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Abstract

Is it possible to crowdsource categorization? Amongst the challenges: (a) each
worker has only a partial view of the data, (b) different workers may have differ-
ent clustering criteria and may produce different numbers of categories, (c) the
underlying category structure may be hierarchical. We propose a Bayesian model
of how workers may approach clustering and show how one may infer clusters
/ categories, as well as worker parameters, using this model. Our experiments,
carried out on large collections of images, suggest that Bayesian crowdclustering
works well and may be superior to single-expert annotations.

1 Introduction
Outsourcing information processing to large groups of anonymous workers has been made easier
by the internet. Crowdsourcing services, such as Amazon’s Mechanical Turk, provide a convenient
way to purchase Human Intelligence Tasks (HITs). Machine vision and machine learning researchers
have begun using crowdsourcing to label large sets of data (e.g., images and video [1, 2, 3]) which
may then be used as training data for AI and computer vision systems. In all the work so far
categories are defined by a scientist, while categorical labels are provided by the workers.

Can we use crowdsourcing to discover categories? I.e., is it possible to use crowdsourcing not only
to classify data instances into established categories, but also to define the categories in the first
place? This question is motivated by practical considerations. If we have a large number of images,
perhaps several tens of thousands or more, it may not be realistic to expect a single person to look
at all images and form an opinion as to how to categorize them. Additionally, individuals, whether
untrained or expert, might not agree on the criteria used to define categories and may not even agree
on the number of categories that are present. In some domains unsupervised clustering by machine
may be of great help; however, unsupervised categorization of images and video is unfortunately a
problem that is far from solved. Thus, it is an interesting question whether it is possible to collect
and combine the opinion of multiple human operators, each one of which is able to view a (perhaps
small) subset of a large image collection.

We explore the question of crowdsourcing clustering in two steps: (a) Reduce the problem to a
number of independent HITs of reasonable size and assign them to a large pool of human workers
(Section 2). (b) Develop a model of the annotation process, and use the model to aggregate the
human data automatically (Section 3) yielding a partition of the dataset into categories. We explore
the properties of our approach and algorithms on a number of real world data sets, and compare
against existing methods in Section 4.

2 Eliciting Information from Workers
How shall we enable human operators to express their opinion on how to categorize a large collection
of images? Whatever method we choose, it should be easy to learn and it should be implementable
by means of a simple graphical user interface (GUI). Our approach (Figure 1) is based on displaying
small subsets of M images and asking workers to group them by means of mouse clicks. We
provide instructions that may cue workers to certain attributes but we do not provide the worker
with category definitions or examples. The worker groups theM items into clusters of his choosing,
as many as he sees fit. An item may be placed in its own cluster if it is unlike the others in the
HIT. The choice of M trades off between the difficulty of the task (worker time required for a HIT
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Figure 1: Schematic of Bayesian crowdclustering. A large image collection is explored by workers. In each
HIT (Section 2), the worker views a small subset of images on a GUI. By associating (arbitrarily chosen)
colors with sets of images the worker proposes a (partial) local clustering. Each HIT thus produces multiple
binary pairwise labels: each pair of images shown in the same HIT is placed by the worker either in the same
category or in different categories. Each image is viewed by multiple workers in different contexts. A model
of the annotation process (Sec. 3.1) is used to compute the most likely set of categories from the binary labels.
Worker parameters are estimated as well.

increases super-linearly with the number of items), the resolution of the images (more images on
the screen means that they will be smaller), and contextual information that may guide the worker
to make more global category decisions (more images give a better context, see Section 4.1.) Partial
clusterings on many M -sized subsets of the data from many different workers are thus the raw data
on which we compute clustering.

An alternative would have been to use pairwise distance judgments or three-way comparisons. A
large body of work exists in the social sciences that makes use of human-provided similarity values
defined between pairs of data items (e.g., Multidimensional Scaling [4].) After obtaining pairwise
similarity ratings from workers, and producing a Euclidean embedding, one could conceivably pro-
ceed with unsupervised clustering of the data in the Euclidean space. However, accurate distance
judgments may be more laborious to specify than partial clusterings. We chose to explore what we
can achieve with partial clusterings alone.

