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Abstract

We present a type of Temporal Restricted Boltzmann Machine that defines a prob-
ability distribution over an output sequence conditional on an input sequence. It
shares the desirable properties of RBMs: efficient exact inference, an exponen-
tially more expressive latent state than HMMs, and the ability to model nonlinear
structure and dynamics. We apply our model to a challenging real-world graphics
problem: facial expression transfer. Our results demonstrate improved perfor-
mance over several baselines modeling high-dimensional 2D and 3D data.

1 Introduction

Modeling temporal dependence is an important consideration in many learning problems. One can
capture temporal structure either explicitly in the model architecture, or implicitly through latent
variables which can act as a “memory”. Feedforward neural networks which incorporate fixed delays
into their architecture are an example of the former. A limitation of these models is that temporal
context is fixed by the architecture instead of inferred from the data. To address this shortcoming,
recurrent neural networks incorporate connections between the latent variables at different time
steps. This enables them to capture arbitrary dynamics, yet they are more difficult to train [2].

Another family of dynamical models that has received much attention are probabilistic models such
as Hidden Markov Models and more general Dynamic Bayes nets. Due to their statistical struc-
ture, they are perhaps more interpretable than their neural-network counterparts. Such models can
be separated into two classes [19]: tractable models, which permit an exact and efficient procedure
for inferring the posterior distribution over latent variables, and intractable models which require
approximate inference. Tractable models such as Linear Dynamical Systems and HMMs are widely
applied and well understood. However, they are limited in the types of structure that they can cap-
ture. These limitations are exactly what permit simple exact inference. Intractable models, such as
Switching LDS, Factorial HMMs, and other more complex variants of DBNs permit more complex
regularities to be learned from data. This comes at the cost of using approximate inference schemes,
for example, Gibbs sampling or variational inference, which introduce either a computational burden
or poorly approximate the true posterior.

In this paper we focus on Temporal Restricted Boltzmann Machines [19,20], a family of models that
permits tractable inference but allows much more complicated structure to be extracted from time
series data. Models of this class have a number of attractive properties: 1) They employ a distributed
state space where multiple factors interact to explain the data; 2) They permit nonlinear dynamics
and multimodal predictions; and 3) Although maximum likelihood is intractable for these models,
there exists a simple and efficient approximate learning algorithm that works well in practice.

We concentrate on modeling the distribution of an output sequence conditional on an input sequence.
Recurrent neural networks address this problem, though in a non-probabilistic sense. The Input-
Output HMM [3] extends HMMs by conditioning both their dynamics and emission model on an
input sequence. However, the IOHMM is representationally limited by its simple discrete state in
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the same way as a HMM. Therefore we extend TRBMs to cope with input-output sequence pairs.
Given the conditional nature of a TRBM (its hidden states and observations are conditioned on short
histories of these variables), conditioning on an external input is a natural extension to this model.

Several real-world problems involve sequence-to-sequence mappings. This includes motion-style
transfer [9], economic forecasting with external indicators [13], and various tasks in natural language
processing [6]. Sequence classification is a special case of this setting, where a scalar target is
conditioned on an input sequence. In this paper, we consider facial expression transfer, a well-known
problem in computer graphics. Current methods considered by the graphics community are typically
linear (e.g., methods based on blendshape mapping) and they do not take into account dynamical
aspects of the facial motion itself. This makes it difficult to retarget the facial articulations involved
in speech. We propose a model that can encode a complex nonlinear mapping from the motion of
one individual to another which captures facial geometry and dynamics of both source and target.

2 Related work
In this section we discuss several latent variable models which can map an input sequence to an
output sequence. We also briefly review our application field: facial expression transfer.

2.1 Temporal models

Among probabilistic models, the Input-Output HMM [3] is most similar to the architecture we pro-
pose. Like the HMM, the IOHMM is a generative model of sequences but it models the distribution
of an output sequence conditional on an input, while the HMM simply models the distribution of an
output sequence. The IOHMM is also trained with a more discriminative-style EM-based learning
paradigm than HMMs. A similarity between IOHMMs and TRBMs is that in both models, the dy-
namics and emission distributions are formulated as neural networks. However, the IOHMM state
space is a multinomial while TRBMs have binary latent states. A K-state TRBM can thus represent
the history of a time series using 2K state configurations while IOHMMs are restricted toK settings.

