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Abstract

Kernel-based reinforcement-learning (KBRL) is a method for learning a decision
policy from a set of sample transitions which stands out for its strong theoretical
guarantees. However, the size of the approximator grows with the number of tran-
sitions, which makes the approach impractical for large problems. In this paper
we introduce a novel algorithm to improve the scalability of KBRL. We resort
to a special decomposition of a transition matrix, called stochastic factorization,
to fix the size of the approximator while at the same time incorporating all the
information contained in the data. The resulting algorithm, kernel-based stochas-
tic factorization (KBSF), is much faster but still converges to a unique solution.
We derive a theoretical upper bound for the distance between the value functions
computed by KBRL and KBSF. The effectiveness of our method is illustrated with
computational experiments on four reinforcement-learning problems, including a
difficult task in which the goal is to learn a neurostimulation policy to suppress
the occurrence of seizures in epileptic rat brains. We empirically demonstrate that
the proposed approach is able to compress the information contained in KBRL’s
model. Also, on the tasks studied, KBSF outperforms two of the most promi-
nent reinforcement-learning algorithms, namely least-squares policy iteration and
fitted Q-iteration.

1 Introduction

Recent years have witnessed the emergence of several reinforcement-learning techniques that make
it possible to learn a decision policy from a batch of sample transitions. Among them, Ormoneit
and Sen’s kernel-based reinforcement learning (KBRL) stands out for two reasons [1]. First, unlike
other approximation schemes, KBRL always converges to a unique solution. Second, KBRL is
consistent in the statistical sense, meaning that adding more data always improves the quality of the
resulting policy and eventually leads to optimal performance.

Despite its nice theoretical properties, KBRL has not been widely adopted by the reinforcement
learning community. One possible explanation for this is its high computational complexity. As
discussed by Ormoneit and Glynn [2], KBRL can be seen as the derivation of a finite Markov
decision process whose number of states coincides with the number of sample transitions collected
to perform the approximation. This gives rise to a dilemma: on the one hand one wants as much
data as possible to describe the dynamics of the decision problem, but on the other hand the number
of transitions should be small enough to allow for the numerical solution of the resulting model.

In this paper we describe a practical way of weighting the relative importance of these two con-
flicting objectives. We rely on a special decomposition of a transition matrix, called stochastic
factorization, to rewrite it as the product of two stochastic matrices of smaller dimension. As we
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will see, the stochastic factorization possesses a very useful property: if we swap its factors, we
obtain another transition matrix which retains some fundamental characteristics of the original one.
We exploit this property to fix the size of KBRL’s model. The resulting algorithm, kernel-based
stochastic factorization (KBSF), is much faster than KBRL but still converges to a unique solution.
We derive a theoretical bound on the distance between the value functions computed by KBRL and
KBSF. We also present experiments on four reinforcement-learning domains, including the double
pole-balancing task, a difficult control problem representative of a wide class of unstable dynamical
systems, and a model of epileptic rat brains in which the goal is to learn a neurostimulation policy
to suppress the occurrence of seizures. We empirically show that the proposed approach is able to
compress the information contained in KBRL’s model, outperforming both the least-squares policy
iteration algorithm and fitted Q-iteration on the tasks studied [3, 4].

2 Background

The KBRL algorithm solves a continuous state-space Markov Decision Process (MDP) using a finite
model approximation. A finite MDP is defined by a tuple M ≡ (S,A,Pa,ra,γ) [5]. The finite sets

S and A are the state and action spaces. The matrix Pa ∈ R
|S|×|S| gives the transition probabilities

associated with action a ∈ A and the vector ra ∈R
|S| stores the corresponding expected rewards. The

discount factor γ ∈ [0,1) is used to give smaller weights to rewards received further in the future.

In the case of a finite MDP, we can use dynamic programming to find an optimal decision-policy

π∗ ∈ A|S| in polynomial time [5]. As well known, this is done using the concept of a value function.

