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Abstract

Many fundamental questions in theoretical neuroscieneaie optimal decod-
ing and the computation of Shannon information rates in fgjmns of spiking
neurons. In this paper, we apply methods from the asymptatiory of statistical
inference to obtain a clearer analytical understandinge$e quantities. We find
that for large neural populations carrying a finite total amtoof information, the
full spiking population response is asymptotically as infative as a single obser-
vation from a Gaussian process whose mean and covariant® edraracterized
explicitly in terms of network and single neuron propertidge Gaussian form
of this asymptotic sufficient statistic allows us in certeases to perform optimal
Bayesian decoding by simple linear transformations, anobtain closed-form
expressions of the Shannon information carried by the né&tw®ne technical
advantage of the theory is that it may be applied easily eveoh-Poisson point
process network models; for example, we find that under sameitions, neural
populations with strong history-dependent (non-Poissffierts carry exactly the
same information as do simpler equivalent populations ofimteracting Poisson
neurons with matched firing rates. We argue that our findiedis to clarify some
results from the recent literature on neural decoding andapeosthetic design.

Introduction

It has long been argued that many key questions in neurasciman best be posed in information-
theoretic terms; the efficient coding hypothesis discussd@, 3, 4, 1], represents perhaps the
best-known example. Answering these questions quamétgtiequires us to compute the Shannon
information rate of neural channels, whether numericafing experimental data or analytically
in mathematical models. In many cases it is useful to exgl@itnections with “ideal observer”
analysis, in which the performance of an optimal Bayesiazoder places fundamental bounds on
the performance of any biological system given access teghe neural information. However, the
non-linear, non-Gaussian, and correlated nature of neespbnses has hampered the development
of this theory, particularly in the case of high-dimensilcared/or time-varying stimuli.

The neural decoding literature is far too large to reviewaystically here; instead, we will focus
our attention on work which has attempted to develop an &nalyheory to simplify these complex
decoding and information-rate problems. Two limiting regs have received significant analytical
attention in the neuroscience literature. In the “high-3Sk&jime,n — oo, wheren is the num-
ber of neurons encoding the signal of interest; if the infation rate of each neuron is bounded
away from zero and neurons respond in a conditionally wedkjyendent manner given the stim-
ulus, then the total information provided by the neural papon becomes infinite, and the error
rate of any reasonable neural decoder tends to zero. Faethistimuli, the Shannon information
is effectively determined in this asymptotic limit by a sil@pquantity known as the Chernoff infor-
mation [10, 15]; for continuous stimuli, maximum likelihd@stimation is asymptotically optimal,
and the asymptotic Shannon information is controlled byRisaer information [9, 8]. On the other



hand we can consider the “low-SNR” limit, where only a few rans are observed and each neu-
ron is asymptotically weakly tuned to the stimulus. In thisit, the Shannon information tends to
zero, and under certain conditions the optimal Bayesiamasir (which can be strongly nonlinear
in general) can be approximated by a simpler linear estimag®e [6] and more recently [22] for
details.

In this paper, we study information transmission and opltideoding in what we would argue
is a more biologically-relevant “intermediate” regime, avbn is large but the total amount of
information provided by the population remains finite, and problem of decoding the stimulus
given the population neural activity remains nontrivial.

Likelihood in the intermediate regime: the inhomogeneous Bisson case

For clarity, we begin by analyzing the information in a simpbpulation of neurons, represented as
inhomogenous Poisson processes that are conditionaéipertient given the stimulus. We will ex-
tend our analysis to more general neural populations inélesection. In response to the stimulus,
at each time stepneuron: fires with probability); (¢)d¢, where the rate is given by

Ai(t) = f[bi(t) + €l (0)], (1)
where f(.) is a smooth rectifying non-linearity andis a gain factor controlling each neuron’s
sensitivity. The baseline firing rate is determinedthit) and is independent of the input signal.
The true stimulus at timeis defined byd;, andd abbreviates the time varying stimulég in the
time interval(0, T'dt]. The term¢; ;(f) summarizes the dependence of the neuron’s firing rate on
0; depending on the setting, this term may represent e.g.iagwurve or a spatiotemporal filter
applied to the stimulus (see examples below).