The Continuous Profile Model [12] is a rich and robust extension of dynamic time warping that
can be applied to many time series in parallel. The CPM has a discrete state-space and requires an
input sequence. Therefore it is a type of conditional HMM. However, unlike the IOHMM and our
proposed model, the input is unobserved, making learning completely unsupervised.

Our approach is also related to the many proposed techniques for supervised learning with struc-
tured outputs. The problem of simultaneously predicting multiple, correlated variables has received
a great deal of recent attention [1]. Many of these models, including the one we propose, are formally
defined as undirected graphs whose potential functions are functions of some input. In Graph Trans-
former Networks [11] the dependency structure on the outputs is chosen to be sequential, which
decouples the graph into pairwise potentials. Conditional Random Fields [10] are a special case of
this model with linear potential functions. These models are trained discriminatively, typically with
gradient descent, where our model is trained generatively using an approximate algorithm.

2.2 Facial expression transfer

Facial expression transfer, also called motion retargeting or cross-mapping, is the act of adapting the
motion of an actor to a target character. It, as well as the related fields of facial performance capture
and performance-driven animation, have been very active research areas over the last several years.

According to a review by Pighin [15], the two most important considerations for this task are facial
model parameterization (called “the rig” in the graphics industry) and the nature of the chosen cross-
mapping. A popular parameterization is “blendshapes” where a rig is a set of linearly combined
facial expressions each controlled by a scalar weight. Retargeting amounts to estimating a set of
blending weights at each frame of the source data that accurately reconstructs the target frame.
There are many different ways of selecting blendshapes, from simply selecting a set of sufficient
frames from the data, to creating models based on principal components analysis. Another common
parameterization is to simply represent the face by its vertex, polygon or spline geometry. The
downside of this approach is that this representation has many more degrees of freedom than are
present in an actual facial expression.

A linear function is the most common choice for cross-mapping. While it is simple to estimate
from data, it cannot produce subtle nonlinear motion required for realistic graphics applications. An
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example of this approach is [5] which uses a parametric model based on eigen-points to reliably
synthesize simple facial expressions but ultimately fails to capture more subtle details. Vlasic et
al. [23] have proposed a multilinear mapping where variation in appearance across the source and
target is explicitly separated from the variation in facial expression. None of these models explicitly
incorporate dynamics into the mapping, which is a limitation addressed by our approach.

Finally, we note that Susskind et al. [18] have used RBMs for facial expression generation, but not
retargeting. Their work is focused on static rather than temporal data.

3 Modeling dynamics with Temporal Restricted Boltzmann Machines

In this section we review the Temporal Restricted Boltzmann Machine. We then introduce the Input-
Output Temporal Restricted Boltzmann Machine which extends the architecture to model an output
sequence conditional on an input sequence.

3.1 Temporal Restricted Boltzmann Machines

A Restricted Boltzmann Machine [17] is a bipartite Markov Random Field consisting of a layer
of stochastic observed variables (“visible units”) connected to a layer of stochastic latent variables
(“hidden units”). The absence of connections between hidden units ensures they are conditionally in-
dependent given a setting of the visible units, and vice-versa. This simplifies inference and learning.

The RBM can be extended to model temporal data by conditioning its visible units and/or hidden
units on a short history of their activations. This model is called a Temporal Restricted Boltzmann
Machine [19]. Conditioning the model on the previous settings of the hidden units complicates infer-
ence. Although one can approximate the posterior distribution with the filtering distribution (treating
the past setting of the hidden units as fixed), we choose to use a simplified form of the model which
conditions only on previous visible states [20]. This model inherits the most important computa-
tional properties of the standard RBM: simple, exact inference and efficient approximate learning.

RBMs typically have binary observed variables and binary latent variables but to model real-valued
data (e.g., the parameterization of a face), we can use a modified form of the TRBM with condi-
tionally independent linear-Gaussian observed variables [7]. The model, depicted in Fig. 1 (left),
defines a joint probability distribution over a real-valued representation of the current frame of data,
vt, and a collection of binary latent variables, ht, hj ∈ {0, 1}:

p(vt,ht|v<t) = exp (−E(vt,ht|v<t)) /Z(v<t). (1)

For notational simplicity, we concatenate a short history of data at t−1,. . ., t−N into a vector which
we call v<t. The distribution specified by Eq. 1 is conditional on this history and normalized by a
quantity Z which is intractable to compute exactly1 but not needed for inference nor learning.