We do not expect workers to agree on their definitions of categories, or to be consistent in catego-
rization when performing multiple HITs. Thus, we avoid explicitly associating categories across
HITs. Instead, we represent the results of each HIT as a series of

(
M
2

)
binary labels (see Figure 1).

We assume that there are N total items (indexed by i), J workers (indexed by j), and H HITs
(indexed by h). The information obtained from workers is a set of binary variables L, with ele-
ments lt ∈ {−1,+1} indexed by a positive integer t ∈ {1, . . . , T}. Associated with the t-th label
is a quadruple (at, bt, jt, ht), where jt ∈ {1, . . . , J} indicates the worker that produced the label,
and at ∈ {1, . . . , N} and bt ∈ {1, . . . , N} indicate the two data items compared by the label.
ht ∈ {1, . . . ,H} indicates the HIT from which the t-th pairwise label was derived. The number of
labels is T = H

(
M
2

)
.

Sampling Procedure We have chosen to structure HITs as clustering tasks of M data items, so
we must specify them. If we simply seperate the items into disjoint sets, then it will be impossible to
infer a clustering over the entire data set. We will not know whether two items in different HITs are
in the same cluster or not. There must be some overlap or redundancy: data items must be members
of multiple HITs.

In the other extreme, we could construct HITs such that each pair of items may be found in at least
one HIT, so that every possible pairwise category relation is sampled. This would be quite expensive
for large number of items N , since the number of labels scales asymptotically as T ∈ Ω(N2).
However, we expect a noisy transitive property to hold: if items a and b are likely to be in the same
cluster, and items b and c are (not) likely in the same cluster, then items a and c are (not) likely to
be in the same cluster as well. The transitive nature of binary cluster relations should allow sparse
sampling, especially when the number of clusters is relatively small.

As a baseline sampling method, we use the random sampling scheme outlined by Strehl and
Ghosh [5] developed for the problem of object distributed clustering, in which a partition of a com-
plete data set is learned from a number of clusterings restricted to subsets of the data. (We compare
our aggregation algorithm to this work in Section 4.) Their scheme controls the level of sampling
redundancy with a single parameter V , which in our problem is interpreted as the expected number
of HITs to which a data item belongs.
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The N items are first distributed deterministically among the HITs, so that there are dMV e items
in each HIT. Then the remaining M − dMV e items in each HIT are filled by sampling without re-
placement from the N − dMV e items that are not yet allocated to the HIT. There are a total of dNVM e
unique HITs. We introduce an additional parameterR, which is the number of different workers that
perform each constructed HIT. The total number of HITs distributed to the crowdsourcing service is
therefore H = RdNVM e, and we impose the constraint that a worker can not perform the same HIT
more than once. This sampling scheme generates T = RdNVM e

(
M
2

)
∈ O(RNVM) binary labels.

With this exception, we find a dearth of ideas in the literature pertaining to sampling methods for
distributed clustering problems. Iterative schemes that adaptively choose maximally informative
HITs may be preferable to random sampling. We are currently exploring ideas in this direction.
3 Aggregation via Bayesian Crowdclustering
There is an extensive literature in machine learning on the problem of combining multiple alternative
clusterings of data. This problem is known as consensus clustering [6], clustering aggregation [7],
or cluster ensembles [5]. While some of these methods can work with partial input clusterings, most
have not been demonstrated in situations where the input clusterings involve only a small subset of
the total data items (M << N ), which is the case in our problem.

In addition, existing approaches focus on producing a single “average” clustering from a set of input
clusterings. In contrast, we are not merely interested in the average clustering produced by a crowd
of workers. Instead, we are interested in understanding the ways in which different individuals
may categorize the data. We seek a master clustering of the data that may be combined in order to
describe the tendencies of individual workers. We refer to these groups of data as atomic clusters.