The likelihood includes all the information about the stloaiencoded in the population’s spiking
response. Neurois response at time stefis designated by by the binary variabigt). The log-
likelihood at the parameter value(which may be different from the true paramefis given by
the standard point-process formula [28]:

Ly(r) := log p(r[0) ZZ” )log Ai(t) — Ni(t)dt )
i=1 t=0
This expression can be expanded aroand0:
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Letr; denote the vector representat|0n of itteneuron’s spike train and fet
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then
Lo(r) = Ly(r)|e 0+eZe T gi(rs) ;62Zéi(ﬁ)Tdiag[hi(ri)]&(ﬁ)+O(ne3).

i=1

Iwith a slight abuse of notation, we ugefor both the total number of time steps and the transposeeper
tion; the difference is clear from the context.



This second-order loglikelihood expansion is standardkiglihood theory [31]; as usual, the first
term is constant in) and can therefore be ignored, while the third (quadratichteontrols the
curvature of the loglikelihood at = 0, and scales asn?. In the high-SNR regime discussed
above, where, — oo ande is fixed, the likelihood becomes sharply peaked éind therefore the
Fisher information, which may be understood as the cureattithe log-likelihood a#, controls the
asymptotics of the estimation error in the case of contistgtunuli), and estimation af becomes
easy; in the low-SNR regime, we fixand consider the — 0 limit.

Now, finally, we can more precisely define the “intermedig®IR regime: we will focus on the
case of large populations (— o), but in order to keep the total information in a finite range w
need to scale the sensitivityase ~ n~'/2. In this setting, the error ter@(ne?) = O(n~2) = o(1)
and can therefore be neglected, and the law of large numblekf {(mplies that

9% Ly (r)
e e le=0 E,j Ze (0)T diag[hi(r:)]€:(9) | ;

consequently, the quadratic teﬂ%l% |c—o will be independent of the observed spike train and
therefore void of information aboudt So the first derivative term is the only part of the likelildoo
that depends both on the neural activity ah@nd may therefore be considered a sufficient statistic
in this asymptotic regime: all the information about thenstius is summarized in

8L19( )|€ 0= \/—Zé gz 7’1) (3)

We may further apply the central limit theorem (CLT) to thisrsof independent random vectors to
conclude that this term converges to a Gaussian processeiddy (under mild technical condi-
tions that we will ignore here, for clarity). Thus this moasljoys the local asymptotic normality
property observed in many parametric statistical modelk [@l of the information in the data can
be summarized asymptotically by a sufficient statistic wittampling distribution that turns out to
be Gaussian.

Example: Linearly filtered stimuli and state-space models

In many cases neurons are modeled in terms of simple rectifiedr filters responding to the
stimulus. We can handle this case easily using the languaigeluced above, if we |ek; denote
the matrix implementing the transformatiof’;0); = ¢; (), the projection of the stimulus onto
thei-th neuron’s stimulus filter. Then,

eaLge(T) le=o = 97 l% ;KZT (diag [fc_ﬂ = f{dt)} — 9T A(r),

where f; stands for the vector version ¢fb;(¢)]. Thus all the information in the population spike
train can be summarized in the random veétdr), which is a simple linear function of the observed
spike train data. This vector has an asymptotic Gaussiarbdigon, with mean and covariance

B (AG) = g " (aing | 2] (1 22 ro)) - sat)
_ [%i 17| ] )

J = cov,e (A(r)) = %ZKleag[ }cowg[n}dlag{

0+ O(

E\H

i
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= —Xn:Kleag{J} dt}K + O(—).

ﬁ

Thus, the neural population’s non-linear and temporallpatyic response to the stimulus is as
informative in this intermediate regime as a single obg@wdrom a standard Gaussian experiment,



in which the parametéris filtered linearly byJ and corrupted by Gaussian noise. All of the filtering
properties of the population are summarized by the matrigNote that if we consider eadki; as a
random sample from some distribution of filters, thewill converge by the law of large numbers
to a matrix we can compute explicitly.)