The joint distribution is characterized by an “energy function”:

E(vt,ht|v<t) =
∑
i

1

2
(vi,t − âi,t)2 −

∑
j

hj,tb̂j,t −
∑
ij

Wijvi,thj,t (2)

which captures pairwise interactions between variables, assigning high energy to improbable con-
figurations and low energy to probable configurations. In the first term, each visible unit contributes
a quadratic penalty that depends on its deviation from a “dynamic mean” determined by the history:

âi,t = ai +
∑
k

Akivk,<t (3)

where k indexes the history vector. Weight matrix A and offset vector a (with elements ai) param-
eterize the autoregressive relationship between the history and current frame of data. Each hidden
unit hj contributes a linear offset to the energy which is also a function of the history:

b̂j,t = bj +
∑
k

Bkjvk,<t. (4)

1To compute Z exactly we would need to integrate over the joint space of all possible output configurations
and all settings of the binary latent variables.
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Weight matrix B and offset b (with elements bj) parameterize the relationship between the history
and the latent variables. The final term of Eq. 2 is a bi-linear constraint on the interaction between
the current setting of the visible units and hidden units, characterized by matrix W .

The density for observation vt conditioned on the past can be expressed by marginalizing out the
binary hidden units in Eq. 1:

p(vt|v<t) =
∑
ht

p(vt,ht|v<t) =
∑
ht

exp (−E(vt,ht|v<t)) /Z(v<t), (5)

while the probability of observing a sequence, v(N+1):T , given an N -frame history v1:N , is simply
the product of all the local conditional probabilities up to time T , the length of a sequence:

p(v(N+1):T |v1:N ) =

T∏
t=N+1

p(vt|v<t). (6)

The TRBM has been used to generate and denoise sequences [19, 20], as well as a prior in multi-
view person tracking [22]. In all cases, it requires an initialization, v1:N , to perform these tasks.
Alternatively, by learning a prior model of v1:N it could easily extended to model sequences non-
conditionally, i.e., defining p(v1:T ).

3.2 Input-Output Temporal Restricted Boltzmann Machines

Ultimately we are interested in learning a probabilistic mapping from an input sequence, s1:T to an
output sequence, v1:T . In other words, we seek a model that defines p(v1:T |s1:T ). However, the
TRBM only defines a distribution over an output sequence p(v1:T ). Extending this model to learn
an input-output mapping is the primary contribution of this paper. Without loss of generality, we will
assume that in addition to having access to the complete history of the input, we also have access to
the firstN frames of the output. Therefore we seek to model p(v(N+1):T |v1:N , s1:T ). By placing an
N th order Markov assumption on the current output, vt, that is, assuming conditional independence
on all other variables given an N -frame history of vt and an N + 1-frame history of the input (up to
and including time t), we can operate in an online setting:

p(v(N+1):T |v1:N , s1:T ) =

T∏
t=N+1

p(vt|v<t, s<=t). (7)

where we have used the shorthand s<=t to describe a vector that concatenates a window over the
input at time t, t−1, . . . , t−N . Note that in an offline setting, it is simple to generalize the model by
conditioning the term inside the product on an arbitrary window of the source (which may include
source observations past time t).
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Figure 1: Left: A Temporal Restricted Boltzmann Machine. Middle: An Input-Output Temporal
Restricted Boltzmann Machine. Right: A factored third-order IOTRBM (FIOTRBM).
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We can easily adapt the TRBM to model p(vt|v<t, s<=t) by modifying its energy function to in-
corporate the input. The general form of energy function remains the same as Eq. 2 but it is now
also conditioned on s<=t by redefining the dynamic biases (Eq. 3 and 4) as follows:

âit = ai +
∑
k

Akivk,<t +
∑
l

Plisl,<=t (8)

b̂jt = bj +
∑
k

Bkjvk,<t +
∑
l

Qljsl,<=t (9)

where l is an index over elements of the input vector. Therefore the matrix P ties the input linearly to
the output (much like existing simple models) but the matrix Q also allows the input to nonlinearly
interact with the output through the latent variables h. We call this model an Input-Output Temporal
Restricted Boltzmann Machine (IOTRBM). It is depicted in Fig. 1 (middle).