For example, suppose one worker groups objects into a cluster of tall objects and another of short
objects, while a different worker groups the same objects into a cluster of red objects and another
of blue objects. Then, our method should recover four atomic clusters: tall red objects, short red
objects, tall blue objects, and short blue objects. The behavior of the two workers may then be
summarized using a confusion table of the atomic clusters (see Section 3.3). The first worker groups
the first and third atomic cluster into one category and the second and fourth atomic cluster into
another category. The second worker groups the first and second atomic clusters into a category and
the third and fourth atomic clusters into another category.
3.1 Generative Model
We propose an approach in which data items are represented as points in a Euclidean space and
workers are modeled as pairwise binary classifiers in this space. Atomic clusters are then obtained
by clustering these inferred points using a Dirichlet process mixture model, which estimates the
number of clusters [8]. The advantage of an intermediate Euclidean representation is that it provides
a compact way to capture the characteristics of each data item. Certain items may be inherently more
difficult to categorize, in which case they may lie between clusters. Items may be similar along one
axis but different along another (e.g., object height versus object color.) A similar approach was
proposed by Welinder et al. [3] for the analysis of classification labels obtained from crowdsourcing
services. This method does not apply to our problem, since it involves binary labels applied to single
data items rather than to pairs, and therefore requires that categories be defined a priori and agreed
upon by all workers, which is incompatible with the crowdclustering problem.

We propose a probabilistic latent variable model that relates pairwise binary labels to hidden vari-
ables associated with both workers and images. The graphical model is shown in Figure 1. xi
is a D dimensional vector, with components [xi]d that encodes item i’s location in the embed-
ding space RD. Symmetric matrix Wj ∈ RD×D with entries [Wj ]d1d2 and bias τj ∈ R are
used to define a pairwise binary classifier, explained in the next paragraph, that represents worker
j’s labeling behavior. Because Wj is symmetric, we need only specify its upper triangular por-
tion: vecp{Wj} which is a vector formed by “stacking” the partial columns of Wj according
to the ordering [vecp{Wj}]1 = [Wj ]11, [vecp{Wj}]2 = [Wj ]12, [vecp{Wj}]3 = [Wj ]22, etc.
Φk = {µk,Σk} are the mean and covariance parameters associated with the k-th Gaussian atomic
cluster, and Uk are stick breaking weights associated with a Dirichlet process.

The key term is the pairwise quadratic logistic regression likelihood that captures worker j’s ten-
dency to label the pair of images at and bt with lt:

p(lt|xat ,xbt ,Wjt , τjt) =
1

1 + exp(−ltAt)
(1)
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where we define the pairwise quadratic activity At = xTatWjtxbt + τjt . Symmetry of Wj ensures
that p(lt|xat ,xbt ,Wjt , τjt) = p(lt|xbt ,xat ,Wjt , τjt). This form of likelihood yields a compact
and tractable method of representing classifiers defined over pairs of points in Euclidean space.
Pairs of vectors with large pairwise activity tend to be classified as being in the same category,
and in different categories otherwise. We find that this form of likelihood leads to tightly grouped
clusters of points xi that are then easily discovered by mixture model clustering.

The joint distribution is

p(Φ, U, Z,X,W, τ,L) =

∞∏
k=1

p(Uk|α)p(Φk|m0, β0,J0, η0)

N∏
i=1

p(zi|U)p(xi|Φzi) (2)

J∏
j=1

p(vecp{Wj}|σw0 )p(τj |στ0 )

T∏
t=1

p(lt|xat ,xbt ,Wjt , τjt).

The conditional distributions are defined as follows:

p(Uk|α) = Beta(Uk; 1, α) p(zi = k|U) = Uk

k−1∏
l=1

(1− Ul) (3)

p(xi|Φzi) = Normal(xi;µzi ,Σzi) p(xi|σx0 ) =
∏
d

Normal([xi]d; 0, σx0 )

p(vecp{Wj}|σw0 ) =
∏
d1≤d2

Normal([Wj ]d1d2 ; 0, σw0 ) p(τj |στ0 ) = Normal(τj ; 0, στ0 )

p(Φk|m0, β0,J0, η0) = Normal-Wishart(Φk; m0, β0,J0, η0)

where (σx0 , σ
τ
0 , σ

w
0 , α,m0, β0,J0, η0) are fixed hyper-parameters. Our model is similar to that

of [9], which is used to model binary relational data. Salient differences include our use of a logistic
rather than a Gaussian likelihood, and our enforcement of the symmetry of Wj . In the next section,
we develop an efficient deterministic inference algorithm to accomodate much larger data sets than
the sampling algorithm used in [9].