Thus in many cases we can perform optimal Bayesian decodidggven the spike trains quite
easily. For example, i# has a zero mean Gaussian prior distribution with covarig@igcehen the
posterior mean and the maximum-a-posteriori (MAP) estsivell-known and coincides with the
optimal linear estimate (OLE):

boLp(r) = E@|r) = (J +Cy; ) A(r). (4)

We may compute the Shannon informatibid : ) between- andé in a similarly direct fashion.
We know that, asymptotically, the sufficient statisfi¢r) is as informative as the full population
response

I(0:r)=1(0:A(r)).
In the case that the prior éfis Gaussian, as above, then the information can therefazerbguted
quite explicitly via standard formulas for the linear-Gsias channel [10]:

1(0: A(r)) = %1ogdet(l+ JCp). (5)

To summarize, when the encodings (0) are linear ing, and we are in the intermediate-SNR
regime, and the paramet¢has a Gaussian prior distribution, then the optimal Bayessimate is
obtained by applying a linear transformation to the suffiti&atisticA(r) which itself is linear in
the spike train, and the mutual information between thewdtisiand full population response has
a particularly simple form. These results help to extendipres theoretical studies [6, 24, 27, 22]
demonstrating that in some cases linear decoding can bealptind also shed some light on recent
experimental studies indicating that optimal linear andlim@ar Bayesian estimators often have
similar performance in practice [19, 18].

To work through a concrete example, consider the case thakthporal sequence of parameter
valuesd, is generated by an autoregressive process:

9t+1 g A@t +77t s NN(O,R),

for a stable dynamics matriA and positive-semidefinite covariance matix Further assume that
the observation matricek’; act instantaneously, i.ek; is block-diagonal with blockss; ;, and
therefore the responses are modeled as

ri(t) ~ Poiss[f(bi(t) + €K 0;)dt].

Thus# and the responsesogether represent a state-space model. This framewotkemasshown
to lead to state-of-the-art performance in a wide varietyeafral data analysis settings [12, 20, 16].
To understand optimal inference in this class of models énitlermediate SNR regime, we may
follow the recipe outlined above: we see that the asympsuifficient statistic in this model can be
represented as

At = Jtﬁt—i—et € NN(O,Jt),

where the effective filter matrif defined above is block-diagonal (due to the block-diagamats
ture of the filter matriced<;), with blocks we have denotedl. ThusA,; represents observations
from a linear-Gaussian state-space model, i.e., a Kalmian filodel [23]. Optimal decoding of

0 given the observation sequenég.r can therefore be accomplished via the standard forward-
backward Kalman filter-smoother [11, 26]; see Fig. 1 for dmstration. The information rate
limr oo (007 : ro.r) = limp—oo I(Bo.r : A(r)o.r) may be computed via similar recursions
in the stationary case (i.e., whéhis constant in time). The result may be expressed most ékplic

in terms of a matrix which is the solution of a Riccati equatiovolving the effective Kalman model
parameters; the details are provided in the appendix.

Nonlinear examples: orientation coding, place fields, andmsall-time expansions

While the linear setting discussed above can handle manygesa of interest, it does not seem
general enough to cover two well-studied decoding probidnfsrring the orientation of a visual



stimulus from a population of cortical neurons [25, 5], dieiming position from a population of
hippocampal or entorhinal neurons [7]. In the former cae,stimulus is a phase variable, and
therefore does not fit gracefully into the linear settingadié®ed above; in the latter case, place
fields and grid fields are not well-approximated as lineaicioms of position. If we apply our
general theory in these settings, the interpretation oktieoding functior?;(¢) does not change
significantly: ¢;(6) could represent the tuning curve of neutcas a function of the orientation of
the visual stimulus, or of the animal’s location in spacewldwer, without further assumptions the
limiting sufficient statistic, which is a weighted sum of sieeencoding functions (¢) (recall eq. 3)
may result in an infinite-dimensional Gaussian process;himiay be computationally inconvenient.

To simplify matters somewhat, we can introduce a mild assiommn the tuning functions;(6).
Let's assume that these functions may be expressed in somditoensional basis:/;(6) =
K;®(0), for some vectord(;, and®(0) is defined to map into anmT-dimensional space which
is usually smaller thadim(6) = dim(6;)7. This finite-basis assumption is very natural: in the
orientation example, tuning curves are periodic in the afigand are therefore typically expressed
as sums of a few Fourier functions; similarly, two-dimemsibfinite Fourier or Zernike bases are
often used to represent grid or place fields [7]. The key puéné is that we may now simply follow
the derivation of the last section with(#) in place off; we find that the sufficient statistic may
be represented asymptotically asrafi’-dimensional Gaussian vector with meé&mand covariance
J®(0), with J defined as in the preceding section.