A desirable criterion for training the model is to maximize the conditional log likelihood of the data:

L =

T∑
t=N+1

log p(vt|v<t, s<=t). (10)

However, the gradient of Eq. 10 with respect to the model parameters θ = {W,A,B, P,Q,a,b} is
difficult to compute analytically due to the normalization constant Z. Therefore, Contrastive Diver-
gence (CD) learning is typically used in place of maximum likelihood. It follows the approximate
gradient of an objective function that is the difference between two Kullback-Leibler divergences [8].
It is widely used in practice and tends to produce good generative models [4].

The CD updates for the IOTRBM have a common form (see the supplementary material for details):

∆θi ∝
T∑

t=N+1

〈
∂E(vt,ht|v<t, s<=t)

∂θi

〉
data
−
〈
∂E(vt,ht|v<t, s<=t)

∂θi

〉
recon

(11)

where 〈·〉data is an expectation with respect to the training data distribution, and 〈·〉recon is theM -step
reconstruction distribution as obtained by alternating Gibbs sampling, starting with the visible units
clamped to the training data. The input and output history stay fixed during Gibbs sampling. CD re-
quires two main operations: 1) sampling the latent variables, given a window of the input and output,

p(hj,t = 1|vt,v<t, s<=t) =

(
1 + exp(−

∑
i

Wijvi,t − b̂jt)

)−1

, (12)

and 2) reconstructing the output data, given the latent variables:

vi,t|ht,v<t, s<=t ∼ N

vit;∑
j

Wijhj,t + âi,t, 1

 . (13)

Eq. 12 and 13 are alternated M times to arrive at the M -step quantities used in the weight updates.
More details are given in Sec. 4.

3.3 Factored Third-order Input-Output Temporal Restricted Boltzmann Machines

In an IOTRBM the input and target history can only modify the hidden units and current output
through additive biases. There has been recent interest in exploring higher-order RBMs in which
variables interact multiplicatively [14, 16, 21]. Fig. 1 (right) shows an IOTRBM whose parameters
W,Q and P have been replaced by a three-way weight tensor defining a multiplicative interaction
between the three sets of variables. The introduction of the tensor results in the number of model
parameters becoming cubic and therefore we factor the tensor into three matrices: W s,Wh, and
Wv. These parameters connect the input, hidden units, and current target, respectively to a set of
deterministic units which modulate the connections between variables. The introduction of these
factors corresponds to a kind of low-rank approximation to the original interaction tensor, that uses
O(K2) parameters instead of O(K3).
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The energy function of this model is:

E(vt,ht|v<t, s<=t) =
∑
i

1

2
(vi,t−âi,t)2−

∑
j

hj,tb̂j,t−
∑
f

∑
ijl

Wv
ifW

h
jfW

s
lfvi,thj,tsl,<=t (14)

where f indexes factors and âi,t and b̂j,t are defined by Eq. 3 and 4 respectively. Weight updates
all have the same form as Eq. 11 (see the supplementary material for details). The conditional
distribution of the latent variables given the other variables becomes,

p(hj,t = 1|vt,v<t, s<=t) =

1 + exp(−
∑
f

Wh
jf

∑
i

Wv
ifvi,t

∑
l

W s
lfsl,<=t − b̂jt)

−1

(15)

and the reconstruction distribution becomes,

vi,t|ht,v<t, s<=t ∼ N

vit;∑
f

Wv
if

∑
j

Wh
jfhj,t

∑
l

W s
lfsl,<=t + âi,t, 1

 . (16)

4 Experiments

We evaluate the IOTRBM on two facial expression transfer datasets, one based on 2D motion capture
and the other on 3D motion capture. On both datasets we compare our model against three baselines:

Linear regression (LR): We perform a regularized linear regression between each frame of the input
to each frame of the output. The model is solved analytically by least squares. The regularization
parameter is set by cross-validation on the training set.

N th-order Autoregressive2 model (AR): This model improves on linear regression by also consid-
ering linear dynamics through the history of the input and output. Again through regularized least
squares we fit a matrix that maps from a concatenation of the (N + 1)-frame input window s<=t

and N -frame target window, v<t.

