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Abstract

This manuscript considers the convergence rate of boosting under a large class of
losses, including the exponential and logistic losses, where the best previous rate
of convergence was O(exp(1/ε2)). First, it is established that the setting of weak
learnability aids the entire class, granting a rate O(ln(1/ε)). Next, the (disjoint)
conditions under which the infimal empirical risk is attainable are characterized
in terms of the sample and weak learning class, and a new proof is given for the
known rate O(ln(1/ε)). Finally, it is established that any instance can be de-
composed into two smaller instances resembling the two preceding special cases,
yielding a rate O(1/ε), with a matching lower bound for the logistic loss. The
principal technical hurdle throughout this work is the potential unattainability of
the infimal empirical risk; the technique for overcoming this barrier may be of
general interest.

1 Introduction

Boosting is the task of converting inaccurate weak learners into a single accurate predictor. The
existence of any such method was unknown until the breakthrough result of Schapire [1]: under
a weak learning assumption, it is possible to combine many carefully chosen weak learners into a
majority of majorities with arbitrarily low training error. Soon after, Freund [2] noted that a single
majority is enough, and that O(ln(1/ε)) iterations are both necessary and sufficient to attain accu-
racy ε. Finally, their combined effort produced AdaBoost, which attains the optimal convergence
rate (under the weak learning assumption), and has an astonishingly simple implementation [3].

It was eventually revealed that AdaBoost was minimizing a risk functional, specifically the expo-
nential loss [4]. Aiming to alleviate perceived deficiencies in the algorithm, other loss functions
were proposed, foremost amongst these being the logistic loss [5]. Given the wide practical suc-
cess of boosting with the logistic loss, it is perhaps surprising that no convergence rate better than
O(exp(1/ε2)) was known, even under the weak learning assumption [6]. The reason for this de-
ficiency is simple: unlike SVM, least squares, and basically any other optimization problem con-
sidered in machine learning, there might not exist a choice which attains the minimal risk! This
reliance is carried over from convex optimization, where the assumption of attainability is generally
made, either directly, or through stronger conditions like compact level sets or strong convexity [7].

Convergence rate analysis provides a valuable mechanism to compare and improve of minimiza-
tion algorithms. But there is a deeper significance with boosting: a convergence rate of O(ln(1/ε))
means that, with a combination of just O(ln(1/ε)) predictors, one can construct an ε-optimal clas-
sifier, which is crucial to both the computational efficiency and statistical stability of this predictor.

The contribution of this manuscript is to provide a tight convergence theory for a large class of
losses, including the exponential and logistic losses, which has heretofore resisted analysis. The goal
is a general analysis without any assumptions (attainability of the minimum, or weak learnability),
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however this manuscript also demonstrates how the classically understood scenarios of attainability
and weak learnability can be understood directly from the sample and the weak learning class.

The organization is as follows. Section 2 provides a few pieces of background: how to encode the
weak learning class and sample as a matrix, boosting as coordinate descent, and the primal objective
function. Section 3 then gives the dual problem, max entropy. Given these tools, section 4 shows
how to adjust the weak learning rate to a quantity which is useful without any assumptions. The first
step towards convergence rates is then taken in section 5, which demonstrates that the weak learning
rate is in fact a mechanism to convert between the primal and dual problems.

The convergence rates then follow: section 6 and section 7 discuss, respectively, the conditions
under which classical weak learnability and (disjointly) attainability hold, both yielding the rate
O(ln(1/ε)), and finally section 8 shows how the general case may be decomposed into these two,
and the conflicting optimization behavior leads to a degraded rate of O(1/ε). The last section will
also exhibit an Ω(1/ε) lower bound for the logistic loss.

1.1 Related Work

The development of general convergence rates has a number of important milestones in the past
decade. The first convergence result, albeit without any rates, is due to Collins et al. [8]; the work
considered the improvement due to a single step, and as its update rule was less aggressive than the
line search of boosting, it appears to imply general convergence. Next, Bickel et al. [6] showed a
rate of O(exp(1/ε2)), where the assumptions of bounded second derivatives on compact sets are
also necessary here.

Many extremely important cases have also been handled. The first is the original rate ofO(ln(1/ε))
for the exponential loss under the weak learning assumption [3]. Next, Rätsch et al. [9] showed, for
a class of losses similar to those considered here, a rate of O(ln(1/ε)) when the loss minimizer is
attainable. The current manuscript provides another mechanism to analyze this case (with the same
rate), which is crucial to being able to produce a general analysis. And, very recently, parallel to this
work, Mukherjee et al. [10] established the general convergence under the exponential loss, with a
rate of Θ(1/ε). The same matrix, due to Schapire [11], was used to show the lower bound there as
for the logistic loss here; their upper bound proof also utilized a decomposition theorem.

It is interesting to mention that, for many variants of boosting, general convergence rates were
known. Specifically, once it was revealed that boosting is trying to be not only correct but also
have large margins [12], much work was invested into methods which explicitly maximized the
margin [13], or penalized variants focused on the inseparable case [14, 15]. These methods generally
impose some form of regularization [15], which grants attainability of the risk minimizer, and allows
standard techniques to grant general convergence rates. Interestingly, the guarantees in those works
cited in this paragraph are O(1/ε2).

2 Setup

A view of boosting, which pervades this manuscript, is that the action of the weak learning class
upon the sample can be encoded as a matrix [9, 15]. Let a sample S := {(xi, yi)}m1 ⊆ (X × Y)m

and a weak learning class H be given. For every h ∈ H, let S|h denote the projection onto S
induced by h; that is, S|h is a vector of length m, with coordinates (S|h)i = yih(xi). If the set
of all such columns {S|h : h ∈ H} is finite, collect them into the matrix A ∈ Rm×n. Let ai
denote the ith row of A, corresponding to the example (xi, yi), and let {hj}n1 index the set of weak
learners corresponding to columns of A. It is assumed, for convenience, that entries of A are within
[−1,+1]; relaxing this assumption merely scales the presented rates by a constant.

The setting considered in this manuscript is that this finite matrix can be constructed. Note that this
can encode infinite classes, so long as they map to only k <∞ values (in which case A has at most
km columns). As another example, if the weak learners are binary, and H has VC dimension d,
then Sauer’s lemma grants that A has at most (m + 1)d columns. This matrix view of boosting is
thus similar to the interpretation of boosting performing descent on functional space, but the class
complexity and finite sample have been used to reduce the function class to a finite object [16, 5].
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Routine BOOST.
Input Convex function f ◦A.
Output Approximate primal optimum λ.

1. Initialize λ0 := 0n.
2. For t = 1, 2, . . ., while ∇(f ◦A)(λt−1) 6= 0n:

(a) Choose column jt := argmaxj |∇(f ◦A)(λt−1)>ej |.
(b) Line search: αt apx. minimizes α 7→ (f ◦A)(λt−1 + αejt).
(c) Update λt := λt−1 + αtejt .

3. Return λt−1.

Figure 1: l1 steepest descent [17, Algorithm 9.4] applied to f ◦A.

To make the connection to boosting, the missing ingredient is the loss function. Let G0 denote the
set of loss functions g satisfying: g is twice continuously differentiable, g′′ > 0 (which implies
strict convexity), and limx→∞ g(x) = 0. (A few more conditions will be added in section 5 to prove
convergence rates, but these properties suffice for the current exposition.) Crucially, the exponential
loss exp(−x) from AdaBoost and the logistic loss ln(1 + exp(−x)) are in G0 (and the eventual G).

Boosting determines some weighting λ ∈ Rn of the columns of A, which correspond to weak
learners in H. The (unnormalized) margin of example i is thus 〈ai, λ〉 = e>i Aλ, where ei is an
indicator vector. Since the prediction on xi is 1[〈ai, λ〉 ≥ 0], it follows that Aλ > 0m (where 0m is
the zero vector) implies a training error of zero. As such, boosting solves the minimization problem

inf
λ∈Rn

m∑
i=1

g(〈ai, λ〉) = inf
λ∈Rn

m∑
i=1

g(e>i Aλ) = inf
λ∈Rn

f(Aλ) = inf
λ∈Rn

(f ◦A)(λ) =: f̄A, (2.1)

where f : Rm → R is the convenience function f(x) =
∑
i g((x)i), and in the present problem

denotes the (unnormalized) empirical risk. f̄A will denote the optimal objective value.

The infimum in eq. (2.1) may well not be attainable. Suppose there exists λ′ such that Aλ′ > 0m
(theorem 6.1 will show that this is equivalent to the weak learning assumption). Then

0 ≤ inf
λ∈Rn

f(Aλ) ≤ inf {f(Aλ) : λ = cλ′, c > 0} = inf
c>0

f(c(Aλ′)) = 0.

On the other hand, for any λ ∈ Rn, f(Aλ) > 0. Thus the infimum is never attainable when weak
learnability holds.

The template boosting algorithm appears in fig. 1, formulated in terms of f ◦A to make the connec-
tion to coordinate descent as clear as possible. To interpret the gradient terms, note that

(∇(f ◦A)(λ))j = (A>∇f(Aλ))j =

m∑
i=1

g′(〈ai, λ〉)hj(xi)yi,

which is the expected correlation of hj with the target labels according to an unnormalized dis-
tribution with weights g′(〈ai, λ〉). The stopping condition ∇(f ◦ A)(λ) = 0m means: either the
distribution is degenerate (it is exactly zero), or every weak learner is uncorrelated with the target.