3.2 Approximate Inference
Exact posterior inference in this model is intractable, since computing it involves integrating over
variables with complex dependencies. We therefore develop an inference algorithm based on the
Variational Bayes method [10]. The high level idea is to work with a factorized proxy posterior
distribution that does not model the full complexity of interactions between variables; it instead
represents a single mode of the true posterior. Because this distribution is factorized, integrations
involving it become tractable. We define the proxy distribution q(Φ, U, Z,X,W, τ) =

∞∏
k=K+1

p(Uk|α)p(Φk|m0, β0,J0, η0)
K∏
k=1

q(Uk)q(Φk)
N∏
i=1

q(zi)q(xi)
J∏
j=1

q(vecp{Wj})q(τj) (4)

using parametric distributions of the following form:

q(Uk) = Beta(Uk; ξk,1, ξk,2) q(Φk) = Normal-Wishart(mk, βk,Jk, ηk) (5)

q(xi) =
∏
d

Normal([xi]d; [µxi ]d, [σ
x
i ]d) q(τj) = Normal(τj ;µτj , σ

τ
j )

q(zi = k) = qik q(vecp{Wj}) =
∏
d1≤d2

Normal([Wj ]d1d2 ; [µwj ]d1d2 , [σ
w
j ]d1d2)

To handle the infinite number of mixture components, we follow the approach of [11] where we
define variational distributions for the firstK components, and fix the remainder to their correspond-
ing priors. {ξk,1, ξk,2} and {mk, βk,Jk, ηk} are the variational parameters associated with the k-th
mixture component. q(zi = k) = qik form the factorized assignment distribution for item i. µxi and
σxi are variational mean and variance parameters associated with data item i’s embedding location.
µwj and σwj are symmetric matrix variational mean and variance parameters associated with worker
j, and µτj and στj are variational mean and variance parameters for the bias τj of worker j. We use
diagonal covariance Normal distributions over Wj and xi to reduce the number of parameters that
must be estimated.
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Next, we define a utility function which allows us to determine the variational parameters. We use
Jensen’s inequality to develop a lower bound to the log evidence:

log p(L|σx0 , στ0 , σw0 , α,m0, β0,J0, η0) (6)
≥Eq log p(Φ, U, Z,X,W, τ,L) +H{q(Φ, U, Z,X,W, τ)},

H{·} is the entropy of the proxy distribution, and the lower bound is known as the Free Energy.
However, the Free Energy still involves intractable integration, because the normal distributions over
variables Wj , xi, and τj are not conjugate [12] to the logistic likelihood term. We therefore locally
approximate the logistic likelihood with an unnormalized Gaussian function lower bound, which is
the left hand side of the following inequality:

g(∆t) exp{(ltAt −∆t)/2 + λ(∆t)(A
2
t −∆2

t )} ≤ p(lt|xat ,xbt ,Wjt , τjt). (7)

This was adapted from [13] to our case of quadratic pairwise logistic regression. Here g(x) =
(1 + e−x)−1 and λ(∆) = [1/2− g(∆)]/(2∆). This expression introduces an additional variational
parameter ∆t for each label, which are optimized in order to tighten the lower bound. Our utility
function is therefore:

F =Eq log p(Φ, U, Z,X,W, τ) +H{q(Φ, U, Z,X,W, τ)} (8)

+
∑
t

log g(∆t) +
lt
2
Eq{At} −

∆t

2
+ λ(∆t)(Eq{A2

t} −∆2
t )

which is a tractable lower bound to the log evidence. Optimization of variational parameters is
carried out in a coordinate ascent procedure, which exactly maximizes each variational parameter in
turn while holding all others fixed. This is guaranteed to converge to a local maximum of the utility
function. The update equations are given in an extended technical report [14]. We initialize the vari-
ational parameters by carrying out a layerwise procedure: first, we substitute a zero mean isotropic
normal prior for the mixture model and perform variational updates over {µxi ,σxi ,µwj ,σwj , µτj , στj }.
Then we use µxi as point estimates for xi and update {mk, βk,Jk, ηk, ξk,1, ξk,2} and determine the
initial number of clusters K as in [11]. Finally, full joint inference updates are performed. Their
computational complexity is O(D4T +D2KN) = O(D4NV RM +D2KN).