Multilayer perceptron: A nonlinear model with one deterministic hidden layer, the same cardinal-
ity as the IOTRBM. The input is the concatenation of the source and target history, the output is the
current target frame. We train with a nonlinear conjugate gradient method.

These baselines were chosen to highlight the main difference of our approach over the majority of
techniques proposed for this application, namely the consideration of dynamics and the use of a
nonlinear mapping through latent variables. We also tried an IORBM, that is, an IOTRBM with no
target history. It consistently performed worse than the IOTRBM, and we do not report its results.

Details of learning All models saw a window of 4 input frames (3 previous + 1 current) and 6
previous output frames, with the exception of linear regression which only saw the current input.
For the IOTRBM models, we found that initializing the parameters A and P to the solution found
by the autoregressive model gave slightly better results. All other parameters were initialized to
small random values. For CD learning we set the learning rates for A and P to 10−6 and for all
other parameters to 10−3. This was done to prevent strong correlations from dominating early in
learning. All parameters used a fixed weight decay of 0.02 and momentum of 0.75. As suggested
by [21], we added a small amount of Gaussian noise (σ = 0.1) to the output history to make the
model more robust to unseen outputs during prediction (recall that the model sees true outputs at
training time, but is fed back predictions at test time).

4.1 2D facial expression transfer

The first dataset we consider consists of facial motion capture of two subjects who were asked
to speak the same phrases. It has 186 trials, totaling 10414 fames per subject. Each frame is 180
dimensional, representing the x and y position of 90 facial markers. Each pair of sequences has been
manually time-aligned based on a phonetic transcription so they are synchronized between subjects.

2This model considers the history of the source when predicting the target so it is not purely autoregressive.
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RMS Marker Error (mm)
XXXXXXXXXModel

Split S1 S2 S3 S4 S5 S6 Mean

Linear regression 6.19 6.18 6.19 5.85 6.13 6.34 6.15 ± 0.15
Autoregressive 5.43 5.22 5.67 5.37 5.37 5.76 5.47 ± 0.20
MLP 5.30 5.28 5.76 5.31 5.28 5.31 5.37 ± 0.19
IOTRBM 5.31 5.27 5.71 5.14 5.17 5.08 5.28 ± 0.22
FIOTRBM 5.41 5.43 5.76 5.42 5.45 5.46 5.49 ± 0.13

Table 1: 2D dataset. Mean RMS error on test output sequences.
Input noise Output noise Input & Output Noise

XXXXXXXXXModel
Noise 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

Linear regression 6.48 15.05 136.2 N/A
Autoregressive 5.83 10.48 84.40 5.78 7.24 36.19 5.85 11.26 94.35
MLP 5.40 5.42 6.80 5.40 5.43 6.37 5.40 5.43 7.55
IOTRBM 5.06 5.07 5.39 5.07 5.18 8.48 5.07 5.17 8.57
FIOTRBM 5.46 5.46 5.66 5.46 5.46 5.56 5.46 5.46 5.82
Table 2: 2D dataset. Mean RMS error (in mm) under noisy input and output history (Split 6).

Preprocessing We found the original data to exhibit significant random relative motion between the
two faces throughout the entire sequences which could not reasonably be modeled. Therefore, we
transformed the data with an affine transform on all markers in each frame such that a select few
nose and skull markers per frame (stationary facial locations) were approximately fixed relative to
the first frame of the source sequences. Both the input and output were reduced to 30 dimensions by
retaining only their first 30 principal components. This maintained 99.9% of the variance in the data.
Finally, the data was normalized to have zero mean and scaled by the average standard deviation of
all the elements in the training set.

We evaluate the various methods on 6 random arbitrary splits of the dataset. In each case, 150 com-
plete sequences are maintained for training and the remaining 36 sequences are used for testing.
Each model is presented with the first 6 frames of the true test output and successive 4-frame win-
dows of the true test input. The exception is the linear regression model, which only sees the current
input. Therefore prediction is measured from the 7th frame onward.