As such, eq. (2.1) represents an equivalent formulation of boosting, with one minor modification:
the column (weak learner) selection has an absolute value. But note that this is the same as closing
H under complementation (i.e., for any h ∈ H, there exists h′ with h(x) = −h′(x)), which is
assumed in many theoretical treatments of boosting.

In the case of the exponential loss with binary weak learners, the line search step has a conve-
nient closed form; but for other losses, or even for the exponential loss but with confidence-rated
predictors, there may not be a closed form. Moreover, this univariate search problem may lack a
minimizer. To produce the eventual convergence rates, this manuscript utilizes a step size minimiz-
ing an upper bounding quadratic (which is guaranteed to exist); if instead a standard iterative line
search guarantee were used, rates would only degrade by a constant factor [17, section 9.3.1].
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As a final remark, consider the rows {ai}m1 of A as a collection of m points in Rn. Due to the form
of g, BOOST is therefore searching for a halfspace, parameterized by a vector λ, which contains
all of the points. Sometimes such a halfspace may not exist, and g applies a smoothly increasing
penalty to points that are farther and farther outside it.

3 Dual Problem

This section provides the convex dual to eq. (2.1). The relevance of the dual to convergence rates is
as follows. First, although the primal optimum may not be attainable, the dual optimum is always
attainable—this suggests a strategy of mapping the convergence strategy to the dual, where there
exists a clear notion of progress to the optimum. Second, this section determines the dual feasible
set—the space of dual variables or what the boosting literature typically calls unnormalized weights.
Understanding this set is key to relating weak learnability, attainability, and general instances.

Before proceeding, note that the dual formulation will make use of the Fenchel conjugate h∗(φ) =
supx∈dom(h) 〈x, φ〉 − h(x), a concept taking a central place in convex analysis [18, 19]. Interest-
ingly, the Fenchel conjugates to the exponential and logistic losses are respectively the Boltzmann-
Shannon and Fermi-Dirac entropies [19, Commentary, section 3.3], and thus the dual is explicitly
performing entropy maximization (cf. lemma C.2). As a final piece of notation, denote the kernel of
a matrix B ∈ Rm×n by Ker(B) = {φ ∈ Rn : Bφ = 0m}.
Theorem 3.1. For any A ∈ Rm×n and g ∈ G0 with f(x) =

∑
i g((x)i),

inf {f(Aλ) : λ ∈ Rn} = sup {−f∗(−φ) : φ ∈ ΦA} , (3.2)

where ΦA := Ker(A>)∩Rm+ is the dual feasible set. The dual optimum ψA is unique and attainable.
Lastly, f∗(φ) =

∑m
i=1 g

∗((φ)i).

The dual feasible set ΦA = Ker(A>) ∩ Rm+ has a strong interpretation. Suppose ψ ∈ ΦA; then ψ
is a nonnegative vector (since ψ ∈ Rm+ ), and, for any j, 0 = (φ>A)j =

∑m
i=1 φiyihj(xi). That

is to say, every nonzero feasible dual vector provides a (an unnormalized) distribution upon which
every weak learner is uncorrelated! Furthermore, recall that the weak learning assumption states that
under any weighting of the input, there exists a correlated weak learner; as such, weak learnability
necessitates that the dual feasible set contains only the zero vector.

There is also a geometric interpretation. Ignoring the constraint, −f∗ attains its maximum at some
rescaling of the uniform distribution (for details, please see lemma C.2). As such, the constrained
dual problem is aiming to write the origin as a high entropy convex combination of the points {ai}m1 .

4 A Generalized Weak Learning Rate

The weak learning rate was critical to the original convergence analysis of AdaBoost, providing a
handle on the progress of the algorithm. Recall that the quantity appeared in the denominator of the
convergence rate, and a weak learning assumption critically provided that this quantity is nonzero.
This section will generalize the weak learning rate to a quantity which is always positive, without
any assumptions.

Note briefly that this manuscript will differ slightly from the norm in that weak learning will be a
purely sample-specific concept. That is, the concern here is convergence, and all that matters is the
sample S = {(xi, yi)}m1 , as encoded in A; it doesn’t matter if there are wild points outside this
sample, because the algorithm has no access to them.

This distinction has the following implication. The usual weak learning assumption states that there
exists no uncorrelating distribution over the input space. This of course implies that any training
sample S used by the algorithm will also have this property; however, it suffices that there is no
distribution over the input sample S which uncorrelates the weak learners from the target.

Returning to task, the weak learning assumption posits the existence of a constant, the weak learning
rate γ, which lower bounds the correlation of the best weak learner with the target for any distribu-
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tion. Stated in terms of the matrix A,

0 < γ = inf
φ∈Rm

+

‖φ‖=1

max
j∈[n]

∣∣∣∣∣
m∑
i=1

(φ)iyihj(xi)

∣∣∣∣∣ = inf
φ∈Rm

+ \{0m}

‖A>φ‖∞
‖φ‖1

= inf
φ∈Rm

+ \{0m}

‖A>φ‖∞
‖φ− 0m‖1

.

(4.1)
The only way this quantity can be positive is if φ 6∈ Ker(A>) ∩ Rm+ = ΦA, meaning the dual
feasible set is exactly {0m}. As such, one candidate adjustment is to simply replace {0m} with the
dual feasible set:

γ′ := inf
φ∈Rm

+ \ΦA

‖A>φ‖∞
infψ∈ΦA

‖φ− ψ‖1
.

Indeed, by the forthcoming proposition 4.3, γ′ > 0 as desired. Due to technical considerations
which will be postponed until the various convergence rates, it is necessary to tighten this definition
with another set.
Definition 4.2. For a given matrix A ∈ Rm×n and set S ⊆ Rm, define

γ(A,S) := inf

{
‖A>φ‖∞

infψ∈S∩Ker(A>) ‖φ− ψ‖1
: φ ∈ S \ Ker(A>)

}
. ♦

Crucially, for the choices of S pertinent here, this quantity is always positive.
Proposition 4.3. Let A 6= 0m×n and polyhedron S be given. If S ∩ Ker(A>) 6= ∅ and S has
nonempty interior, γ(A,S) ∈ (0,∞).

To simplify discussion, the following projection and distance notation will be used in the sequel:

PpC(x) ∈ Argmin
y∈C

‖y − x‖p, DpC(x) = ‖x− PpC(x)‖p,

with some arbitrary choice made when the minimizer is not unique.

5 Prelude to Convergence Rates: Three Alternatives

The pieces are in place to finally sketch how the convergence rates may be proved. This section
identifies how the weak learning rate γ(A,S) can be used to convert the standard gradient guarantees
into something which can be used in the presence of no attainable minimum. To close, three basic
optimization scenarios are identified, which lead to the following three sections on convergence
rates. But first, it is a good time to define the final loss function class.
Definition 5.1. Every g ∈ G satisfies the following properties. First, g ∈ G0. Next, for any x ∈ Rm
satisfying f(x) ≤ f(Aλ0), and for any coordinate (x)i, there exist constants η > 0 and β > 0 such
that g′′((x)i) ≤ ηg((x)i) and g((x)i) ≤ −βg′((x)i). ♦

The exponential loss is in this class with η = β = 1 since exp(·) is a fixed point with respect to
the differentiation operator. Furthermore, as is verified in remark F.1 of the full version, the logistic
loss is also in this class, with η = 2m/(m ln(2)) and β ≤ 1 + 2m. Intuitively, η and β encode
how similar some g ∈ G is to the exponential loss, and thus these parameters can degrade radically.
However, outside the weak learnability case, the other terms in the bounds here will also incur a
penalty of the form em for the exponential loss, and there is some evidence that this is unavoidable
(see the lower bounds in Mukherjee et al. [10] or the upper bounds in Rätsch et al. [9]).

Next, note how the standard guarantee for coordinate descent methods can lead to guarantees on the
progress of the algorithm in terms of dual distances, thanks to γ(A,S).
Proposition 5.2. For any t, A 6= 0m×n, S ⊇ {−∇f(Aλt)} with γ(A,S) > 0, and g ∈ G,

f(Aλt+1)− f̄A ≤ f(Aλt)− f̄A −
γ(A,S)2D1

S∩Ker(A>)(−∇f(Aλt))
2

2ηf(Aλt)
.

Proof. The stopping condition grants −∇f(Aλt) 6∈ Ker(A>). Thus, by definition of γ(A,S),

γ(A,S) = inf
φ∈S\Ker(A>)

‖A>φ‖∞
D1
S∩Ker(A>)

(φ)
≤ ‖A>∇f(Aλt)‖∞

D1
S∩Ker(A>)

(−∇f(Aλt))
.

5



(a) Weak learnability. (b) Attainability. (c) General case.

Figure 2: Viewing the rows {ai}m1 of A as points in Rn, boosting seeks a homogeneous halfspace,
parameterized by a normal λ ∈ Rn, which contains all m points. The dual, on the other hand, aims
to express the origin as a high entropy convex combination of the rows. The convergence rate and
dynamics of this process are controlled by A, which dictates one of the three above scenarios.

Combined with a standard guarantee of coordinate descent progress (cf. lemma F.2),

f(Aλt)− f(Aλt+1) ≥ ‖A
>∇f(Aλt)‖2∞
2ηf(Aλt)

≥
γ(A,S)2D1

S∩Ker(A>)(−∇f(Aλt))
2

2ηf(Aλt)
.

Subtracting f̄A from both sides and rearranging yields the statement.