We should note that this nonlinear case does remain slightle complicated than the linear case
in one respect: while the likelihood with respect®g) reduces to something very simple and
tractable, the prior (which is typically defined as a funistid #) might be some complicated function
of the remapped variabfe(d). So in most interesting nonlinear cases we can no longer atentipe
optimal Bayesian decoder or the Shannon information raaé/acally. However, our approach does
lead to a major simplification in numerical investigationitheoretical coding issues. For example,
to examine the coding efficiency of a population of neuroreding an orientation variable in this
intermediate SNR regime we do not need to simulate the resgsaf the entire population (which
would involve drawingnT random variables, for some large population sigeinstead, we only
need to draw a single equivalenf/-dimensional Gaussian vectar(r), and quantify the decoding
performance based on the approximate loglikelihood

1
NG

which as emphasized above has a simple quadratic form astdiunf® (). Sincem can typically
be chosen to be much smaller tharthis approach can result in significant computationalrsgsvi

Lo(r) = Lo(r)lemo + B(0)TA(r) + ZB(0)T TB(0) + O( =),

We now switch gears slightly and examine another relatesinmédiate regime in which nonlinear
encoding plays a key role: instead of letting the sensjtiviif each neuron become small (in order to
keep the total information in the population finite), we abinistead keep the sensitivity constant and
let the time period over which we are observing the poputedicale inversely with the population
sizen. This short-time limit is sensible in some physiologicallgsychophysical contexts [29] and
was examined analytically in [21] to study the impact of imeuron dependencies on information
transmission. Our methods can also be applied to this simeetdimit. We begin by writing the
loglikelihood of the observed spike count vectan a single time-bin of lengtht:

Ly(r) :=1logp(r|0) = > rilogf[b; + L:(9)] — f [bi + £:(0)] dt.

K2

The second term does not depend-ptherefore, all information im aboutd resides in the sufficient
statistic
Ay(r) == E rilog f [bi + €:(V)] .

Since the-th neuron fires with probability [b; + ¢;(6)] dt, the mean of\y(r) scales withhdt, and
it is clear thatdt = 1/n is a natural scaling of the time bin. With this scalig (r) converges to a
Gaussian stochastic process with mean

Byl ()] = - 3 F b+ 6:0) log £ b+ (:09)

5



and covariance
cov, gl A9 (1), Ay (r Zf i+ €4(0)] (tog £ o + £:(0)]) (1o f [bs + (9] ).

where we have used the fact that the variance of a Poissonmavaliable coincides with its mean.

In general, this limiting Gaussian process will be infirdtieaensional. However, if we choose the ex-
ponential nonlinearityf(.) = expgp )and the encoding functiorfg(#) are of the finite-dimensional
form considered abové; (9 ), then thelog f[b; + ¢;(+)] term in the definition o\, (1)
simplifies: in this case, aII mformatlon aboﬁuts captured by the sufficient statistic

A(’I’) = Z Tsz

If we again letdt = 1/n, then we find that\(r) converges to a finite-dimensional Gaussian random
vector with mean and covariance

E o[A(r) Zf [bi + K ®(0)] K; cov,g[A(r)] = %Zf [bi + K ®(0)] KK

again, if the filtersK; are modeled as independent draws from some fixed distriiutien the
above normalized sums converge to their expectations, @y tiN. Thus, as in the intermediate-
SNR regime, we see that inference can be dramatically diegbin this short-time setting.

Likelihood in the intermediate regime: non-Poisson effe

We conclude by discussing the generalization to non-Poisstworks with interneuronal depen-
dencies and nontrivial correlation structure. We geneedlie rate equation (1) to

/\Z(t) = fZ [bz(t) + Eéiyt(9)|Ht] ,

whereH, stands for the spiking activity of all neurons prior to timeH, = {r;(¢')}v <t 1<i<n-
Note that the influence of spiking history may be different éach neuron: refractory periods,
self-inhibition and coupling between neurons can be foatad by appropriately defining the de-
pendence of;(.) onH;.

We begin, as usual, by expanding the log-likelihood. Theadpsint-process likelihood (eq. 2)
remains valid. Ley, () andh;(r) denote the vector versions of

rl-(t)f?/ [bi(t)]Ht} _f [bi(t)‘Ht} dt and ri(t)(fTI)/{bi(t)‘Ht} i [bi(t)]Ht}dt

respectively, analogously to the Poisson case. Then, #teafid second terms in the expansion of
the Ioglikelihood may be written as

