(t)∑
l∈Nj(t) pl(t)

.

Lemma 3. LetG be a graph over k nodes, and let α(G) denote the independence number ofG (i.e.,
the size of its largest independent set). For any j ∈ [k], define Nj to be the nodes adjacent to node j
(including node j). Let p1, . . . , pk be arbitrary positive weights assigned to the node. Then it holds
that

k∑
i=1

pi∑
l∈Ni

pl
≤ α(G).

Proof. We will actually prove the claim for any nonnegative weights p1, . . . , pk (i.e., they are al-
lowed to take 0 values), under the convention that if pj = 0 and

∑
l∈Nj

pi = 0 as well, then∑k
i=1 pi/

∑
l∈Ni

pi = 1.

Suppose on the contrary that there exist some values for p1, . . . , pk such that
∑k
i=1 pi/

∑
l∈Ni

pi >

α(G). Now, if p1, . . . , pk are non-zero only on an independent set S, then

k∑
i=1

pi∑
l∈Ni

pi
=
∑
i∈S

pi
pi

= |S|.
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Since |S| ≤ α(G), it follows that there exist some adjacent nodes r, s such that pr, ps > 0. However,
we will show that in that case, we can only increase the value of

∑k
i=1 pi/

∑
l∈Ni

pi by shifting the
entire weight pr+ps to either node r or node s, and putting weight 0 at the other node. By repeating
this process, we are guaranteed to eventually arrive at a configuration where the weights are non-zero
on an independent set. But we’ve shown above that in that case,

∑k
i=1 pi/

∑
l∈Ni

pi ≤ α(G), so
this means the value of this expression with respect to the original configuration was at most α(G)
as well.

To show this, let us fix pr+ps = c (so that ps = c−pr) and consider how the value of the expression
changes as we vary pr. The sum in the expression

∑k
i=1 pi/

∑
l∈Ni

pi can be split to 6 parts: when
i = r, when i = s, when i is a node adjacent to s but not to r, when i is adjacent to r but not to s,
when i is adjacent to both, and when i is adjacent to neither of them. Decomposing the sum in this
way, so that pr appears everywhere explicitly, we get

pr
c+

∑
l∈Nr\r,s pl

+
c− pr

c+
∑
l∈Nj\r,s pl

+
∑

i:{r,s}∩Ni=s

pi
c− pr +

∑
l∈Ni\s pl

+
∑

i:{r,s}∩Ni=r

pi
pr +

∑
l∈Ni\r pl

+
∑

i:i/∈{r,s},r,s⊆Ni

pi
c+

∑
l∈Ni\{r,s} pl

+
∑

i:{r,s}∩Ni=∅

pi∑
l∈Ni

pl
.

It is readily seen that each of the 6 elements in the sum above is convex in pr. This implies that the
maximum of this expression is attained at the extremes, namely either pr = 0 (hence ps = c) or
pr = c (hence ps = 0). This proves that indeed shifting weights between adjacent nodes can only
increase the value of

∑k
i=1 pi/

∑
l∈Ni

pi, and as discussed earlier, implies the result stated in the
lemma.

Lemma 4. Consider a graph G over nodes 1, . . . , k, and let α(G) be its independence number. For
any j ∈ [k], define Nj to be the nodes adjacent to node j (including node j). Then there exist values
of s1, . . . , sk on the k-simplex, such that

1

minj∈[k]

∑
l∈Nj

sl
≤ α(G). (8)

Proof. Let S be a largest independent set of G, so that |S| = α(G). Consider the following specific
choice for the values of s1, . . . , sk: For any j such that j ∈ S, let sj = 1/α(G), and sj = 0
otherwise. Suppose there was some node j such that

∑
l∈Nj

sl = 0. By the way we chose values
for s1, . . . , sk, this implies that node j is not adjacent to any node in S, so S ∪ {j} would also be
an independent set, contradicting the assumption that S is a largest independent set. But since each
value of sl is either 0 or 1/α(G), it follows that

∑
l∈Nj

sl > 1/α(G). This is true for any node j,
from which Eq. (8) follows.

We now turn to the proof of the theorem itself.

Proof of Thm. 2. With the key lemmas at hand, most of the remaining proof is rather similar to
the standard analysis for multi-armed bandits (e.g., [4]). We define the potential function Wt =∑k
j=1 wj(t), and get that

Wt+1

Wt
≤

k∑
j=1

wj(t)∑k
l=1 wl(t)

exp(βg̃j(t)). (9)

We have that βg̃j(t) ≤ 1, since by definition of β and g̃j(t),

βg̃j(t) ≤
βb∑

l∈Nj(t) pl(t)
≤ βb∑

l∈Nj(t) γ(t)sl(t)
=

βb∑
l∈Nj(t) sl(t)

minj∈[k]

∑
l∈Nj(t) sl(t)

βb
≤ 1.
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Using the definition of pj(t) and the inequality exp(x) ≤ 1 + x + x2 for any x ≤ 1, we can upper
bound Eq. (9) by

k∑
j=1

pj(t)− γ(t)sj(t)

1− γ(t)

(
1 + βg̃j(t) + β2g̃j(t)

2
)

≤ 1 +
β

1− γ(t)

k∑
j=1

pj(t)g̃j(t) +
2β2

1− γ(t)

k∑
j=1

pj(t)g̃j(t)
2.