Recall the interpretation of boosting closing section 2: boosting seeks a halfspace, parameterized by
λ ∈ Rn, which contains the points {ai}m1 . Progress onward from proposition 5.2 will be divided
into three cases, each distinguished by the kind of halfspace which boosting can reach.

These cases appear in fig. 2. The first case is weak learnability: positive margins can be attained
on each example, meaning a halfspace exists which strictly contains all points. Boosting races to
push all these margins unboundedly large, and has a convergence rate O(ln(1/ε)). Next is the case
that no halfspace contains the points within its interior: either any such halfspace has the points on
its boundary, or no such halfspace exists at all (the degenerate choice λ = 0n). This is the case of
attainability: boosting races towards finite margins at the rate O(ln(1/ε)).

The final situation is a mix of the two: there exists a halfspace with some points on the boundary,
some within its interior. Boosting will try to push some margins to infinity, and keep others finite.
These two desires are at odds, and the rate degrades to O(1/ε). Less metaphorically, the analysis
will proceed by decomposing this case into the previous two, applying the above analysis in parallel,
and then stitching the result back together. It is precisely while stitching up that an incompatibility
arises, and the rate degrades. This is no artifact: a lower bound will be shown for the logistic loss.

6 Convergence Rate under Weak Learnability

To start this section, the following result characterizes weak learnability, including the earlier rela-
tionship to the dual feasible set (specifically, that it is precisely the origin), and, as analyzed by many
authors, the relationship to separability [1, 9, 15].
Theorem 6.1. For any A ∈ Rm×n and g ∈ G the following conditions are equivalent:

∃λ ∈ Rn �Aλ ∈ Rm++, (6.2)
inf
λ∈Rn

f(Aλ) = 0, (6.3)

ψA = 0m, (6.4)
ΦA = {0m}. (6.5)

The equivalence means the presence of any of these properties suffices to indicate weak learnability.
The last two statements encode the usual distributional version of the weak learning assumption.
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The first encodes the fact that there exists a homogeneous halfspace containing all points within
its interior; this encodes separability, since removing the factor yi from the definition of ai will
place all negative points outside the halfspace. Lastly, the second statement encodes the fact that the
empirical risk approaches zero.
Theorem 6.6. Suppose Aλ > 0m and g ∈ G; then γ(A,Rm+ ) > 0, and for all t,

f(Aλt)− f̄A ≤ f(Aλ0)

(
1−

γ(A,Rm+ )2

2β2η

)t
.

Proof. By theorem 6.1, Rm+ ∩ Ker(A>) = ΦA = {0m}, which combined with g ≤ −βg′ gives

D1
ΦA

(−∇f(Aλt)) = inf
ψ∈ΦA

‖ − ∇f(Aλt)− ψ‖1 = ‖∇f(Aλt)‖1 ≥ f(Aλt)/β.

Plugging this and f̄A = 0 (again by theorem 6.1) along with polyhedron Rm+ ⊇ −∇f(Rm) (whereby
γ(A,Rm+ ) > 0 by proposition 4.3 since ψA ∈ Rm+ ) into proposition 5.2 gives

f(Aλt+1) ≤ f(Aλt)−
γ(A,Rm+ )2f(Aλt)

2β2η
= f(Aλt)

(
1−

γ(A,Rm+ )2

2β2η

)
,

and recursively applying this inequality yields the result.

Since the present setting is weak learnability, note by (4.1) that the choice of polyhedron Rm+ grants
that γ(A,Rm+ ) is exactly the original weak learning rate. When specialized for the exponential loss
(where η = β = 1), the bound becomes (1− γ(A,Rm+ )2/2)t, which exactly recovers the bound of
Schapire and Singer [20], although via different analysis.

In general, solving for t in the expression ε = f(Aλt)−f̄A
f(Aλ0)−f̄A

≤
(

1− γ(f,A)2

2β2η

)t
≤ exp

(
−γ(f,A)2t

2β2η

)
reveals that t ≤ 2β2η

γ(A,S)2 ln(1/ε) iterations suffice to reach error ε. Recall that β and η, in the case of
the logistic loss, have only been bounded by quantities like 2m. While it is unclear if this analysis
of β and η was tight, note that it is plausible that the logistic loss is slower than the exponential loss
in this scenario, as it works less in initial phases to correct minor margin violations.

7 Convergence Rate under Attainability

Theorem 7.1. For any A ∈ Rm×n and g ∈ G, the following conditions are equivalent:

∀λ ∈ Rn �Aλ 6∈ Rm+ \ {0m}, (7.2)
f ◦A has minimizers, (7.3)
ψA ∈ Rm++, (7.4)
ΦA ∩ Rm++ 6= ∅. (7.5)

Interestingly, as revealed in (7.4) and (7.5), attainability entails that the dual has fully interior points,
and furthermore that the dual optimum is interior. On the other hand, under weak learnability,
eq. (6.4) provided that the dual optimum has zeros at every coordinate. As will be made clear in
section 8, the primal and dual weights have the following dichotomy: either the margin 〈ai, λ〉 goes
to infinity and (ψA)i goes to zero, or the margin stays finite and (ψA)i goes to some positive value.
Theorem 7.6. Suppose A 6= 0m×n, g ∈ G, and the infimum of eq. (2.1) is attainable. Then there
exists a (compact) tightest axis-aligned retangle C containing the initial level set, and f is strongly
convex with modulus c > 0 over C. Finally, γ(A,−∇f(C)) > 0, and for all t,

f(Aλt)− f̄A ≤ (f(0m)− f̄A)

(
1− cγ(A,−∇f(C))2

ηf(Aλ0)

)t
.

In other words, t ≤ ηf(Aλ0)
cγ(A,−∇f(C))2 ln( 1

ε ) iterations suffice to reach error ε. The appearance of a
modulus of strong convexity c (i.e., a lower bound on the eigenvalues of the Hessian of f ) may seem
surprising, and sketching the proof illuminates its appearance and subsequent function.
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When the infimum is attainable, every margin 〈ai, λ〉 converges to some finite value. In fact, they all
remain bounded: (7.2) provides that no halfspace contains all points, so if one margin becomes pos-
itive and large, another becomes negative and large, giving a terrible objective value. But objective
values never increase with coordinate descent. To finish the proof, strong convexity (i.e., quadratic
lower bounds in the primal) grants quadratic upper bounds in the dual, which can be used to bound
the dual distance in proposition 5.2, and yield the desired convergence rate. This approach fails
under weak learnability—some primal weights grow unboundedly, all dual weights shrink to zero,
and no compact set contains all margins.

8 General Convergence Rate

The final characterization encodes two principles: the rows of A may be partitioned into two matri-
ces A0, A+ which respectively satisfy theorem 6.1 and theorem 7.1, and that these two subproblems
affect the optimization problem essentially independently.
Theorem 8.1. Let A0 ∈ Rz×n, A+ ∈ Rp×n, and g ∈ G be given. Set m := z + p, and A ∈ Rm×n
to be the matrix obtained by stacking A0 on top of A+. The following conditions are equivalent:

(∃λ ∈ Rn �A0λ ∈ Rz++ ∧A+λ = 0p) ∧ (∀λ ∈ Rn �A+λ 6∈ Rp+ \ {0p}), (8.2)
( inf
λ∈Rn

f(Aλ) = inf
λ∈Rn

f(A+λ)) ∧ ( inf
λ∈Rn

f(A0λ) = 0) ∧ f ◦A+ has minimizers, (8.3)

ψA =
[
ψA0

ψA+

]
with ψA0 = 0z ∧ ψA+ ∈ Rp++, (8.4)

(ΦA0 = {0z}) ∧ (ΦA+ ∩ Rp++ 6= ∅) ∧ (ΦA = ΦA0 × ΦA+). (8.5)

To see that any matrix A falls into one of the three scenarios here, fix a loss function g, and recall
from theorem 3.1 that ψA is unique. In particular, the set of zero entries in ψA exactly specifies
which of the three scenarios hold, the current scenario allowing for simultaneous positive and zero
entries. Although this reasoning made use of ψA, note that it is A which dictates the behavior: in
fact, as is shown in remark I.1 of the full version, the decomposition is unique.

Returning to theorem 8.1, the geometry of fig. 2c is provided by (8.2) and (8.5). The analysis
will start from (8.3), which allows the primal problem to be split into two pieces, which are then
individually handled precisely as in the preceding sections. To finish, (8.5) will allow these pieces
to be stitched together.
Theorem 8.6. Suppose A 6= 0m×n, g ∈ G, ψA ∈ Rm+ \ Rm++ \ {0m}, and the notation from
theorem 8.1. Set w := supt ‖∇f(A+λt) + P1

ΦA+
(−∇f(A+λt))‖1. Then w < ∞, and there exists

a tightest cube C+ so that C+ ⊇ {x ∈ Rp : f(x) ≤ f(Aλ0)}, and let c > 0 be the modulus of
strong convexity of f over C+. Then γ(A,Rz+ × −∇f(C+)) > 0, and for all t, f(Aλt) − f̄A ≤
2f(Aλ0)/

(
(t+ 1) min

{
1, γ(A,Rz+ ×−∇f(C+))2/((β + w/(2c))2η)

})
.

(In the case of the logistic loss, w ≤ supx∈Rm ‖∇f(x)‖1 ≤ m.)

As discussed previously, the bounds deteriorate to O(1/ε) because the finite and infinite margins
sought by the two pieces A0, A+ are in conflict. For a beautifully simple, concrete case of this,
consider the following matrix, due to Schapire [11]:

S :=

[−1 +1
+1 −1
+1 +1

]
.