8Lﬁ le=o = € ZZT and 56 20 gi le=0 = QZKT Ydiag[h;(1)]; (1),

as before. For independent neurons, the log-likelihood eeamsposed of normalized sums of in-
dependent random variables that converged to a Gaussiaegstoby the CLT. In the history-
dependent, coupled cagg(r) andh;(r) depend not only on theth neuron’s activity-;, but rather
on the whole network history. Nonetheless, under techoimadlitions on the network’s dependence
structure (to ensure that the firing rates and correlatiotied network remain bounded), we may still
exploit versions of the LLN and CLT. Thus, under conditionswring the validity of the LLN we

may conclude that, as before, the second—order&é?&fﬁm |c—o convergesto its expectation under

the intermediate ~ n~2 scaling, and therefore carries no information alutvhen we discard
this second-order term, along with higher-order terms éinatnegligible in the intermediate-SNR,

larges limit, we are left once again with the gradient ter22 | _, = 2= 30, 6(0) T gilr),

which under appropriate conditions (ensuring the validitya CLT) will converge to a Gaussian
process limit whose mean and covariance we can often corapatgtically.



Let’s turn to a specific example, in order to make these claiomewhat more concrete. Consider
a network with weak couplings and possibly strong selffiitton and history dependence; more
precisely, we assume that interneuronal conditional ecosariances are weak, given the stimulus:

covlri(t),r;(t +7)|0] = O(n~ ') for i # j.

See, e.g., [13, 30] for further discussion of this conditivhich is satisfied for many spiking net-
works in which the synaptic weights scale uniformly @én—'). For simplicity, we will also
restrict our attention to linear encoding functions, thiowgeneralizations to the nonlinear case
are straightforward. Thus, as before, I€t denote the matrix implementing the transformation
(K;0), = ¢; (), the projection of the stimulus onto tlx¢h neuron’s stimulus filter. Then

BLg( ) 0_§T[\/_ZKT (dlag [ﬂ i—fi’dt)},

where f; stands for the vector version ¢f [bi(t)|Ht}; in other words, the-th entry of f;dt is the

probability of observing a spike in the interval ¢ + dt|, given the network spiking historj; in
the absence of input. Our sufficient statistic is therefasedy as in the Poisson setting,

A(r) := % Xj;KT (diag [;—/} ry— f{dt) : (6)

except for the history-dependence induced through thdirgiiten of f;.

Computing the necessary means and covariances in thisepseas more work than in the Poisson
case; see the appendix for details. It is helpful (thoughrrmiessary) to make the stationarity

assumptiorb;(t) = b;, which implies in this setting thaE( ) can also be chosen to be time-
invariant; in this case the limiting covariance and meamef3uﬁ|C|ent statistic are given by

n 12
T = covy g [AG)] = -3 Kiding [Erwzo(%dt)]fci; Eyjo [AG)] = J6,
i=1 v

where the expectations are over the spontaneous netwavkyast the absence of any input. In
short, once again, we have(r) —p A (J6, J). Analytically, the only challenge here is to compute
the expectations in the definition df In many cases this can be done analytically (e.g., in any pop
ulation of uncoupled renewal-process neurons), or by usiagn-field theory [30], or numerically
by simply calculating the mean firing rate of the network ia tmdriven staté = 0.

We examine this convergence quantitatively in Fig. 1. Is tiase the stimulus was a sample path
from a one-dimensional autoregressive (AR(1)) proceskeSpvere generated according to

0 n
Ai(t) = Ao exp \/_% + ijilj @) | Lri)>mers
j=1

wherel;(t) is the synaptic input from thg-th cell (generated by convolving the spike trajnwith

an exponential of time constaR® ms), w;; is the synaptic weight matrix coupling the output of
neurony to the input of neurom, 7;(¢) is the time since the last spike; thereforg,;)~ .. enforces
the absolute refractory periag.¢, which was set to b2 ms here. Since the encoding filtdks act
instantaneously in this modek( can be represented as a delta function, weighted by?), the
observed spike trains can be considered observations fiiaiexspace model, as described above.
The weightsw;; were generated randomly from a uniform distribution on titerival—[5/n, 5 /n/],
with self-weightsw;; = 0, andzj wj; = 0 to enforce detailed balance in the network. Note that,
while the interneuronal coupling is weak in this example,dlutocorrelation in these spike trains is
quite strong on short time scales, due to the absolute tefyaeffect.