Throughout the paper, we use v ∈R
|S| to denote the state-value function and Q ∈R

|S|×|A| to refer to

the action-value function. Let the operator Γ :R|S|×|A| 7→R
|S| be given by ΓQ= v, with vi =max j qi j,

and define ∆ : R|S| 7→ R
|S|×|A| as ∆v = Q, where the ath column of Q is given by qa = ra + γPav.

A fundamental result in dynamic programming states that, starting from v(0) = 0, the expression

v(t) = Γ∆v(t−1) gives the optimal t-step value function, and as t → ∞ the vector v(t) approaches v∗,
from which any optimal decision policy π∗ can be derived [5].

Consider now an MDP with continuous state space S⊂R
d and let Sa = {(sa

k ,r
a
k , ŝ

a
k)|k = 1,2, ...,na}

be a set of sample transitions associated with action a ∈ A, where s
a
k , ŝ

a
k ∈ S and r

a
k ∈ R. The model

constructed by KBRL has the following transition and reward functions:

P̂a(s j|si) =

{

κa(si,s
a
k), if s j = ŝ

a
k ,

0, otherwise
and R̂a(si,s j) =

{

r
a
k , if s j = ŝ

a
k ,

0, otherwise,

where κa(·,sa
k) is a weighting kernel centered at sa

k and defined in such a way that ∑
na

k=1 κa(si,s
a
k) = 1

for all si ∈ S (for example, κa can be a normalized Gaussian function; see [1] and [2] for a formal
definition and other examples of valid kernels). Since only transitions ending in the states ŝa

k have a

non-zero probability of occurrence, one can solve a finite MDP M̂ whose space is composed solely
of these n = ∑a na states [2, 6]. After the optimal value function of M̂ has been found, the value of
any state si ∈ S can be computed as Q(si,a) = ∑

na

k=1 κa(si,s
a
k)
[

r
a
k + γV̂ ∗(ŝa

k)
]

. Ormoneit and Sen [1]
proved that, if na → ∞ for all a ∈ A and the widths of the kernels κa shrink at an “admissible” rate,
the probability of choosing a suboptimal action based on Q(si,a) converges to zero.

As discussed in the introduction, the problem with the practical application of KBRL is that, as n
increases, so does the cost of solving the MDP derived by this algorithm. To alleviate this problem,
Jong and Stone [6] propose growing incrementally the set of sample transitions, using a prioritized
sweeping approach to guide the exploration of the state space. In this paper we present a new method
for addressing this problem, using stochastic factorization.

3 Stochastic factorization

A stochastic matrix has only non-negative elements and each of its rows sums to 1. That said, we
can introduce the concept that will serve as a cornerstone for the rest of the paper:

Definition 1 Given a stochastic matrix P ∈R
n×p, the relation P = DK is called a stochastic factor-

ization of P if D ∈ R
n×m and K ∈ R

m×p are also stochastic matrices. The integer m > 0 is the order
of the factorization.
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This mathematical concept has been explored before. For example, Cohen and Rothblum [7] briefly
discuss it as a special case of non-negative matrix factorization, while Cutler and Breiman [8] focus
on slightly modified versions of the stochastic factorization for statistical data analysis. However, in
this paper we will focus on a useful property of this type of factorization that seems to have passed
unnoticed thus far. We call it the “stochastic-factorization trick”:

Given a stochastic factorization of a square matrix, P = DK, swapping the factors of the fac-
torization yields another transition matrix P̄ = KD, potentially much smaller than the original,
which retains the basic topology and properties of P.

The stochasticity of P̄ follows immediately from the same property of D and K. What is perhaps
more surprising is the fact that this matrix shares some fundamental characteristics with the orig-
inal matrix P. Specifically, it is possible to show that: (i) for each recurrent class in P there is a
corresponding class in P̄ with the same period and, given some simple assumptions about the fac-
torization, (ii) P is irreducible if and only if P̄ is irreducible and (iii) P is regular if and only if P̄ is
regular (see [9] for details).