3.3 Worker Confusion Analysis
As discussed in Section 3, we propose to understand a worker’s behavior in terms of how he groups
atomic clusters into his own notion of categories. We are interested in the predicted confusion matrix
Cj for worker j, where

[Cj ]k1k2 = Eq

{∫
p(l = 1|xa,xb,Wj , τj)p(xa|Φk1)p(xb|Φk2)dxadxb

}
(9)

which expresses the probability that worker j assigns data items sampled from atomic cluster k1
and k2 to the same cluster, as predicted by the variational posterior. This integration is intractable.
We use the expected values E{Φk1} = {mk1 ,Jk1/ηk1} and E{Φk2} = {mk2 ,Jk2/ηk2} as point
estimates in place of the variational distributions over Φk1 and Φk2 . We then use Jensen’s inequality
and Eq. 7 again to yield a lower bound. Maximizing this bound over ∆ yields

[Ĉj ]k1k2 = g(∆̂k1k2j) exp{(mT
k1µ

w
j mk2 + µτj − ∆̂k1k2j)/2} (10)

which we use as our approximate confusion matrix, where ∆̂k1k2j is given in [14].

4 Experiments
We tested our method on four image data sets that have established “ground truth” categories, which
were provided by a single human expert. These categories do not necessarily reflect the uniquely
valid way to categorize the data set, however they form a convenient baseline for the purpose of
quantitative comparison. We used 1000 images from the Scenes data set from [15] to illustrate our
approach (Figures 2, 3, and 4.) We used 1354 images of birds from 10 species in the CUB-200 data
set [16] (Table 1) and the 3845 images in the Stonefly9 data set [17] (Table 1) in order to compare
our method quantitatively to other cluster aggregation methods. We used the 37794 images from the
Attribute Discovery data set [18] in order to demonstrate our method on a large scale problem.

We set the dimensionality of xi to D = 4 (since higher dimensionality yielded no additional clus-
ters) and we iterated the update equations 100 times, which was enough for convergence. Hyperpa-
rameters were tuned once on synthetic pairwise labels that simulated 100 data points drawn from 4
clusters, and fixed during all experiments.
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Figure 2: Scene Dataset. Left: Mean locations µx
i projected onto first two Fisher discriminant vectors, along

with cluster labels superimposed at cluster means mk. Data items are colored according to their MAP label
argmaxk qik. Center: High confidence example images from the largest five clusters (rows correspond to
clusters.) Right: Confusion table between ground truth scene categories and inferred clusters. The first cluster
includes three indoor ground truth categories, the second includes forest and open country categories, and the
third includes two urban categories. See Section 4.1 for a discussion and potential solution of this issue.
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Figure 3: (Left of line) Worker confusion matrices for the 40 most active workers. (Right of line) Selected
worker confusion matrices for Scenes experiment. Worker 9 (left) makes distinctions that correspond closely to
the atomic clustering. Worker 45 (center) makes coarser distinctions, often combining atomic clusters. Right:
Worker 29’s single HIT was largely random and does not align with the atomic clusters.