The optimal solution here is to push both coordinates of λ unboundedly positive, with margins
approaching (0, 0,∞). But pushing any coordinate λi too quickly will increase the objective value,
rather than decreasing it. In fact, this instance will provide a lower bound, and the mechanism of the
proof shows that the primal weights grow extremely slowly, as O(ln(t)).
Theorem 8.7. Using the logistic loss and exact line search, for any t ≥ 1, f(Sλt)− f̄S ≥ 1/(8t).
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A Notation

To aid in the reading of the proofs, this section summarizes notation used throughout the manuscript.

Symbol Comment
Rm m-dimensional vector space over the reals.
Rm+ Non-negative m-dimensional real vectors.

int(S) The interior of set S.
Rm++ Positive m-dimensional real vectors, i.e. int(Rm+ ).
0m m-dimensional Vector of all zeros.
ei Indicator vector: 1 at coordinate i, 0 elsewhere. Context will provide the ambient dimen-

sion.
Im(A) Image of linear operator A.
Ker(A) Kernel of linear operator A.
In Identity matrix with rank n.
ιS Indicator function on a set S:

ιS(x) :=

{
0 x ∈ S,
∞ x 6∈ S.

dom(h) Domain of convex function h, i.e. the set {x ∈ Rm : h(x) <∞}.
h∗ The Fenchel conjugate of h:

h∗(φ) = sup
x∈dom(h)

〈φ, x〉 − h(x).

For any h considered in this document, h∗ is closed and convex [18, Theorem E.1.1.2].
A key property is that, when both gradients exist, ∇h∗(∇h(x)) = x (see for instance
[18, Corollary E.1.4.4] for the generalization to subgradients): the Fenchel conjugate thus
provides an inverse gradient map. For a beautiful description of Fenchel conjugacy, please
see [18, Section E.1.2].

0-coercive A closed convex function f with all level sets compact is called 0-coercive; for strictly
convex functions, this is equivalent to the infimum being attainable (cf. proposition H.1).
For a thorough treatment of 0-coercivity, please see Proposition B.3.2.4 and Definition
B.3.2.5 of [18].

G0 Basic loss class under consideration (cf. section 2).
G Refined loss class for which convergence rates are established (cf. section 5).
η, β Parameters corresponding to some g ∈ G (cf. section 5).
ΦA The general dual feasibility set: ΦA := Ker(A>) ∩ Rm+ .

γ(A,S) Generalization of classical weak learning rate (cf. section 4).
f̄A The minimal objective value of f ◦ A: f̄A := infλ f(Aλ). In general, this value is not

attainable.
ψA Dual optimum. This value always exists, is unique, and non-negative (cf. section 3).
PpS lp projection onto closed nonempty convex set S. When p ∈ {1,∞}, this is not satisfied

uniquely, thus choose any element (cf. section 4).
DpS lp distance to closed nonempty convex set S: DpS(φ) := ‖φ− PpS(φ)‖p.

B A Few Key Results from the Literature

The first three results are canonical theorems of alternatives. Incidentally, Gordan’s theorem, to the
knowledge of the author, is the oldest theorem of alternatives [see 21, Bibliographic notes, Section
5 of Chapter 2]. A streamlined presentation, using a related optimization problem (which can nearly
be written as f ◦A from this manuscript), can be found in [19, Theorem 2.2.6].
Theorem B.1 (Gordan, cf. Theorem 2.2.1 of [19]). For anyA ∈ Rm×n, exactly one of the following
situations holds:

∃φ ∈ Rm+ \ {0m} �A>φ = 0n; (B.2)
∃λ ∈ Rn �Aλ ∈ Rm++. (B.3)
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A geometric interpretation is as follows. Take the rows of A to be m points in Rn. Then there are
two possibilities: either there exists an open homogeneous halfspace containing all points, or their
convex hull contains the origin.

Next is Stiemke’s Theorem of Alternatives.
Theorem B.4 (Stiemke, cf. Exercise 2.2.8 of [19]). For anyA ∈ Rm×n, exactly one of the following
situations holds:

∃φ ∈ Rm++ �A>φ = 0n; (B.5)
∃λ ∈ Rn �Aλ ∈ Rm+ \ {0m}. (B.6)

The geometric interpretation here is that either there exists a closed homogeneous halfspace con-
taining all m points, with at least one point interior to the halfspace, or the relative interior of the
convex hull of the points contains the origin (for the connection to relative interiors, see for instance
[18, Remark A.2.1.4]).

Third, a version of Motzkin’s Transposition Theorem, which can encode the theorems of alternatives
due to Farkas, Stiemke, and Gordan [22].
Theorem B.7 (Motzkin, cf. Theorem 2.16 of [21]). For any B ∈ Rz×n and C ∈ Rp×n, exactly one
of the following situations holds:

∃λ ∈ Rn �Bλ ∈ Rz++ ∧ Cλ ∈ Rp+, (B.8)

∃φB ∈ Rz+ \ {0z}, φC ∈ Rp+ �B>φB + C>φC = 0n. (B.9)

For this geometric interpretation, suppose a matrix A ∈ Rm×n, broken into two submatrices B ∈
Rz×n and C ∈ Rp×n, with z + p = m; again, consider the rows of A as m points in Rn. The first
possibility is that there exists a closed homogeneous halfspace containing all m points, the z points
corresponding to B being interior to the halfspace. Otherwise, the origin can be written as a convex
combination of these m points, with positive weight on at least one element of B.

The next result is a form of the Fenchel-Young inequality, simplified for differentiability (the “if”
can be strengthened to “iff” via subgradients).
Proposition B.10 (Fenchel-Young Inequality, Proposition 3.3.4 in [19]). For any convex function f
and x ∈ dom(f), φ ∈ dom(f∗),

f(x) + f∗(φ) ≥ 〈x, φ〉 ,
with equality if φ = ∇f(x).

Next, a lemma to convert single-step convergence results into general convergence results. Results
of this sort are widely used in convex analysis.
Lemma B.11 (Lemma 20 from [15]). Suppose ∞ > a0 ≥ a1 ≥ . . . ≥ 0 and ai+1 ≤ ai − ra2

i

where r ∈ (0, (2a0)−1]. Then ai ≤ 1
r(i+2) .

Proof. To reduce this to the exact setting of Lemma 20 from [15], set εi = ai−1/a0, so now 1 =
ε1 ≥ ε2 ≥ . . . with corresponding inequality

εi+1 ≤ εi − a0rε
2
i .

Since a0r ∈ (0, 1/2], the lemma may be invoked, yielding εi ≤ (a0r(i + 1))−1, which can be
rearranged to give the result.

Although strong convexity in the primal grants the existence of a lower bounding quadratic, it grants
upper bounds in the dual. The following result is also standard in convex analysis, see for instance
the proof of [18, Theorem E.4.2.2].
Lemma B.12 (Lemma 18 from [15]). Let h be strongly convex over compact convex set S with
modulus c. Then for any φ1, φ1 + φ2 ∈ ∇f(S),

f∗(φ1 + φ2)− f∗(φ1) ≤ 〈∇f∗(φ1), φ2〉+
1

2c
‖φ2‖22.
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C Basic Properties of g ∈ G0

Lemma C.1. Let any g ∈ G0 be given. Then g is strictly convex, g > 0, g strictly decreases
(g′ < 0), and g′ strictly increases. Lastly, limx→−∞ g(x) =∞.

Proof. (Strict convexity and g′ strictly increases.) For any x < y,

g′(y) = g′(x) +

∫ y

x

g′′(t)dt ≥ g′(x) + (y − x) inf
t∈[x,y]

g′′(t) > g′(x),

and thus g′ is strictly monotone, granting strict convexity [see 18, Theorem B.4.1.4].

(g strictly decreases, i.e. g′ < 0.) Suppose there exists x < y with g(y) > g(x). By convexity,

g(x) ≥ g(y) + g′(y)(x− y) = g(y)− g′(y)(y − x)

=⇒ g′(y) ≥ g(y)− g(x)

y − x
=: c > 0.

Thus, for any z > y,

g(z) ≥ g(y) + g′(y)(z − y) ≥ g(y) + c(z − y),

which contradicts limx→∞ g(x) = 0. Thus g is non-increasing. Furthermore, it is decreasing, since
if there existed x < y with g(x) = g(y), strict convexity would grant g((x + y)/2) < g(y), which
contradicts the non-increasing property.

(g > 0.) If there existed y with g(y) ≤ 0, then the strict decreasing property would invalidate
limx→∞ g(x) = 0.

(limx→−∞ g(x) = ∞.) Let any sequence {ci}∞1 ↓ −∞ be given; the result follows by convexity
and g′ < 0, since

lim
i→∞

g(ci) ≥ lim
i→∞

g(c1) + g′(c1)(ci − c1) =∞.

Lemma C.2. Let g ∈ G0 be given. Then g∗ is continuously differentiable on int(dom(g∗)), strictly
convex, and either dom(g∗) = (−∞, 0] or dom(g∗) = [b, 0] where b < 0. Furthermore, g∗ has the
following form:

g∗(φ) ∈



(−g(0),∞] φ < g′(0),

−g(0) φ = g′(0),

(−g(0), 0) φ ∈ (g′(0), 0),

0 φ = 0,

∞ φ > 0.