Given the strong connection between P∈R
n×n and P̄∈R

m×m, the idea of replacing the former by the
latter comes almost inevitably. The motivation for this would be, of course, to save computational
resources when m < n. In this paper we are interested in exploiting the stochastic-factorization
trick to reduce the computational cost of dynamic programming. The idea is straightforward: given
stochastic factorizations of the transition matrices Pa, we can apply our trick to obtain a reduced
MDP that will be solved in place of the original one. In the most general scenario, we would
have one independent factorization Pa = DaKa for each action a ∈ A. However, in the current
work we will focus on a particular case which will prove to be convenient both mathematically and
computationally. When all factorizations share the same matrix D, it is easy to derive theoretical
guarantees regarding the quality of the solution of the reduced MDP:

Proposition 1 Let M ≡ (S,A,Pa,ra,γ) be a finite MDP with |S|= n and 0 ≤ γ < 1. Let DKa = Pa

be |A| stochastic factorizations of order m and let r̄a be vectors in R
m such that Dr̄a = ra for all

a ∈ A. Define the MDP M̄ ≡ (S̄,A, P̄a, r̄a,γ), with |S̄|= m and P̄a = KaD. Then,

‖v∗− ṽ‖∞ ≤
C̄

(1− γ)2
max

i
(1−max

j
di j), (1)

where ṽ = ΓDQ̄∗, C̄ = maxa,k r̄a
k −mina,k r̄a

k , and ‖·‖∞ is the maximum norm.

Proof. Since ra = Dr̄a and DP̄a = DKaD = PaD for all a ∈ A, the stochastic matrix D satisfies Sorg
and Singh’s definition of a soft homomorphism between M and M̄ (see equations (25)–(28) in [10]).
Applying Theorem 1 by the same authors, we know that

∥

∥Γ(Q∗−DQ̄∗)
∥

∥

∞
≤ (1− γ)−1 supi,t(1−

max j di j)δ̄
(t)
i , where δ̄

(t)
i = max j:di j>0,k q̄

(t)
jk −min j:di j>0,k q̄

(t)
jk and q̄

(t)
jk are elements of the optimal

t-step action-value function of M̄, Q̄
(t)

= ∆v̄(t−1). In order to obtain our bound, we note that
∥

∥ΓQ∗−ΓDQ̄∗
∥

∥

∞
≤
∥

∥Γ(Q∗−DQ̄∗)
∥

∥

∞
and, for all t > 0, δ̄

(t)
i ≤ (1− γ)−1(maxa,k r̄a

k −mina,k r̄a
k). 2

Proposition 1 elucidates the basic mechanism through which one can exploit the stochastic-
factorization trick to reduce the number of states in an MDP. However, in order to apply this idea
in practice, one must actually compute the factorizations. This computation can be expensive, ex-
ceeding the computational effort necessary to calculate v∗ [11, 9]. In the next section we discuss a
strategy to reduce the computational cost of the proposed approach.

4 Kernel-based stochastic factorization

In Section 2 we presented KBRL, an approximation scheme for reinforcement learning whose main
drawback is its high computational complexity. In Section 3 we discussed how the stochastic-
factorization trick can in principle be useful to reduce an MDP, as long as one circumvents the
computational burden imposed by the calculation of the matrices involved in the process. We now
show how to leverage these two components to produce an algorithm called kernel-based stochastic
factorization (KBSF) that overcomes these computational limitations.
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As outlined in Section 2, KBRL defines the probability of a transition from state ŝ
b
i to state ŝ

a
k via

kernel-averaging, formally denoted κa(ŝb
i ,s

a
k), where a,b ∈ A. So for each action a ∈ A, the state

ŝ
b
i has an associated stochastic vector p̂a

j ∈ R
1×n whose non-zero entries correspond to the function

κa(ŝb
i , ·) evaluated at sa

k ,k = 1,2, . . . ,na. Recall that we are dealing with a continuous state space,
so it is possible to compute an analogous vector for any si ∈ S. Therefore, we can link each state of
the original MDP with |A| n-dimensional stochastic vectors. The core strategy of KBSF is to find

a set of m representative states associated with vectors ka
i ∈ R

1×n whose convex combination can

approximate the rows of the corresponding P̂a.