Figure 2 (left) shows the mean locations of the data items µxi learned from the Scene data set,
visualized as points in Euclidean space. We find well seperated clusters whose labels k are displayed
at their mean locations mk. The points are colored according to argmaxk qik, which is item i’s MAP
cluster assignment. The cluster labels are sorted according to the number of assigned items, with
cluster 1 being the largest. The axes are the first two Fisher discriminant directions (derived from
the MAP cluster assignments) as axes. The clusters are well seperated in the four dimensionsal
space (we give the average assignment entropy − 1

N

∑
ik qik log qik in the figure title, which shows

little cluster overlap.) Figure 2 (center) shows six high confidence examples from clusters 1 through
5. Figure 2 (right) shows the confusion table between the ground truth categories and the MAP
clustering. We find that the MAP clusters often correspond to single ground truth categories, but they
sometimes combine ground truth categories in reasonable ways. See Section 4.1 for a discussion and
potential solution of this issue.

Figure 3 (left of line) shows the predicted confusion matrices (Section 3.3) associated with the
40 workers that performed the most HITs. This matrix captures the worker’s tendency to label
items from different atomic clusters as being in the same or different category. Figure 3 (right of
line) shows in detail the predicted confusion matrices for three workers. We have sorted the MAP
cluster indices to yield approximately block diagonal matrices, for ease of interpretation. Worker 9
makes relatively fine grained distinctions, including seperating clusters 1 and 9 that correspond to
the indoor categories and the bedroom scenes, respectively. Worker 45 combines clusters 5 and 8
which correspond to city street and highway scenes in addition to grouping together all indoor scene
categories. The finer grained distinctions made by worker 9 may be a result of performing more
HITs (74) and seeing a larger number of images than worker 45, who performed 15 HITs. Finally
(far right), we find a worker whose labels do not align with the atomic clustering. Inspection of his
labels show that they were entered largely at random.

Figure 4 (top left) shows the number of HITs performed by each worker according to descending
rank. Figure 4 (bottom left) is a Pareto curve that indicates the percentage of the HITs performed
by the most active workers. The Pareto principle (i.e., the law of the vital few) [19] roughly holds:
the top 20% most active workers perform nearly 80% of the work. We wish to understand the
extent to which the most active workers contribute to the results. For the purpose of quantitative
comparisons, we use Variation of Information (VI) [20] to measure the discrepancy between the
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Figure 4: Scene Data set. Left Top: Number of completed HITs by worker rank. Left Bottom: Pareto curve.
Center: Variation of Information on the Scene data set as we incrementally remove top (blue) and bottom (red)
ranked workers. The top workers are removed one at a time, bottom ranked workers are removed in groups so
that both curves cover roughly the same domain. The most active workers do not dominate the results. Right:
Variation of Information between the inferred clustering and the ground truth categories on the Scene data set,
as a function of sampling parameter V . R is fixed at 5.

Bayes Crowd Bayes Consensus NMF [21] Strehl & Ghosh [5]
Birds [16] (VI) 1.103± 0.082 1.721± 0.07 1.500± 0.26 1.256± 0.001

Birds (time) 18.5 min 18.1 min 27.9 min 0.93 min
Stonefly9 [17] (VI) 2.448± 0.063 2.735± 0.037 4.571± 0.158 3.836± 0.002

Stonefly9 (time) 100.1 min 98.5 min 212.6 min 46.5 min
Table 1: Quantitative comparison on Bird and Stonefly species categorization data sets. Quality is measured
using Variation of Information between the inferred clustering and ground truth. Bayesian Crowdclustering
outperforms the alternatives.

inferred MAP clustering and the ground truth categorization. VI is a metric with strong information
theoretic justification that is defined between two partitions (clusterings) of a data set; smaller values
indicate a closer match and a VI of 0 means that two clusterings are identical. In Figure 4 (center)
we incrementally remove the most active (blue) and least active (red) workers. Removal of workers
corresponds to moving from right to left on the x-axis, which indicates the number of HITs used to
learn the model. The results show that removing the large number of workers that do fewer HITs is
more detrimental to performance than removing the relatively few workers that do a large number
of HITs (given the same number of total HITs), indicating that the atomic clustering is learned from
the crowd at large.