Proof. g∗ is strictly convex because g is differentiable, and g∗ is continuously differentiable on
int(dom(g∗)) because g is strictly convex [see 18, Theorems E.4.1.1, E.4.1.2].

Next, when φ > 0: limx→∞ g(x) = 0 grants the existence of y such that for any x ≥ y, g(x) ≤ 1,
thus

g∗(φ) = sup
x
φx− g(x) ≥ sup

x≥y
φx− 1 =∞.

(Since g > 0, this precludes the possibility of∞−∞)

Take φ = 0; then
g∗(φ) = sup

x
−g(x) = − inf

x
g(x) = 0.

When φ = g′(0), by the Fenchel-Young inequality (proposition B.10)

g∗(φ) = g∗(g′(0)) = 0 · g′(0)− g(0) = −g(0).

Moreover, by [18, Corollary E.1.4.3] ∇g∗(g′(0)) = 0, which combined with strict convexity of g∗
means g′(0) minimizes g∗. g∗ is closed [18, Theorem E.1.1.2], which combined with the above
gives that dom(g∗) = (−∞, 0] or dom(g∗) = [−b, 0] for some b < 0, and the rest of the form of
g∗.
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Lemma C.3. Let any g ∈ G0 be given. Then the corresponding f is strictly convex, twice differen-
tiable, and f ′ < 0m. Furthermore, dom(f∗) = dom(g∗)m ⊆ Rm− , f∗(0m) = 0, f∗ is strictly con-
vex, f∗ is continuously differentiable on the interior of its domain, and finally f∗(φ) =

∑m
i=1 g

∗(φi).

Proof. First,

f∗(φ) = sup
x∈Rm

〈φ, x〉 − f(x) = sup
x∈Rm

m∑
i=1

xiφi − g(xi) =

m∑
i=1

g∗(φi).

The remaining properties follow from properties of g and g∗ (cf. lemma C.1 and lemma C.2).

D Deferred Material from Section 3

Proof of theorem 3.1. Writing the objective as two Fenchel problems,

p := inf
λ
f(Aλ) + ιRn(λ),

d := sup
φ
−f∗(−φ)− ι∗Rn(A>φ).

Since cont(f) = Rm (set of points where f is continuous) and dom(ιRn) = Rn, it follows that
Adom(ιRn) ∩ cont(f) = Im(A) 6= ∅, thus by [19, Theorem 3.3.5], p = d. Moreover, since
p ≤ f(0m) and d ≥ −f∗(0m) = 0, the optimum is finite, and thus the same theorem grants that it
is attainable in the dual.

To finish, note for any λ ∈ Rn that

ι∗Rn(λ) = sup
µ∈Rn

〈λ, µ〉 − ιRn(µ) = ι{0n}(λ).

Thus φ ∈ Ker(A>); and by lemma C.3, dom(f∗) ⊆ Rm− , and thus φ ∈ ΦA = Ker(A>) ∩ Rm+ .

The fact that f∗(φ) =
∑
i g
∗((φ)i) was proved in lemma C.3.

The uniqueness of ψA was established by Collins et al. [8, Theorem 1], however a direct argument
is as follows by the strict convexity of f∗ (cf. lemma C.3). Specifically, this means the optimum ψ
is unique, for if there were some other optimal ψ′ 6= ψ, the point (ψ + ψ′)/2 is dual feasible and
has strictly smaller objective value, a contradiction.

E Deferred Material from Section 4

The proof of proposition 4.3 is technical, but the central strategy is straightforward. First note that
γ(A,S) can be rewritten as

γ(A,S) = inf
S\Ker(A>)

‖A>φ‖∞
‖φ− P1

S∩Ker(A>)
(φ)‖1

= inf
S\Ker(A>)

‖A>(φ− P1
S∩Ker(A>)(φ))‖∞

‖φ− P1
S∩Ker(A>)

(φ)‖1

= inf
{
‖A>v‖∞ : ∀v ∈ Rm � ∃φ ∈ S � v = φ− P1

S∩Ker(A>)(φ), ‖v‖1 = 1
}
,

where the second equivalence used A>P1
S∩Ker(A>)(φ) = 0n.

In the final form, v 6∈ Ker(A>), and so A>v 6= 0n; that is to say, the infimand is positive for every
element of its domain. The difficulty is that the domain of the infimum, written in this way, is not
obviously closed; thus one can not simply assert the infimum is attainable and positive.

The goal then will be to reparameterize the infimum as having a compact domain. For technical
convenience, the result will be mainly proved for the l2 norm (where projections are very well-
behaved), and norm equivalence will provide the final result.
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Lemma E.1. Given A 6= 0m×n and a polyhedron S with nonempty interior and S ∩Ker(A>) 6= ∅,

inf

{
‖A>(φ− P2

S∩Ker(A>)(φ))‖2
‖φ− P2

S∩Ker(A>)
(φ)‖2

: φ ∈ S \ Ker(A>)

}
(E.2)

Proof. First dispense with a technical consideration: since A 6= 0m×n, then ker(A>) 6= Rm,
meaning S \ ker(A>) 6= ∅ (since S has interior points). In particular, the domain of the infimum is
nonempty. Furthermore, since S ∩ Ker(A>) is nonempty, projections onto it are well defined.

Let (φ
(1)
i )∞i=1 be a minimizing sequence for (E.2), and for convenience set K := Ker(A>).

Amongst the family of all polyhedral subsets of S ∩K, notice that some receive an infinite subse-
quence of the projected elements (P2

S∩K(φ
(1)
i ))∞i=1. Partition this family by affine dimension; since

the polyhedron S ∩K is in this family, there is a subpolyhedron with affine dimension dim(S ∩K)
receiving infinitely many projections. Now designate E to be any polyhedral subset of smallest di-
mension amongst those receiving an infinite subsequence of projections, and label E’s subsequence
(φ

(2)
i )∞i=1.

The strict subfaces of E (i.e., the faces of E which are not E itself) are also polyhedral subsets
of S ∩K. Their dimension, however, is strictly smaller than E’s dimension, meaning each subface
receives only finitely many projection elements. Since there are only finitely many subfaces, produce
a subsequence (φ

(3)
i )∞i=1 by deleting all projections onto strict subfaces. Crucially, as precisely the

projections onto the relative boundary of E were cut, it now holds that P2
S∩K(φ

(3)
i ) ∈ ri(E), the

relative interior of E. Lastly, note that this is still a minimizing sequence for (E.2).

Next note that the normal cone NE(x) to E at a relatively interior point x ∈ ri(E) is a subspace; in
particular, it is

(aff(E)− {x})⊥,
the orthogonal complement of the subspace corresponding to the affine hull of E. (This can be veri-
fied by considering any point whose projection is relatively interior to E; if it were not orthogonal to
aff(E), then one could choose a point in a relative neighboorhood of x, but closer to the projection
onto aff(E), thus contradicting the choice of projection element as the closest element in E to x.
For related results, please see Hiriart-Urruty and Lemaréchal [18, sections A.5.2, A.5.3]).

Since S is a polyhedron, it has a representation

S = {x ∈ Rm : ∀i � gi(x) ≤ 0},

where {gi}k1 is a finite collection of affine functions. For any point x ∈ E, define the active set Ix
to be the constraints of S which are exactly met for x:

Ix := {i : gi(x) = 0}.

If x, y are in ri(E), then Ix = Iy . To see this, assume contradictorily that Ix 6= Iy; without
loss of generality, let gk be some affine manifold with gk(x) < 0 but gk(y) = 0. By definition
of relative interior, there exists ε > 0 so that B(y, ε) ∩ aff(E) ⊆ E. Thanks to this, the point
y′ := y+ 2−1ε(y−x)/‖y−x‖2, which is along the line through x and y, is still in E. On the other
hand, the hyperplane corresponding to gk must separate x from y′, and in particular gk(y′) > 0,
meaning y′ 6∈ S, contradicting the fact that E ⊆ S. Thus every element of ri(E) has the same active
set.

For any x ∈ E, the distance from x to any hyperplane defining S, but not in Ix, is positive. Since S
is defined by finitely many hyperplanes, there exists δ > 0 such that the ball B(x, δ) intersects only
those hyperplanes in Ix. Thus define the set

Cx := {v ∈ Rm : ‖v‖2 ≤ δ, ∀j ∈ Ix � gj(x+ v) ≤ 0, v ∈ NE(x)},

which is the collection of all projection directions to x from points within S ∩B(x, δ).

Since NE(x) and Ix are the same for all x in the relative interior of Cx, all that may differ across
points is the choice of δ; accordingly, for any x, y in ri(E), Cx = aCy for some a > 0.
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Finally, observe that projections onto x from farther than the constructed δ away must simply be
rescalings of the elements of Cx; where this not the case, S would be nonconvex. Symbolically,

Cx ⊂ {φ− x : φ ∈ S,P2
K∩S(φ) = x} ⊆ R+Cx;

Notice that
R+Cx = {v ∈ Rm : ∀j ∈ Ix � gj(x+ v) ≤ 0, v ∈ NE(x)};

that is to say, R+Cx is a closed polyhedral cone.