KBRL’s matrices P̂a have a very specific structure, since only transitions ending in states ŝ
a
i asso-

ciated with action a have a non-zero probability of occurrence. Suppose now we want to apply the
stochastic-factorization trick to KBRL’s MDP. Assuming that the matrices Ka have the same struc-

ture as P̂a, when computing P̄a = KaD we only have to look at the submatrices of Ka and D corre-

sponding to the na non-zero columns of Ka. We call these matrices K̇a ∈ R
m×na and Ḋa ∈ R

na×m.

Let {s̄1, s̄2, ..., s̄m} be a set of representative states in S. KBSF computes matrices Ḋa and K̇a with

elements ḋa
i j = κ̄(ŝa

i , s̄ j) and k̇a
i j = κa(s̄i,s

a
j), where κ̄ is also a kernel. Obviously, once we have Ḋa

and K̇a it is trivial to compute D and Ka. Depending on how the states s̄i and the kernels κ̄ are

defined, we have DKa ≈ P̂a for all a ∈ A. The important point here is that the matrices Pa = DKa

are never actually computed, but instead we solve an MDP with m states whose dynamics are given

by P̄a = KaD = K̇aḊa. Algorithm 1 gives a step-by-step description of KBSF.

Algorithm 1 KBSF

Input: Sa for all a ∈ A, m
Select a set of representative states {s̄1, s̄2, ..., s̄m}
for each a ∈ A do

Compute matrix Ḋa: ḋa
i j = κ̄(ŝa

i , s̄ j)

Compute matrix K̇a: k̇a
i j = κa(s̄i,s

a
j)

Compute vector r̄a: r̄a
i = ∑ j k̇a

i jr
a
j

end for
Solve M̄ ≡ (S̄,A, P̄a, r̄a,γ), with P̄a= K̇aḊa

Return ṽ = ΓDQ̄∗, where D⊺ =
[

(

Ḋa1
)⊺ (

Ḋa2
)⊺

...
(

Ḋa|A|
)⊺
]

Observe that we did not describe how to define the representative states s̄i. Ideally, these states

would be linked to vectors ka
i forming a convex hull which contains the rows of P̂a. In practice, we

can often resort to simple methods to pick states s̄i in strategic regions of S. In Section 5 we give
an example of how to do so. Also, the reader might have noticed that the stochastic factorizations

computed by KBSF are in fact approximations of the matrices P̂a. The following proposition extends
the result of the previous section to the approximate case:

Proposition 2 Let M̂ ≡ (S,A, P̂a, r̂a,γ) be the finite MDP derived by KBRL and let D, Ka, and r̄a be
the matrices and vector computed by KBSF. Then,

‖v̂∗− ṽ‖∞ ≤
1

1− γ
max

a
‖r̂a −Dr̄a‖∞ +

1

(1− γ)2

(

C̄max
i

(1−max
j

di j)+
Ĉγ

2
max

a

∥

∥P̂a −DKa
∥

∥

∞

)

, (2)

where Ĉ = maxa,i r̂a
i −mina,i r̂a

i .

