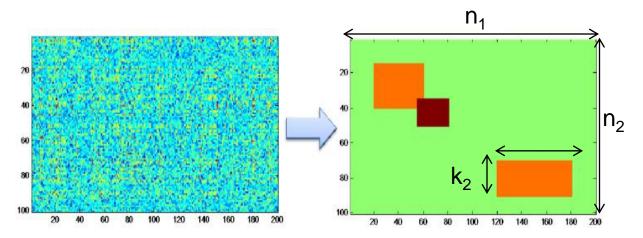
Minimax Localization of Structural Information in Large Noisy Matrices

Poster: W055

M. Kolar

S. Balakrishnan


A. Rinaldo

A. Singh

Identifying biclusters

<u>Goal:</u> De-noise and re-order rows/columns of the matrix to infer biclusters that are activated.

Observation model

 $\mathbf{R} \sim \text{i.i.d. zero-mean subgaussian}(\sigma^2)$ perturbation

Identifying biclusters

Information Theoretic minimax limit: If

SNR
$$\frac{\beta}{\sigma} \sim \sqrt{\frac{k_1 k_2 \log(n_1 n_2)}{\min(k_1, k_2)}}$$

then, for **any** biclustering procedure, the probability of failure remains bounded away from zero by a constant.

Note:

Optimal performance achieved by scanning over all submatrices of size $k_1 \times k_2$

Computationally efficient procedures

SNR

Elementwise thresholding

Sparse Singular Value Decomposition

 $\frac{\beta}{\sigma} \sim \sqrt{k_1 k_2 \log(n_1 n_2)}$

Row/Column Averaging (large clusters only $k \sim n^{1/2+\alpha}$)

$$\frac{\beta}{\sigma} \sim \frac{\sqrt{k_1 k_2 \log(n_1 n_2)}}{\min(n_1^{\alpha}, n_2^{\alpha})}$$

Note:

These procedures do not achieve information theoretic lower bound.