Using all these facts,

inf

{
‖A>φ‖2

‖φ− P2
S∩K(φ)‖2

: φ ∈ S \K
}

= inf

{
‖A>(φ

(3)
i − P2

E(φ
(3)
i ))‖2

‖φ(3)
i − P2

E(φ
(3)
i )‖2

: i ∈ Z+

}

≥ inf

{
‖A>v‖2
‖v‖2

: x ∈ ri(E), v ∈ Cx \ {0m}
}

≥ inf

{
‖A>φ‖2

‖φ− P2
S∩K(φ)‖2

: φ ∈ S \K
}
,

where the presence of the final inequality provides that this is in fact a chain of equalities. Fixing
some x0 ∈ ri(E) and noting that the infimand ignores the length of v,

inf

{
‖A>v‖2
‖v‖2

: x ∈ ri(E), v ∈ Cx \ {0m}
}

= inf

{
‖A>v‖2
‖v‖2

: x ∈ ri(E), v ∈ R+Cx \ {0m}
}

= inf

{
‖A>v‖2
‖v‖2

: v ∈ R+Cx0 \ {0m}
}

= inf
{
‖A>v‖2 : v ∈ R+Cx0 ∩B(1, 0)

}
.

Since it was provided above that R+Cx0 is a closed polyhedral cone, the domain of this final infimum
is a compact set. As the infimand is continuous, this infimum attains a minimizer v̄, and there must
exist c > 0 so that x0 +cv̄ ∈ S and P2

E(x0 +cv̄) = x0 ∈ E ⊆ K. But then cv̄ 6∈ Ker(A>), meaning
‖A>v̄‖2 > 0, and the infimum is positive.

This proof has an interesting byproduct; to compute this quantity, one can simply focus on orthogo-
nal projections to some very bad subpolyhedron’s relative interior.

Proof of proposition 4.3. For the upper bound, note as in the proof of lemma E.1 that S ∩Ker(A>)
is nonempty and the infimand is positive for every element of the domain, so the infimum is finite.
For the lower bound, by lemma E.1 and norm equivalence,

γp(A) = inf
φ∈S\Ker(A>)

‖A>φ‖∞
infψ∈S∩Ker(A>) ‖φ− ψ‖1

≥
(

1√
mn

)
inf

φ∈S\Ker(A>)

‖A>φ‖2
infψ∈S∩Ker(A>) ‖φ− ψ‖2

> 0.

F Deferred Material from Section 5

Remark F.1. This remark develops bounds on the quantities η, β for the logistic loss g = ln(1 +
exp(−·)). First note that the initial level set S0 := {x ∈ Rm : f(X) ≤ f(Aλ0)} is contained within
a cube [b,∞)m, where b ≥ −m ln(2); this follows since f(Aλ0) = f(0m) = m ln(2), whereas
g(−m ln(2)) = ln(1 + exp(−(−m ln(2)))) ≥ m ln(2).

The analysis will be written with respect to b. Let any x ∈ [b,∞) be given, and note g′ = −(1 +
exp(·))−1, and g′′ = exp(·)(1 + exp(·))−2.

To start determining η, note 1 ≤ 1 + exp(−x) ≤ 1 + exp(−b). Set c1 := ln(1 + exp(−b));
since ln is concave, it follows that, for all z ∈ [1, 1 + exp(−b)], the secant line through (1, 0) and
(1 + exp(−b), c1) is a lower bound:

ln(z) ≥
(

c1 − 0

1 + exp(−b)− 1

)
z − c1 − 0

1 + exp(−b)− 1
= c1e

b(z − 1).
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Thus, setting η := 1/(c1 exp(b)), for x ∈ [b,∞), ln(1 + exp(−x)) ≥ exp(−x)/η. Furthermore

g′′(x)

g(x)
=

e−x

(1 + e−x)2 ln(1 + e−x)
≤ ηe−x

e−x
,

and thus g′′(x) ≤ ηg(x).

And for g(x) ≤ −βg′(x), using ln(x) ≤ x− 1,

−g′(x)

g(x)
=

exp(−x)
1+exp(−x)

ln(1 + exp(−x))
≥

exp(−x)
1+exp(−x)

exp(−x)
≥ 1

1 + exp(−b)
.

That is, it suffices to set β := 1 + exp(−b). ♦

The next result, which is standard in the optimization literature (the presentation here is resembles
one due to Boyd and Vandenberghe [17, section 9.4]), provides a lower bound on the improvement
due to a single single descent iteration. In particular, one can simply choose a step size based on
the minimizer of an upper bounding quadratic. As discussed in section 2, instead using a standard
iterative line search will only degrade the presented bounds by a constant. Note however that even
though the quantities in the following lemma are known to the algorithm at runtime, it is preferable
in practice to use an iterative line search; this result can thus be taken as providing the existence of
good line search choices, regardless of existence and computational considerations of an exact line
search minimizer.

Lemma F.2. Fix any t and g ∈ G0 (with corresponding f ). Suppose the line search chooses
αt+1 := −

〈
A>∇f(Aλt), ejt+1

〉
/(ηf(Aλt)). Then

f(Aλt)− f(Aλt+1) ≥ ‖A
>∇f(Aλt)‖2∞
2ηf(Aλt)

.

Proof. Define a level set for the line search:

Lt+1 := {α ∈ R : (f ◦A)(λt + αejt+1
) ≤ (f ◦A)(λt)}.

Since α 7→ (f ◦A)(λt+αejt+1
) is convex, Lt+1 is convex. By Taylor’s theorem, for any α ∈ Lt+1,

(f ◦A)(λt + αejt+1) ≤ f(Aλt) + α
〈
A>∇f(Aλt), ejt+1

〉
+
α2

2
sup

τ∈Lt+1

e>jt+1
A>∇2f(A(λt + τejt+1

))Aejt+1
.

Next, using η from the definition of G granting g′′ ≤ ηg within the initial level set, and recalling
that entries of A are within [−1, 1], it follows that

sup
τ∈Lt+1

e>jt+1
A>∇2f(A(λt + τejt+1))Aejt+1 = sup

τ∈Lt+1

m∑
i=1

g′′(e>i A(λt + τejt+1)A2
ijt+1

≤ η sup
τ∈Lt+1

m∑
i=1

g(e>i A(λt + τejt+1
)

= ηf(Aλt),

the last step following by the definition of Lt+1 and f . Inserting this second-order bound into the
above Taylor expansion, for any α ∈ Lt+1,

(f ◦A)(λt + αejt+1
) ≤ f(Aλt) + α

〈
A>∇f(Aλt), ejt+1

〉
+
α2ηf(Aλt)

2
.

Observe that the lemma statement’s choice of αt+1 is the minimizer of the convex quadratic of the
right hand expression; plugging in αt+1 and rearranging yields the desired result.
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G Deferred Material from Section 6

Proof of theorem 6.1. ((6.2) =⇒ (6.3)) Let λ̄ ∈ Rn be given with Aλ̄ ∈ Rm++, and let any
increasing sequence {ci}∞1 ↑ ∞ be given. Then, since f > 0m and limx→∞ g(x) = 0,

inf
λ
f(Aλ) ≤ lim

i→∞
f(ciAλ̄) = 0 ≤ inf

λ
f(Aλ).

((6.3) =⇒ (6.4)) The point 0m is always dual feasible, and

inf
λ
f(Aλ) = 0 = −f∗(−0m).

Since the dual optimum is unique (theorem 3.1), ψA = 0m.

((6.4) =⇒ (6.5)) Suppose there exists ψ ∈ ΦA with ψ 6= 0m. Since −f∗ is continuous and
increasing along every positive direction at 0m = ψA (see lemma C.2 and lemma C.3), there must
exist some tiny τ > 0 such that −f∗(−τψ) > −f∗(−ψA), contradicting the selection of ψA as a
unique optimum.

((6.5) =⇒ (6.2)) This case is directly handled by Gordan’s theorem (cf. theorem B.1).

H Deferred Material from Section 7

Attainability will be discussed rigorously in terms of 0-coercivity—a function h is 0-coercive when
every level set is compact (please see appendix A for further comments). The relevance to the current
context is the following fact.
Proposition H.1. Suppose f is differentiable, strictly convex, and dom(f) = Rm. Then infx f(x)
is attainable iff f is 0-coercive.

Note that while g ∈ G provides a strictly convex f , the function f ◦ A itself is not strictly con-
vex. Instead, the strictly convex function f + ιIm(A) will be used when making statements about
attainability.

Proof. It holds in general that 0-coercivity grants attainable minima (cf. [18, Proposition B.3.2.4]
and [19, Proposition 1.1.3]), thus conversely let x̄ be given with f(x̄) = infx f(x). Consider any
sublevel set Sr := {x ∈ Rm : f(x) ≤ r} with r ≥ f(x̄), and also any direction d ∈ Rm, ‖d‖2 = 1.
By strict convexity, for t ≥ 1,

f(x̄+ td) > f(x̄+ d) + (t− 1) 〈∇f(x̄+ d), d〉 .

Note by strict monotonicity of gradients (e.g. [18, B.4.1.4]) and first-order necessary conditions
(∇f(x̄) = 0m) that

〈∇f(x̄+ d), d〉 = 〈∇f(x̄+ d)−∇f(x̄), x̄+ d− x̄〉 > 0,

and so, in every direction, the function eventually (i.e. for sufficiently large t) exceeds any r. As
such, since the set of directions is compact, the level sets are bounded. That they are also compact
follows since convex functions are closed on the interior of their domains.