Proof. Let M ≡ (S,A,DKa,Dr̄a,γ). It is obvious that

‖v̂∗− ṽ‖∞ ≤ ‖v̂∗−v∗‖∞ +‖v∗− ṽ‖∞. (3)

In order to provide a bound for ‖v̂∗−v∗‖∞, we apply Whitt’s Theorem 3.1 and Corollary (b) of his

Theorem 6.1 [12], with all mappings between M̂ and M taken to be identities, to obtain

‖v̂∗−v∗‖∞ ≤
1

1− γ

(

max
a

‖r̂a −Dr̄a‖∞ +
Ĉγ

2(1− γ)
max

a

∥

∥P̂a −DKa
∥

∥

∞

)

. (4)

Resorting to Proposition 1, we can substitute (1) and (4) in (3) to obtain (2). 2
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Notice that when D is deterministic—that is, when all its non-zero elements are 1—expression (2)
reduces to Whitt’s classical result regarding state aggregation in dynamic programming [12]. On
the other hand, when the stochastic factorizations are exact, we recover (1), which is a computable
version of Sorg and Singh’s bound for soft homomorphisms [10]. Finally, if we have exact deter-
ministic factorizations, the right-hand side of (2) reduces to zero. This also makes sense, since in
this case the stochastic-factorization trick gives rise to an exact homomorphism [13].

As shown in Algorithm 1, KBSF is very simple to understand and to implement. It is also fast,
requiring only O(nm2|A|) operations to build a reduced version of an MDP. Finally, and perhaps
most importantly, KBSF always converges to a unique solution whose distance to the optimal one is
bounded. In the next section we show how all these qualities turn into practical benefits.

5 Experiments

We now present a series of computational experiments designed to illustrate the behavior of KBSF
in a variety of challenging domains. We start with a simple problem showing that KBSF is indeed
capable of compressing the information contained in KBRL’s model. We then move to more difficult
tasks, and compare KBSF with other state-of-the-art reinforcement-learning algorithms.

All problems considered in this section have a continuous state space and a finite number of actions
and were modeled as discounted tasks with γ = 0.99. The algorithms’s results correspond to the
performance of the greedy decision policy derived from the final value function computed. In all
cases, the decision policies were evaluated on a set of test states from which the tasks cannot be
easily solved. This makes the tasks considerably harder, since the algorithms must provide a good
approximation of the value function over a larger region of the state space.

The experiments were carried out in the same way for all tasks: first, we collected a set of n sample
transitions (sa

k ,r
a
k , ŝ

a
k) using a uniformly-random exploration policy. Then the states ŝa

k were grouped
by the k-means algorithm into m clusters and a Gaussian kernel κ̄ was positioned at the center of
each resulting cluster [14]. These kernels defined the models used by KBSF to approximate the
value function. This process was repeated 50 times for each task.

We adopted the same width for all kernels. The algorithms were executed on each task with the fol-
lowing values for this parameter: {1,0.1,0.01}. The results reported represent the best performance
of the algorithms over the 50 runs; that is, for each n and each m we picked the width that gener-
ated the maximum average return. Throughout this section we use the following convention to refer
to specific instances of each method: the first number enclosed in parentheses after an algorithm’s
name is n, the number of sample transitions used in the approximation, and the second one is m, the
size of the model used to approximate the value function. Note that for KBRL n and m coincide.

Figure 1 shows the results obtained by KBRL and KBSF on the puddle-world task [15]. In Fig-
ure 1a and 1b we observe the effect of fixing the number of transitions n and varying the number
of representative states m. As expected, the results of KBSF improve as m → n. More surprising
is the fact that KBSF has essentially the same performance as KBRL using models one order of
magnitude smaller. This indicates that KBSF is summarizing well the information contained in the
data. Depending on the values of n and m, this compression may represent a significant reduction of
computational resources. For example, by replacing KBRL(8000) with KBSF(8000, 90), we obtain
a decrease of more than 99% on the number of operations performed to find a policy, as shown in
Figure 1b (the cost of constructing KBSF’s MDP is included in all reported run times).

In Figures 1c and 1d we fix m and vary n. Observe in Figure 1c how KBRL and KBSF have similar
performances, and both improve as n → ∞. However, since KBSF is using a model of fixed size, its
computational cost depends only linearly on n, whereas KBRL’s cost grows with n3. This explains
the huge difference in the algorithms’s run times shown in Figure 1d.