In Figure 4 (right), we judge the impact of the sampling redundancy parameter V described in Sec-
tion 2. We compare our approach (Bayesian crowdclustering) to two existing clustering aggregation
methods from the literature: consensus clustering by nonnegative matrix factorization (NMF) [21]
and the cluster ensembles method of Strehl and Ghosh (S&G) [5]. NMF and S&G require the num-
ber of inferred clusters to be provided as a parameter, and we set this to the number of ground truth
categories. Even without the benefit of this additional information, our method (which automati-
cally infers the number of clusters) outperforms the alternatives. To judge the benefit of modeling
the characteristics of individual workers, we also compare against a variant of our model in which
all HITs are treated as if they are performed by a single worker (Bayesian consensus.) We find a
significant improvement. We fix R = 5 in this experiment, but we find a similar ranking of methods
at other values of R. However, the performance benefit of the Bayesian methods over the existing
methods increases with R.

We compare the four methods quantitatively on two additional data sets, with the results summarized
in Table 1. In both cases, we instruct workers to categorize based on species. This is known to be
a difficult task for non-experts. We set V = 6 and R = 5 for these experiments. Again, we find
that Bayesian Crowdclustering outperforms the alternatives. A run time comparison is also given
in Table 1. Bayesian Crowdclustering results on the Bird and Stonefly data sets are summarized
in [14].

Finally, we demonstrate Bayesian crowdclustering on the large scale Attribute Discovery data set.
This data set has four image categories: bags, earrings, ties, and women’s shoes. In addition, each
image is a member of one of 27 sub-categories (e.g., the bags category includes backpacks and totes
as sub-categories.) See [14] for summary figures. We find that our method easily discovers the four
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Figure 5: Divisive Clustering on the Scenes data set. Left: Confusion matrix and high confidence examples
when running our method on images assigned to cluster one in the original experiment (Figure 2). The three
indoor scene categories are correctly recovered. Center: Workers are unable to subdivide mountain scenes
consistently and our method returns a single cluster. Right: Workers may find perceptually relevant distinctions
not present in the ground truth categories. Here, the highway category is subdivided according to the number
of cars present.
categories. The subcategories are not discovered, likely due to limited context associated with HITs
with size M = 36 as discussed in the next section. Runtime was approximately 9.5 hours on a six
core Intel Xeon machine.
4.1 Divisive Clustering
As indicated by the confusion matrix in Figure 2 (right), our method results in clusters that corre-
spond to reasonable categories. However, it is clear that the data often has finer categorical distinc-
tions that go undiscovered. We conjecture that this is a result of the limited context presented to the
worker in each HIT. When shown a set of M = 36 images consisting mostly of different types of
outdoor scenes and a few indoor scenes, it is reasonable for a worker to consider the indoor scenes
as a unified category. However, if a HIT is composed purely of indoor scenes, a worker might draw
finer distinctions between images of offices, kitchens, and living rooms. To test this conjecture,
we developed a hierarchical procedure in which we run Bayesian crowdclustering independently on
images that are MAP assigned to the same cluster in the original Scenes experiment.

Figure 5 (left) shows the results on the indoor scenes assigned to original cluster 1. We find that when
restricted to indoor scenes, the workers do find the relevant distinctions and our algorithm accurately
recovers the kitchen, living room, and office ground truth categories. In Figure 5 (center) we ran the
procedure on images from original cluster 4, which is composed predominantly of mountain scenes.
The algorithm discovers one subcluster. In Figure 5 (right) the workers divide a cluster into three
subclusters that are perceptually relevant: they have organized them according to the number of cars
present.

5 Conclusions
We have proposed a method for clustering a large set of data by distributing small tasks to a large
group of workers. It is based on using a novel model of human clustering, as well as a novel ma-
chine learning method to aggregate worker annotations. Modeling both data item properties and the
workers’ annotation process and parameters appears to produce performance that is superior to ex-
isting clustering aggregation methods. Our study poses a number of interesting questions for further
research: Can adaptive sampling methods (as opposed to our random sampling) reduce the number
of HITs that are necessary to achieve high quality clustering? Is it possible to model the workers’
tendency to learn over time as they perform HITs, rather than treating HITs independently as we do
here? Can we model contextual effects, perhaps by modeling the way that humans “regularize” their
categorical decisions depending on the number and variety of items present in the task?
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