Taking logarithms and using the fact that log(1 + x) ≤ x, we get

log

(
Wt+1

Wt

)
≤ β

1− γ(t)

k∑
j=1

pj(t)g̃j(t) +
β2

1− γ(t)

k∑
j=1

pj(t)g̃j(t)
2.

Summing over all t, and canceling the resulting telescopic series, we get

log

(
WT+1

W1

)
≤

T∑
t=1

k∑
j=1

β

1− γ(t)
pj(t)g̃j(t) +

T∑
t=1

k∑
j=1

β2

1− γ(t)
pj(t)g̃j(t)

2. (10)

Also, for any fixed action i, we have

log

(
WT+1

W1

)
≥ log

(
wi(T + 1)

W1

)
= β

T∑
t=1

g̃i(t)− log(k). (11)

Combining Eq. (10) with Eq. (11) and rearranging, we get

β

T∑
t=1

g̃i(t)−
T∑
t=1

k∑
j=1

β

1− γ(t)
pj(t)g̃j(t) ≤ log(k) +

T∑
t=1

k∑
j=1

β2

1− γ(t)
pj(t)g̃j(t)

2.

Taking expectations on both sides, and using Lemma 2, we get

β

T∑
t=1

gi(t)−
T∑
t=1

k∑
j=1

β

1− γ(t)
pj(t)gj(t) ≤ log(k) +

T∑
t=1

k∑
j=1

b2β2

1− γ(t)

pj(t)∑
l∈Nj(t) pl(t)

.

After some slight manipulations, and using the fact that gj(t) ∈ [0, 1] for all j, t, we get

T∑
t=1

gi(t)−
T∑
t=1

k∑
j=1

pj(t)gj(t) ≤
T∑
t=1

γ(t) +
log(k)

β
+

T∑
t=1

b2β

1− γ(t)

k∑
j=1

pj(t)∑
l∈Nj(t) pl(t)

.

We note that 1/(1− γ(t)) can be upper bounded by 2, since by definition of si(t),

γ(t) =
βb

maxa1,...,ak minj∈[k]

∑
l∈Nj(t) al(t)

≤ βb

minj∈[k]

∑
l∈Nj(t)(1/k)

≤ βbk ≤ 1/2.

Plugging this in as well as our choice of γ(t) in the
∑
t γ(t) term, and slightly simplifying, we get

the upper bound

T∑
t=1

gi(t)−
T∑
t=1

E[git(t)] ≤ βb2

 T∑
t=1

1

minj∈[k]

∑
l∈Nj(t) sl(t)

+ 2

k∑
j=1

pj(t)∑
l∈Nj(t) pl(t)

+
log(k)

β
.

(12)
Now, we recall that the {si(t)} terms were chosen so as to minimize the bound above. Thus, we can
upper bound it by any fixed choice of {si(t)}. Invoking Lemma 4, as well as Lemma 3, the theorem
follows.
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A.3 Proof of Thm. 3

The proof is very similar to the one of Thm. 2, so we’ll only point out the differences.

Referring to the proof of Thm. 2 in Subsection A.2, The analysis is identical up to Eq. (12). To up-
per bound the terms there, we can still invoke Lemma 4. However, Lemma 3, which was used
to upper bound

∑k
j=1 pj(t)/

∑
l∈Nj(t) pl(t), not longer applies (in fact, one can show specific

counter-examples). Thus, in lieu of Lemma 3, we will opt for the following weaker bound: Let
C1, . . . , Cχ̄(Gt) be a smallest possible clique partition of Gt. Then we have

χ̄(Gt)∑
i=1

∑
j∈Ci

pj(t)∑
l∈Nj(t) pl(t)

≤
χ̄(Gt)∑
i=1

∑
j∈Ci

pj(t)∑
l∈Ci

pl(t)
= χ̄(Gt).

Plugging this upper bound as well as Lemma 4 into Eq. (12), and using the fact that α(Gt) ≤ χ̄(Gt)
for any graph Gt, the result follows.