Next we evaluate how KBSF compares to other reinforcement-learning approaches. We first contrast
our method with Lagoudakis and Parr’s least-squares policy iteration algorithm (LSPI) [3]. LSPI is
a natural candidate here because it also builds an approximator of fixed size out of a batch of sample
transitions. In all experiments LSPI used the same data and approximation architectures as KBSF
(to be fair, we fixed the width of KBSF’s kernel κa at 1 in the comparisons).

Figure 2 shows the results of LSPI and KBSF on the single and double pole-balancing tasks [16].
We call attention to the fact that the version of the problems used here is significantly harder than
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Figure 1: Results on the puddle-world task averaged over 50 runs. The algorithms were evaluated
on two sets of states distributed over the region of the state space surrounding the “puddles”. The
first set was a 3×3 grid over [0.1,0.3]× [0.3,0.5] and the second one was composed of four states:
{0.1,0.3}×{0.9,1.0}. The shadowed regions represent 99% confidence intervals.

the more commonly-used variants in which the decision policies are evaluated on a single state close
to the origin. This is probably the reason why LSPI achieves a success rate of no more than 60% on
the single pole-balancing task, as shown in Figure 2a. In contrast, KBSF’s decision policies are able
to balance the pole in 90% of the attempts, on average, using as few as m = 30 representative states.

The results of KBSF on the double pole-balancing task are still more impressive. As Wieland [17]
rightly points out, this version of the problem is considerably more difficult than its single pole
variant, and previous attempts to apply reinforcement-learning techniques to this domain resulted
in disappointing performance [18]. As shown in Figure 2c, KBSF(106, 200) is able to achieve a
success rate of more than 80%. To put this number in perspective, recall that some of the test states
are quite challenging, with the two poles inclined and falling in opposite directions.

The good performance of KBSF comes at a relatively low computational cost. A conservative esti-
mate reveals that, were KBRL(106) run on the same computer used for these experiments, we would
have to wait for more than 6 months to see the results. KBSF(106, 200) delivers a decision policy in
less than 7 minutes. KBSF’s computational cost also compares well with that of LSPI, as shown in
Figures 2b and 2d. LSPI’s policy-evaluation step involves the update and solution of a linear system
of equations, which take O(nm2) and O(m3|A|3), respectively. In addition, the policy-update stage
requires the definition of π(ŝa

k) for all n states in the set of sample transitions. In contrast, KBSF

only performs O(m3) operations to evaluate a decision policy and O(m2|A|) operations to update it.

We conclude our empirical evaluation of KBSF by using it to learn a neurostimulation policy for the
treatment of epilepsy. In order to do so, we use a generative model developed by Bush et al. [19]
based on real data collected from epileptic rat hippocampus slices. This model was shown to re-

6



20 40 60 80 100 120 140

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

m

S
u

c
c
e

s
s
fu

l 
e

p
is

o
d

e
s

LSPI(5x10
4
,m)

KBSF(5x10
4
,m)

(a) Performance on single pole-balancing

20 40 60 80 100 120 140

1
5

5
0

5
0

0

m

S
e

c
o

n
d

s
 (

lo
g

)

LSPI(5x10
4
,m)

KBSF(5x10
4
,m)

(b) Run time on single pole-balancing

50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

m

S
u
c
c
e
s
s
fu

l 
e
p
is

o
d
e
s

LSPI(10
6
,m)

KBSF(10
6
,m)

(c) Performance on double pole-balancing

50 100 150 200

5
0

2
0
0

1
0
0
0

1
0
0
0
0

m

S
e
c
o
n
d
s
 (

lo
g
)

LSPI(10
6
,m)

KBSF(10
6
,m)

(d) Run time on double pole-balancing

Figure 2: Results on the pole-balancing tasks averaged over 50 runs. The values correspond to the
fraction of episodes initiated from the test states in which the pole(s) could be balanced for 3000
steps (one minute of simulated time). The test sets were regular grids defined over the hypercube
centered at the origin and covering 50% of the state-space axes in each dimension (we used a resolu-
tion of 3 and 2 cells per dimension for the single and double versions of the problem, respectively).
Shadowed regions represent 99% confidence intervals.

produce the seizure pattern of the original dynamical system and was later validated through the
deployment of a learned treatment policy on a real brain slice [20]. The associated decision problem
has a five-dimensional continuous state space and extremely non-linear dynamics. At each state the
agent must choose whether or not to apply an electrical pulse. The goal is to suppress seizures while
minimizing the total amount of stimulation needed to do so.

