Supplementary material for: Spike and Slab Variational
Inference for Multi-Task and Multiple Kernel Learning

In this extra material, we provide more details about the variational EM algorithm for
multi-task and multiple kernel learning (Section 1) as well as the updates for the paired Gibbs
sampler (Section 2).

1 Variational EM algorithm for multi-task and multiple kernel
learning

The joint probability density function is
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where the GP latent vector ¢,, € RY and where we assumed zero-mean GPs for simplicity.
The logarithm of the marginal likelihood is

log p(Y logZ/ p(Y,W,S, ®)dW d®.

The variational Bayesian method maximizes the following Jensen’s lower bound on the above
log marginal likelihood
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where the variational distribution is assumed to factorize as follows

WS‘I’ Hquqm75qm Hq¢m

g=1m=1

In the next two sections we present a variational EM algorithm for the maximization of this
lower bound. Section 1.1 describes the E-step updates and section 1.2 describes the M-step
updates. The whole algorithm is a standard variational EM and all its updates are used
by our implementation together with a specialized update presented in section 1.3. More
precisely, as mentioned in the main paper separately updating the factor ¢(¢,,) of the GP
latent vector and the hyperparameters 8,,, of the covariance function of the same GP exhibits
slow convergence. This is because of the strong dependence of the hyperparameters 8,, on
posterior g(¢,,). Notice that an analogous problem arises when applying MCMC to GP
models [1]. Section 1.3 shows how this problem can be solved by performing a joint update
of (¢(¢m), Om). Note that for clarity reasons we have made the choice to firstly present the
regular EM updates and then the specialized step in order to gain a better understanding
about the whole issue.

1.1 E-Step
The update for the factor ¢(Wym, Sgm) is such that ¢(Wgm, Sgm) = ¢(Wgm |Sqgm)q(Sqgm) Where
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So overall an update of ¢(Wgm, Sqm) reduces to an update of the variational parameters
(,qum,awqm ,Yqm). In summary, ¢(Wym, Sqm) could be written as
q(Wgm |[sgm) X q(sqm) = N(@qm|3qmﬂwqmvsqmg2 + (1= sgm)os,) x Yorr (1 — Yam)

Wagm

Finally, note that under the distribution q(wgm, $¢m), the expectation (sgmWgm) = Ygmbawq,, -
The variational update for each factor ¢(¢,,) can be computed as
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where (sgmWa,,) = ’qu(qum + 02, ). Also the expectation (¢, @) = ;L;Emu% +tr(Xg,, )
Notice that the update for qum depends on the inverse K ' which is not numerically

stable as K, in computer precision might not be invertible. This, however, is easily resolved
by re-writing ¥4 as

S, = K (0m K + 1)
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where o, = > ;2: ‘107qm> is just a scalar. This now can be implemented in a symmetric and
q

numerically stable way through the use of the Cholesky decomposition (and inverse Cholesky)
of (K + 1).

1.2 M-step
In the M-step, the bound is maxumzed w.r.t. hyperparameters {{02}q 1,02, 7} and the
kernel hyperparameters @ = {0,,},,_;. The first set of hyperparameters is maxnnlzed using

analytical updates. On the other hand7 kernel hyperparameters require nonlinear gradient-
based optimization.



The explicit form of the variational lower bound is
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The Fs5 term can be further simplified by using the fact that (@7,,) = Ygm (1, + 00, .) +
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(1 — vgm)o2. Also some terms above cancel out such as the term 2Q log(27ma2).

Finally, the updates for the hyperparameters are as follows
1 M M
05 = 3 0lYeYq Yo D (Sam@am)(Dm) "+ (5qm i) (PmBi)+2 D (Sqm@gm) (Sqm D) (bm) (b))

m=1 m=1 m>m/

9 Z 1Zm 17qm(/‘wqm+ ?uqm)
U’LU
E 1Zm 1 Ygm

. MQZZSW

g=1m=1

1 1
0, = arg Igax [2 log |K,n| — ftr[K;nl ((;qub;rn)]

2

where anything in brackets (-) is computed under the current value of the variational distri-
bution and is assumed to be fixed (given from the E-step).

1.3 A joint update for ¢(¢,,) and 6,,

Notice that the update for the hyperparameter 8,,, which parameterize K,,, is problematic
for two reasons. Firstly, it requires the inverse of K,, and this is numerically unstable as



in (computer precision) such an inverse might not exist. Of course, such a problem can be
partially overcome by adding a small amount of “jitter” into the diagonal of K,,, which
however is not ideal. Secondly, the update of the hyperparameters 6,, strongly depends on
the statistic (¢, @L,) computed under the factor g(¢,,) which is fixed. The update of 8,,, can
be “slow” because (¢, ¢ ) depends on the kernel matrix Kf,lld evaluated at the old values of
the hyperparameter 82/4. To resolve this, we would like to update simultaneously somehow
0,, and the statistic (¢,, L) , i.e. the factor ¢(¢,,). This can be done in an elegant and
efficient way using a Marginalized Variational step [2]. Next we describe the whole idea.

We would like to perform a joint optimization update for (¢(¢.m,), 0,) in a way that the
factor q(¢,,) is marginalized /removed optimally from the optimization problem. We write
the variational lower bound as follows
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where O are all random variables excluding ¢,, and ¢(©) their variational distribution. Given
that we wish to update the factor ¢(¢,,) and the kernel matrix K,, while the rest are just
constants, the above is written as

de,, d,
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Now the optimal ¢(¢,,) is
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Substituting this optimal ¢(¢,,) back into the bound we obtain
F(6,,) = log / exp<1°gp(Y’¢m’@)>q(@) N(¢pm|0,K,,) dop,,, + const.

This now is analytically tractable and can neatly be written as the marginal likelihood of a
standard GP regression model:

F(0,,) =log N (3]0, K,, + o' I) + const
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is a fixed inverse noise variance parameter. The above now is optimized wrt 8,,, and this can
be done by using any standard GP implementation for maximizing the marginal likelihood
of a GP standard regression model (we will only need to keep fixed the noise variance a;,!).
Notice that the optimization requires the inverse of K,,, +a;,,! I which often will be numerically
stable due to the addition of o' in the diagonal of K,

Once the optimization is completed, we evaluate the final value of the factor ¢(¢,,) and
then continue with other variational EM updates.

2 Paired Gibbs sampling for spike and slab linear regression

Consider a single-output regression model:
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The paired Gibbs sampler iteratively samples from the following conditional
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P(8m = 1|W\ 1y, 8\, y) is obtained analytically to be
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A computationally more efficient expression can be obtained by applying matrix inversion
lemma:
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where o(u,,) = H_e%um and
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