A.4 Proof of Theorem 4

Suppose that we are given a graph G with an independence number α(G). Let N denote an inde-
pendent set of α(G) nodes (i.e., no two nodes are connected). Suppose we have an algorithm A
with a low expected regret for every sequence of rewards. We will use this algorithm to form an
algorithm for the standard multi-armed bandits problem (with no-side observations). We will then
resort to the known lower bound for this problem, to get a lower bound for our setting as well.

Consider first a standard multi-armed bandits game on α(G) actions (with no side-observations),
with the following randomized strategy for the adversary: the adversary picks one of the α(G)
actions uniformly at random, and at each round, assigns it a random Bernoulli reward with parameter
1/2 + ε (where ε will be specified later). The other actions are assigned a random Bernoulli reward
with parameter 1/2. Roughly speaking, Theorem 6.11 of [6] shows that with this strategy and for
ε = Θ(

√
α(G)/T ), the expected regret of any learning algorithm is at least Ω(

√
α(G)T ).

Now, suppose that for the setting with side-observations, played over the graph G, there exists a
learning strategyA that achieves expected cumulative regret of at mostRA(T ), for the graphG over
T rounds, with respect to any adversary strategy. We will now show how to use A for the standard
multi-armed bandits game described above. To that end, arbitrarily assign the α(G) actions to the
α(G) independent nodes in N . We will then implement the following strategy A′: whenever A
chooses one of the actions in N , we choose the corresponding action in the multi-armed bandits
problem and feed the reward back to A (the reward of all neighboring nodes is 0, which we feed
back toA as well). WheneverA chooses a node j not inN , we use the next |Nj∩N| rounds (where
Nj is the neighborhood set of j) to do “pure exploration:” we go over all the neighbors of node j
that belong to N in some fixed order, and choose each of them once (since rewards are assumed
stochastic the order does not matter). Nodes in Nj \ N are known to yield a reward of 0. The
rewards of node j and all its neighbors are then fed to A, as if they were side observations obtained
in a single round by choosing a node not inN . Since the rewards are chosen i.i.d., the distribution of
these rewards is identical to the case where A was really implemented with side-observations. We
denote RA′(T ) as the expected regret of this strategy A′, after T rounds.

We make the following observation: suppose A achieves an expected regret satisfying

RA(T ) ≤
√
α(G)T

(we can assume this since our goal is to provide a lower bound which will only be smaller). Then
the number of times A chose actions outside N must be smaller than 2

√
α(G)T . This is because

whenever A chooses an action not in N it receives a reward of 0 while the highest expected reward
is bigger than 1/2, so the expected per-round regret would increase by at least 1/2.

We apply A′ at each round, till A is called T times. Let T ′ be the (possibly random) number of
rounds which elapsed. It holds that T ′ ≥ T , since we have the T ′ − T pure exploration rounds
where A is not called. In these exploration rounds, we pull arms in N , so our expected regret in
those rounds is at most ε. Moreover, by the observation above, the number of such rounds is at
most 2α(G)

√
α(G)T , since A may choose an action outside N at most 2

√
α(G)T times, and this
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follows by at most |N | = α(G) pure exploration steps. In rounds where we do not do exploration
steps, the expected per-round regret ofA′ is the same as the expected per-round regret ofA. Overall,
this implies that

RA′(T ′) ≤ RA(T ) + 2εα(G)
√
α(G)T (13)

Since the expected regret is monotone in the number of rounds, we can lower bound RA′(T ′) by
RA′(T ). Rearranging, we get

RA(T ) ≥ RA′(T )− 2εα(G)
√
α(G)T .

Now, A′ is a strategy for the standard multi-armed bandits setting, with a randomized adversary
strategy which is identical to the one used to establish the lower bound of [6, Theorem 6.11]. Using
this lower bound, by selecting ε =

√
c1α(G)/T with c1 = 1/(8 ln(4/3)), we obtain

RA(T ) ≥
√
Tα(G)c2 − 2

√
c1α(G)2, (14)

where the first term of the right hand side comes from Page 168 in [6] and

c2 =

√
2− 1√

32 ln(4/3)
.

Since T ≥ 16α(G)3c1/c
2
2, we have that RA(T ) ≥

√
Tα(G)c2/2. Plugging in the values of c1, c2

above, the result follows.

Finally, we note that if the maximal degree of any node in G is bounded by d, then Eq. (13) can be
improved to

RA′(T ′) ≤ RA(T ) + 2εd
√
α(G)T ,

since the number of pure-exploration steps following a call to A is at most d rather than α(G).
Repeating the analysis above, we get that Eq. (14) is replaced by

RA(T ) ≥
√
Tα(G)c2 − 2

√
c1dα(G).

This allows us to give the same lower bound, for any T ≥ 16α(G)d2c1/c
2
2, as opposed to T ≥

16α(G)3c1/c
2
2 as before.
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