We use as a baseline for our comparisons the fixed-frequency stimulation policies usually adopted
in standard in vitro clinical studies [20]. In particular, we considered policies that apply electrical
pulses at frequencies of 0 Hz, 0.5 Hz, 1 Hz, and 1.5 Hz. For this task we ran LSPI and KBSF
with sparse kernels, that is, we only computed the value of the Gaussian function at the 6-nearest
neighbors of a given state (thus defining a simplex with the same dimension as the state space). This
modification made it possible to use m = 50,000 representative states with KBSF. Since for LSPI
the reduction on the computational cost was not very significant, we fixed m = 50 to keep its run
time within reasonable bounds.

We compare the decision policies returned by KBSF and LSPI with those computed by fitted Q-
iteration using Ernst et al.’s extra-trees algorithm [4]. This approach has shown excellent perfor-
mance on several reinforcement-learning tasks [4]. We used the extra-trees algorithm to build an
ensemble of 30 trees. The algorithm was run for 50 iterations, with the structure of the trees fixed
after the 10th one. The number of cut-directions evaluated at each node was fixed at dim(S) = 5, and
the minimum number of elements required to split a node, denoted here by ηmin, was selected from
the set {20,30, ...,50,100,150, ...,200}. In general, we observed that the performance of the tree-
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based method improved with smaller values for ηmin, with an expected increase in the computational
cost. Thus, in order to give an overall characterization of the performance of fitted Q-iteration, we
report the results obtained with the extreme values of ηmin. The respective instances of the tree-based
approach are referred to as T20 and T200.

Figure 3 shows the results on the epilepsy-suppression task. In order to obtain different compro-
mises of the problem’s two conflicting objectives, we varied the relative magnitude of the penalties
associated with the occurrence of seizures and with the application of an electrical pulse [19, 20].
In particular, we fixed the latter at −1 and varied the former with values in {−10,−20,−40}. This
appears in the plots as subscripts next to the algorithms’s names. As shown in Figure 3a, LSPI’s poli-
cies seem to prioritize reduction of stimulation at the expense of higher seizure occurrence, which
is clearly sub-optimal from a clinical point of view. T200 also performs poorly, with solutions rep-
resenting no advance over the fixed-frequency stimulation strategies. In contrast, T20 and KBSF
are both able to generate decision policies superior to the 1 Hz policy, which is the most efficient
stimulation regime known to date in the clinical literature [21]. However, as shown in Figure 3b,
KBSF is able to do it at least 100 times faster than the tree-based method.
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Figure 3: Results on the epilepsy-suppression problem averaged over 50 runs. The algorithms used
n = 500,000 sample transitions to build the approximations. The decision policies were evaluated
on episodes of 105 transitions starting from a fixed set of 10 test states drawn uniformly at random.

6 Conclusions

We presented KBSF, a reinforcement-learning algorithm that emerges from the application of the
stochastic-factorization trick to KBRL. As discussed, our algorithm is simple, fast, has good theo-
retical guarantees, and always converges to a unique solution. Our empirical results show that KBSF
is able to learn very good decision policies with relatively low computational cost. It also has pre-
dictable behavior, generally improving its performance as the number of sample transitions or the
size of its approximation model increases. In the future, we intend to investigate more principled
strategies to select the representative states, based on the large body of literature available on kernel
methods. We also plan to extend KBSF to the on-line scenario, where the intermediate decision
policies generated during the learning process guide the collection of new sample transitions.
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