Proof of theorem 7.1. ((7.2) =⇒ (7.3)) As stated above, it suffices to show 0-coercivity of f +
ιIm(A). Let d ∈ Rm\{0m} and λ ∈ Rn be arbitrary. To show 0-coercivity, it suffices [18, Proposition
B.3.2.4.iii] to show

lim
t→∞

f(Aλ+ td) + ιIm(A)(Aλ+ td)− f(Aλ)

t
> 0. (H.2)

If d 6∈ Im(A), then ιIm(A)(Aλ + td) = ∞. Suppose d ∈ Im(A); by (7.2), since d 6= 0m, then
d 6∈ Rm+ meaning there is at least one negative coordinate j. But then, since g > 0 and g is convex,

(H.2) ≥ lim
t→∞

g(e>j (Aλ+ td))− f(Aλ)

t
≥ lim
t→∞

g(e>j Aλ) + tdjg
′(e>j Aλ)− f(Aλ)

t
,

which is positive since g′(e>j Aλ) < 0, and the other terms in the numerator vanish.
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((7.3) =⇒ (7.4)) Since the infimum is attainable, and thus designate any λ̄ satisfying infλ f(Aλ) =
f(Aλ̄) (note, although f is strictly convex, f ◦ A need not be, thus uniqueness is not guaranteed!).
But then the conditions of [19, Exercise 3.3.9.f] are satisfied, meaning ψA = −∇f(Aλ̄), which is
interior to Rm+ since ∇f ∈ Rm−− everywhere (cf. lemma C.3).

((7.4) =⇒ (7.5)) This holds since ΦA ⊇ {ψA} and ψA ∈ Rm++.

((7.5) =⇒ (7.2)) This case is directly handled by Stiemke’s Theorem (cf. theorem B.4).

This section will now turn to the task of proving theorem 7.6. The lemmas will be stated with
slightly more generality in order to allow their reuse in the proof of theorem 8.6.

First, the 0-coercivity property above immediately grants the existence of the tightest rectangle in
the statement of theorem 7.6.
Lemma H.3. Suppose A 6= 0m×n, g ∈ G, and the infimum in (2.1) is attainable. Furthermore,
let any d ≥ infλ f(Aλ) be given. Then there exists a (compact) tightest axis-aligned rectangle
C ⊇ {x ∈ Rm : f(x) ≤ d}. Furthermore, the dual image −∇f(C) ⊂ Rm is also a compact
axis-aligned rectangle, and moreover it is strictly contained within −dom(f∗) ⊆ Rm+ .

Proof. Since d ≥ infλ f(Aλ), the level set Sd := {x ∈ Rm : f(x) ≤ d} is nonempty. By
proposition H.1, f + ιIm(A) is 0-coercive, meaning Sd is compact.

Now consider the rectangle C defined as a product of intervals C = ⊗mi=1[ai, bi]
m, where

ai := inf{xi : x ∈ Sd}, bi := sup{xi : x ∈ Sd}.

By construction, C ⊇ Sd, and furthermore any smaller axis-aligned rectangle must fail to include a
piece of Sd. In particular, the tightest rectangle exists, and it is C.

Finally, define D := −∇f(C), the dual image of C. Since ∇f is continuous, D is compact. More-
over, for any point x ∈ C and any open neighborhood B(x, δ) of x, the continuity of ∇f grants
that∇f(B(x, δ)) ⊆ dom(f∗), whereby it follows that every φ ∈ D is interior to −dom(f∗), and in
particular D is contained within the interior of −dom(f∗).

Finally, note that ∇f(x) = (g′(x1), g′(x2), . . . , g′(xm)), thus D = − ⊗mi=1 g
′([ai, bi]), an axis-

aligned rectangle in the dual.

Next, dual distances are easily controlled along compact subsets of Im(A).
Lemma H.4. Let A ∈ Rm×n, g ∈ G, and any compact set S be given. Then f is strongly convex
over S, and taking c > 0 to be the modulus of strong convexity, for any x ∈ S ∩ Im(A),

f(x)− f̄A ≤
1

2c
inf

ψ∈−∇f(S)∩Ker(A>)
‖ψ +∇f(x)‖21.

Proof. Consider the optimization problem

inf
x∈S

inf
φ∈Rm

‖φ‖2=1

〈
∇2f(x)φ, φ

〉
= inf
x∈S

inf
φ∈Rm

‖φ‖2=1

m∑
i=1

g′′(xi)φ
2
i ;

since S is compact and g′′ is continuous, the infimum is attainable. But g′′ > 0 and φ 6= 0m,
meaning the infimum c is nonzero, and moreover it is the modulus of strong convexity of f over S
[18, Theorem B.4.3.1.iii].

Now let any x ∈ S ∩ Im(A) be given, and define D = −∇f(S) ⊂ Rm+ . Consider the dual
element P2

D∩Ker(A>)(−∇f(x)); due to the projection, it is dual feasible, and thus it must follow
from theorem 3.1 that

f̄A = sup{−f∗(−ψ) : ψ ∈ ΦA} ≥ −f∗(−P2
D∩Ker(A>)(−∇f(x))).

Furthermore, since x ∈ Im(A), 〈
x,P2

D∩Ker(A>)(−∇f(x))
〉

= 0.
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Combining these with the Fenchel-Young inequality (cf. proposition B.10),

f(x)− f̄A ≤ f(x) + f∗(−P2
D∩Ker(A>)(−∇f(x)))

= f∗(−P2
D∩Ker(A>)(−∇f(x))) + 〈∇f(x), x〉 − f∗(∇f(x))

= f∗(−P2
D∩Ker(A>)(−∇f(x)))− f∗(∇f(x))

−
〈
∇f(x),−P2

D∩Ker(A>)(−∇f(x))−∇f(x)
〉

≤ 1

2c
‖∇f(x) + P2

D∩Ker(A>)(−∇f(x))‖22,

where the last step follows by an application of lemma B.12, noting that both ∇f(x) and
−P2

D∩Ker(A>)(−∇f(x)) are in ∇f(S) = −D, and f is strongly convex with modulus c over S.
To finish, rewrite P as an infimum and use ‖ · ‖2 ≤ ‖ · ‖1.

Proof of theorem 7.6. Invoking lemma H.3 with d = f(Aλ0) immediately provides a compact tight-
est axis-aligned rectangle C containing the initial level set S := {x ∈ Rm : f(x) ≤ f(Aλ0)}.
Crucially, since the objective values never increase, S and C contain every iterate Aλt.

Applying lemma H.4 to the set C, then for any t,

f(Aλt)− f̄A ≤
1

2c
‖∇f(Aλt) + P2

−∇f(C)∩Ker(A>)(−∇f(Aλt))‖21,

where c > 0 is the modulus of strong convexity of f over C.

Finally, notice that C contains a minimizer, and thus −∇f(C) contains the dual optimum ψA, which
is dual feasible. Therefore −∇f(C) ∩Ker(A>) 6= ∅, and since lemma H.3 granted polyhedrality of
−∇f(C), proposition 4.3 provides γ(A,−∇f(C)) > 0. Plugging this into proposition 5.2 gives

f(Aλt+1)− f̄A ≤ f(Aλt)− f̄A −
γ(A,−∇f(C))2D1

−∇f(C)∩Ker(A>)(−∇f(Aλt))
2

2ηf(Aλt)

≤ (f(Aλt)− f̄A)

(
1− cγ(A,−∇f(C))2

ηf(Aλ0)

)
,

and the result again follows by recursively applying this inequality.

I Deferred Material from Section 8

Proof of theorem 8.1. ((8.2) =⇒ (8.3)) Let λ̄ be given with A0λ̄ ∈ Rz++ and A+λ̄ = 0p, and
let R++ ⊃ {ci}∞1 ↑ ∞ be an arbitrary sequence increasing without bound. Lastly, let {λi}∞1 be a
minimizing sequence for infλ f(A+λ). Then

inf
λ
f(A+λ) = lim

i→∞

(
f(A+λi) + f(ciA0λ̄)

)
≥ inf

λ
f(Aλ) = inf

λ
(f(A+λ) + f(A0λ)) ≥ inf

λ
f(A+λ),

which used the fact that f(A0λ) ≥ 0 since f ≥ 0. And since the chain of inequalities starts and
ends the same, it must be a chain of equalities, which means infλ f(A0λ) = 0. To show attainability
of infλ f(A+λ), note the second part of (8.2) is one of the conditions of theorem 7.1.

((8.3) =⇒ (8.4)) First, by theorem 6.1, infλ f(A0λ) = 0 means ψA0
= 0z and ΦA0

= {0z}. Thus

−f∗(−ψA) = sup
ψ∈ΦA

−f∗(−ψ)

= sup
ψz∈Rz

+

ψp∈Rp
+

A>
0 ψz+A>

+ψp=0n

−f∗(−ψz)− f∗(−ψp)

≥ sup
ψz∈ΦA0

−f∗(−ψz) + sup
ψp∈ΦA+

−f∗(−ψp)

= 0− f∗(−ψA+
) = inf

λ∈Rn
f(A+λ) = inf

λ∈Rn
f(Aλ) = −f∗(−ψA).
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Combining this with g∗(0) = 0 (cf. lemma C.2), f∗(−ψA) = f∗(−ψA+
) = f∗(−

[
ψA0

ψA+

]
).

But theorem 3.1 shows ψA was unique, which gives the result. And to obtain ψA+
∈ Rp++, use

theorem 7.1 with the 0-coercivity of f + ιIm(A+).