The IOTRBM produces its final output by initializing its visible units with the current previous frame
plus a small amount of Gaussian noise and then performing 30 alternating Gibbs steps. At the last
step, we do not sample the hidden units. This predicted output frame now becomes the most recent
frame in the output history and we iterate forward. The results show a IOTRBM with 30 hidden
units. We also tried a model with 100 hidden units which performed slightly worse. Finally, we
include the performance of a factored, third-order IOTRBM. This model used 30 hidden units and
50 factors.

We report RMS marker error in mm where the mean is taken over all markers, frames and test se-
quences (Table 1). Not surprisingly, the IOTRBM consistently outperforms linear regression. In all
but two splits (where performance is comparable) the IOTRBM outperforms the AR model. Mean
performance over the splits shows an advantage to our approach. This is also qualitatively apparent
in videos we have attached as supplementary material that superimpose the true target with predic-
tions from the model. We encourage the reader to view the attached videos, as certain aesthetic
properties such as the tradeoff between smoothness and responsiveness are not captured by RMS er-
ror. We observed that on the 2D dataset, the FIOTRBM had no advantage over the simpler IOTRBM.

To compare the robustness of each model to corrupted inputs or outputs, we added various amounts
of white Gaussian noise to the input window, output history initialization or both during retargeting
with a trained model. This is performed for data split S6 (though we observed similar results for
other splits). The performance of each model is given in Table 2. The IOTRBM generally out-
performs the baseline models in the presence of noise. This is most apparent in the case of input
noise: the scenario we would most likely find in practice. However, under low to moderate output
noise, we note that the IOTRBM is robust, to the point that it does not even require a valid N frame
output initialization to produce a sensible retargeting. Interestingly, we also observe the FIOTRBM
performing well under high-noise conditions.
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RMS Marker Error (mm)
Split S1 S2 S3 S4 S5 Mean
Autoregressive 2.12 2.98 2.44 2.26 2.46 2.45 ± 0.33
MLP 1.98 1.58 1.69 1.51 1.39 1.63 ± 0.22
IOTRBM 1.98 2.62 2.37 2.11 2.27 2.27 ± 0.25
FIOTRBM 1.70 1.54 1.55 1.42 1.48 1.54 ± 0.10

Table 3: 3D dataset. Mean RMS error on test output sequences.

4.2 3D facial expression transfer

The second dataset we consider consists of facial motion capture data of two subjects, asked to
perform a set of isolated facial movements based on FACS. The movements are more exaggerated
than the speech performed in the 2D set. The dataset consists of two trials, totaling 1050 frames per
subject. In contrast to the 2D set, the marker set used differs between subjects. The first subject has
313 markers (939 dimensions per frame) and the second subject has 332 markers (996 dimensions
per frame). There is no correspondence between marker sets.

Preprocessing The 3D data was not spatially aligned. Both the input and output were PCA-reduced
to 50 dimensions (99.9% of variance). We then normalized in the same way as for the 2D data.

We evaluate performance on 5 random splits of the 3D dataset, shown in Table 3. The IOTRBM and
FIOTRBM models considered have identical architectures to the ones used for 2D data. We found
empirically that increasing the noise level of the output history to σ = 1 improved generalization on
the smaller dataset.

Figure 2: Retargeting with the third-order factored TRBM. We show every 30th frame. The top row
shows the input. The bottom row shows the true target (circles) and the prediction from our model
(crosses). This figure is best viewed in electronic form and zoomed.

Similar to the experiments with 2D data, the IOTRBM consistently outperforms the autoregressive
model. However, it does not outperform the MLP. Interestingly, the factored, third-order model
considerably improves on the performance of the standard IOTRBM and the MLP. Fig. 2 visualizes
the predictions made by the FIOTRBM. We also refer the reader to videos included as supplementary
material. These demonstrate a qualitative improvement of our models over the baselines considered.

5 Conclusion

We have introduced the Input-Output Temporal Restricted Boltzmann Machine, a probabilistic
model for learning mappings between sequences. We presented two variants of the model, one with
pairwise and one with third-order multiplicative interactions. Our experiments so far are limited to
dynamic facial expression transfer, but nothing restricts the model to this domain.

Current methods for facial expression transfer are unable to factor out style in the retargeted
motion, making it difficult to adjust the emotional content of the resulting facial animation. We
are therefore interested in exploring extensions of our model that include style-based contextual
variables (c.f., [21]).
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