We compared two estimators 6f the full (nonlinear) MAP estimaté ap = arg maxy p(0|r),
which we computed using the fast direct optimization mestaescribed in [17, 20], and the limiting
optimal estimatof» := (J+ C;l)—lA(r). Note that/ is diagonal; we computed the expectations
in the definition ofJ using the numerical approach described above in this stronlahough in
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Figure 1: The left panels show the true stimulus (green), Métinate (red) and the limiting optimal
estimatord s := (J + Cgl)*lA(r) (blue) for various population sizes The middle panels show
the spike trains used to compute these estimates. The agletpshow the sufficient statistiasr)
used to computéA. Note that the same true stimulus was used in all three strooa Asn
increases, the linear decoder converges to the MAP estimiespite the nonlinear and correlated
nature of the network model generating the spike trainsifsaa text for details).

other simulations (with uncoupled renewal-model popala) we checked that the fully-analytical
approach gave the correct solution. In additiﬁig‘,1 is tridiagonal in this state-space setting; thus
the linear matrix equation in eq. (4) can be solved efficieintlD (7") time using standard tridiagonal
matrix solvers. We find that, as predicted, the full nonlinBayesian estimatdty, 4 p approaches
the limiting optimal estimatof, asn becomes largep = 20 is basically sufficient in this case,
although of course the convergence will be slower for lakgdmes of the gain factar (or, equiva-
lently, larger filtersK; or larger values of the variance ).

We conclude with a few comments about these results. Fiode that the covariance matrix
we have computed here coincides almost exactly with whatomgpaited previously in the Poisson
case. Indeed, we can make this connection much more pregsean always choose an equivalent
Poisson network with rates defined so that Byg—,[(f/)*/f:] term in the non-Poisson network
matches the f/)?/ f; term in the Poisson network. Sindedetermines the information rate com-
pletely, we conclude that for any weakly-coupled networkr¢his an equivalent Poisson network
which conveys exactly the same information in the interraediegime. However, note that the the
sufficient statisticA(r) is different in the Poisson and non-Poisson settings, dimeg’/f term
linearly reweights the observed spikes, depending on hkelylithey were given the history; thus
the optimal Bayesian decoder incorporates non-Poissentsféxplicitly.

A number of interesting questions remain open. For examyide we expect a LLN and CLT to
continue to hold in many cases of strong, structured intewr@al coupling, computing the asymp-
totic mean and covariance of the sufficient statistio') may be more challenging in such cases,
and new phenomena may arise. We also hope in the future toexdne effect of latent correlated
variability (as discussed, e.g., in the recent work of [33) &n the results presented here.



Appendix: Information rates in the Kalman model

For completeness, in this appendix we provide the detatiseofomputation of the information rate
in the Kalman model. The information rate is the differenetn®en the prior entropy rate and the
posterior entropy rate of the stimulus. The former can beutaled using the Markov property [10];

namely,

T

1 1 1
Tlgréo TH(OLT) = Th—IgoT H(91)+;H(9t|9t_1) zilogdetR—i—constant,

whereR is the dynamics noise covariance defined in the state-spatiers of the main text, and
constant denotes a term that will cancel with the same term in the piestentropy rate and can
therefore be ignored.

We provide three methods of increasingly explicit form fonmputing the posterior entropy rate. The
posterior distribution of the stimulus given data is a Gausslistribution; therefore, the posterior
entropy depends on the determinant of the posterior cmxa&imatriXCov[el;T\Al:T]. This matrix

is of sizeT'd x T'd, whered = dim(6,). The inverse of this matrix is block-tridiagonal [20], with
blocks of sizelx d, and we may therefore compute the determinant of this miatti(7") time using
standard block-tridiagonal determinant recursions. Hxrarg these recursions leads to a Riccati-
like equation that determines the posterior entropy raer ... (1/7) log det cov[@l:T‘Al;T] +
constant.

Alternatively, we can use a method described in [14], baseithe Gaussian integral identity
. A1
logp(A) = log/p(G, A)df = logp(0) + log p(Al0) + 3 log det cov(0]A) + constant,

wheref = E(61.7|A1.7) can be computed via the standard forward-backward Kalmaurs®ns.
Since this formula is valid for any value df, e.g.,A = 0, we can compute the marginal log-
probability log p(A) via the standard forward recursion for the Kalman filter, amgip(d) and
log p(A|f) by pluggingd into the log-priorlog p(#) and the log-likkelihoodog p(A|6), which are
both computable explicitly in this model. This leaves ushvifte J log det cov(6|A) term; taking
limits of the result divided byf" provides the posterior entropy rate.

Finally, a third, explicit method to compute the posterintrepy rate may be derived as follows:

T
.1 o1
Tlgxgo TH(91:T|A1:T) = TIEI;OT{EALTH(GHALT)+;EA1:TH(915|91:1,A1:T)}
11
= T]EI;OT;51OgdetCOV[9t|9t_1,A1;T].

The covarianceov[6,]0;—1, A1.7] can be expressed in terms of the forward covariance nﬁfrix&
cov[f:|A1.+] and the backward covariance matfigx = cov[f:|A1.7|; the joint covariance of; and
0:+1 given the full observatior can be expressed as [11, 26]:

( Cy Cf+1K?)
KtCtSJrl Ct8+1a '

where
cov(Be|Ary_y) = AC) AT+ R
and
K, = C/JT[cov(0y] A1)
Using the standard formula for computing the conditionate@ance of a Gaussian we have:

cov[0i]6;_1,Arr] = CF — K, 1CSKL .



Finally, we have:

T
. 1 1 R s
Th_r)mOO Z§logdetcovb‘t|9t 1L, AL = §1og|C — KC*KT™|
where
C :TIEI;OOT/Q and K = TlgI;OKT/Q.

These matrices can be found using the Riccatti equations:

—1
ol = (AC-fAT+R)—1+J} and  C°— KCO°KT = Cf — K,(AC AT + R)KT.

Appendix: Mean and Covariance of sufficient statistic with Hstory
Dependence

The expectation and covarianceifr) should be calculated over the distribution of network activ
ity  in response to input. The expectation of

Ar) = in iKlT (diag {;—{} ri — fi’dt)
i=1 K3

depends on the expectauonfaf(t )ri(t) — fi(t)dt. Note that by conditioning on the histoty,

/

Ere{Erw BZ (t)ri(t) — fil(t)dt‘Ht} }

- Ere{jﬁz() o [ri(®)|He] = 1 <>dt}

E{§< [+ g2 0] - fé(t)dt}

— Bw(fa) B2 o) ™)

therefore the expectation df(r) is simplified to

Euo (M) = %ZK?{ETe(diagH ])Ijﬁe +0<%>}

i
= = ZK ET‘Q(dlag let] )K 0+ O(T)

=1

E{jﬁ() 10 —f{(t)dt}

i=1

72
- - ZKZ-TEM:O(diag H bK 0+ 0(7)

The covariance can be written as

covppg (A(r)) = = ZK oV, |9 {dlag ['J]}} Ty — f{dt} K; (8)
=1
;K COVy|g [dlag [?} r; — fldt , diag [;—ﬂ T — fj'-dt} K;. (9)

First, we calculate the sum in equation (8); second, we slmafor weak coupling the sum in
equation (9) i@(ﬁ). For simplicity of presentation, let us define

f/

Ziﬂg = T‘Z( )f

(t) — fi(t)dt.

10



The terms in the sum of equation (8) are auto-covariancésdmbe written asr(> 0)

CoVy | {dmg [‘; ] T — fi’dt]t t = covVyg [Zits Zitsr]
K2 R “+7

= E + cov

cov [Zi,ta Zitir

Ht-i—r}

E[Zi7t |Ht+7’] ) E[Zi,t-i-'r |Ht+r]1

7
Zi,t7 fL(t =+ T)dt

)

= O(r)var,g [Zi,t] —+ covyg

= 5(7’) E[V&I‘(Z@”Htﬂ +var[E(Zi7t|Ht)} + O(

sl-

72

— S Tw[ffl

= 5() r|0= O[

(t)dt] + O(T)
1 1
ARy

Next, we show that if the cross-correlation in the networtkvég is small

cov[ri(t),rj(t +7)] ~ %

)

then, the sum of cross-covariance terms in equation (9)gkgiele because

' /
CoVy | [dlag {%] ri — fidt,diag [%] T — fj’»dt] = covyg [Zits Zji1r)
g J tt+1

= E

cov {Zi,ta Zjtir Ht-‘,—-rjl + cov | E[Z; t|Hir |, E[Z) 14+ | iy o]

= Cov

Zi,ta E[Zj,t+7' |Ht+7]1

/ 12 K.0 T
= cov[n( V;ﬁ )= fi()dt, "}—J(tw) {7< Qj; +o<%>} = O—5).
Thus,
[ 1
_;K COVT‘Q ji——fdu].f_J_fdt] _ O(ﬁ)
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