((8.4) =⇒ (8.5)) Since ψA0
= 0z , it follows by theorem 6.1 that ΦA0

= {0z}. Furthermore,
since ψA+

∈ Rp++, it follows that ΦA+
∩ Rp++ 6= ∅. Now suppose contradictorily that ΦA 6=

ΦA0
× ΦA+

; since it always holds that ΦA ⊇ ΦA0
× ΦA+

, this supposition grants the existence of

ψ =
[
ψz

ψp

]
∈ ΦA where ψz ∈ Rz+ \ {0z} and ψp ∈ Rp+ \ {0p}, meaning each have at least one

positive coordinate. Now consider the element q := ψ+ψA which has more nonzero elements than
ψA, and is dual feasible. Setting Aq to just the rows of A corresponding to the nonzero entries of
q, by theorem 7.1, the dual optimum ψAq will have only nonzero entries. But this solution can be
extended (by adding zeros) to an element ψ′Aq

∈ ΦA, and moreover, since the selection of ψAq did
not choose ψA restricted to Aq (which would only remove zeros and thus maintain feasibility and
dual objective value), it follows that −f∗(−ψ′Aq

) > −f∗(−ψA), contradicting the definition of ψA
as the dual optimum.

((8.5) =⇒ (8.2)) Unwrapping the definition of ΦA, the assumed statements imply

(∀φ0 ∈ Rz+ \ {0z}, φ+ ∈ Rp+ �A>0 φ0 +A>+φ+ 6= 0n) ∧ (∃φ+ ∈ Rp++ �A>+φ+ = 0n).

Applying Motzkin’s transposition theorem (cf. theorem B.7) to the left statement and Stiemke’s
theorem (cf. theorem B.4, which is implied by Motzkin’s theorem) to the right yields

(∃λ ∈ Rn �A0λ ∈ Rz++ ∧A+λ ∈ Rp+) ∧ (∀λ ∈ Rn �A+λ 6∈ Rp+ \ {0p}),

which implies the desired statement.

Remark I.1. Consider the following iterative process. Start with all rows ofA inA+, and no rows in
A0. At every stage of this process, it will be maintained that A0 satisfies the conditions of eq. (8.2),
and when the process terminates, A+ will satisfy its part of the statement. In the base case, the
vector λ satisfying the guarantee for A0 is the zero vector.

Iterate in the following manner. By Stiemke’s theorem, either A+λ 6∈ Rm+ \ {0m} for every λ,
meaning we are done, or such a λ exists. If it exists, take the rows of A+λ which were positive,
and add move them to A0; it must be shown that A0 still satisfies the desired guarantee. Let λ′ be
the old choice; it will be shown that λ + cλ′ (for some c > 0) is a vector satisfying the desired
guarantee on A0. Consider any new row ai moved to A0, the old guarantee provides 〈ai, λ′〉 = 0,
and thus 〈ai, λ′ + λ〉 > 0 as needed. For any bi that stayed in A+, since this row was not moved,
both 〈bi, λ〉 = 0 and the old guarantee gives 〈bi, λ′〉 = 0. What remains to be shown is that for any
old row di of A0, 〈di, cλ′ + λ〉 > 0. It may be the case that 〈di, λ〉 < 0, but it is guaranteed that
〈di, λ′〉 > 0; thus it suffices to choose a large c > 0 to dominate the influx of negative values.

This construction guarantees the existence of a satisfying decomposition, but note that it also guaran-
tees uniqueness. If any other pair B0, B+ of matrices claimed to also satisfy the desired properties,
then the vectors λA, λB satisfying the first conditioned could be added together, and the resulting
vector λ′ would violate the constraint on either A+ or B+. ♦

Proof of theorem 8.6. Without loss of generality, suppose the entries of ψA are non-decreasing (and
correspondingly permute the columns of A so that the A0, A+ stack together to form A. Let A0 ∈
Rz×n and A+ ∈ Rp×n be the matrices corresponding to the zero and positive entries of ψA (thus
A is A0 on top of A+, with m = z + p). By theorem 8.1, f̄A+ = f̄A, and the form of f gives
f(Aλt) = f(A0λt) + f(A+λt), thus

f(Aλt)− f̄A = f(A0λt) + f(A+λt)− f̄A+
. (I.2)

For the left term, since g(x) ≤ β|g′(x)|,

f(A0λt) ≤ β‖∇f(A0λt)‖1 = β‖∇f(A0λt) + P1
ΦA0

(∇f(A0λt))‖1,

which used the fact (from theorem 8.1) that ΦA0
= {0z}.
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For the right term of (I.2), recall from theorem 8.1 that f+ ιIm(A+) has attainable minima and is thus
0-coercive by proposition H.1; as such, the level set S+ := {x ∈ Rp : f(x) ≤ f(Aλ0)} is compact.
Note that, for all t, A+λt ∈ S+. This follows from

f(Aλ0) ≥ f(Aλt) = f(A0λt) + f(A+λt) ≥ f(A+λt),

which used f ≥ 0. It is crucial that the level set compares against f(Aλ0) and not f(A+λ0).

Continuing, lemma H.3 may be applied to A+ with value d = f(Aλ0), granting a tightest axis-
aligned rectangle C+ ⊆ Rp+ containing S+. Applying lemma H.4 to A+ and C+, f is strongly
convex with modulus c > 0 over C+, and for any t,

f(A+λt)− f̄A+ ≤
1

2c
‖∇f(A+λt) + P1

−∇f(C+)∩Ker(A>)(−∇f(A+λt))‖21.

Next, set w := supt ‖∇f(A+λt) + P2
−∇f(C+)∩Ker(A>)(−∇f(A+λt))‖1; w <∞ since S+ is com-

pact, and −∇f(C+) ∩ Ker(A>) is nonempty. By definition of w,

‖∇f(A+λt) + P1
ΦA+

(−∇f(A+λt))‖21 ≤ w‖∇f(A+λt) + P1
ΦA+

(−∇f(A+λt))‖1.

Now to combine the upper bounds for the left and right terms of (I.2). The principal claim is that,
for any φ = φz × φp ∈ Rm,

P1
(Rz

+×−∇f(C+))∩Ker(A>)

([
φz

φp

])
=

[
0z

P1
−∇f(C+)∩Ker(A>)(φp)

]
=

[
P1

ΦA0
(φz)

P1
−∇f(C+)∩Ker(A>)(φp)

]
.

First notice Rm+ × −∇f(C+) ⊆ Rm+ , thus (Rm+ × −∇f(C+)) ∩ Ker(A>) ⊆ ΦA. Recall from
theorem 8.1 that ΦA = ΦA0 × ΦA+ = {0z} × ΦA+ , and ΦA0 = {0z}, from which it follows that
the final latter two quantities above are valid projections. To finish, notice that if there were a closer
projection, it would grant a closer projection to−∇f(C+)∩Ker(A>+), a contradiction, and the result
follows. (When the projections are not unique, the discussed choice is still a valid choice; moreover,
it matters not in the following distance computations.)

Thus
(I.2) ≤ β‖∇f(A0λt) + P1

ΦA0
(−∇f(A0λt))‖1

+ w(2c)−1‖∇f(A+λt) + P1
−∇f(C+)∩Ker(A>)(−∇f(A+λt))‖1

≤ (β + w(2c)−1)‖∇f(Aλt) + P1
(Rz

+×−∇f(C+))∩Ker(A>)(∇f(Aλt))‖1.

Note that Rz+ × −∇f(C+) is polyhedral, and C+ contains a minimizer for f ◦ A+, meaning
Rz+ × −∇f(C+) contains the dual feasible point 0z × ψA+ , thus proposition 4.3 gives γ(A,Rz+ ×
−∇f(C+)) > 0. By an application of proposition 5.2 and making use of f(Aλt) ≤ f(Aλ0),

f(Aλt+1)− f̄A ≤ f(Aλt)− f̄A −
γ(A,Rz+ ×−∇f(C+))2D1

(Rz
+×−∇f(C+))∩Ker(A>)(−∇f(Aλt))

2

2ηf(Aλt)

≤ f(Aλt)− f̄A −
γ(A,Rz+ ×−∇f(C+))2(f(Aλt)− f̄A)2

2(β + w/(2c))2ηf(Aλ0)
.

Now apply lemma B.11 with r := min
{

1,
γ(A,Rz

+×−∇f(C+))2

(β+w/(2c))2η

}
/(2f(Aλ0)).

Proof of theorem 8.7. This proof proceeds in two stages: first the gap between any solution with l1
norm B is shown to be large, and then it is shown that the l1 norm of the BOOST solution (under
logistic loss) grows slowly.

To start, Ker(S>) = {z(1, 1, 0) : z ∈ R}, and −g∗ is maximized at g′(0) with value −g(0) (cf.
lemma C.2). Thus ψS = (−g′(0),−g′(0), 0), and f̄S = −f∗(−ψS) = 2g(0) = 2 ln(2).

Next, by calculus, given any B,

inf
‖λ‖1≤B

f(Sλ)− f̄S = f
(
S
[
B/2
B/2

])
− 2 ln(2)

= (2 ln(2) + ln(1 + exp(−B)))− 2 ln(2)

= ln(1 + exp(−B)).
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Now to bound the l1 norm of the iterates. By the nature of exact line search, the coordinates of λ are
updated in alternation (with arbitrary initial choice); thus let ut denote the value of the coordinate
updated in iteration t, and vt be the one which is held fixed. (In particular, vt = ut−1.)

The objective function, written in terms of (ut, vt), is

ln(1 + exp(vt − ut)) + ln(1 + exp(ut − vt)) + ln(1 + exp(−ut − vt)).

Differentiating and collecting terms, ut and vt must satisfy, after the line search

exp(2ut) = exp(2vt) + 2 exp(vt − ut) + 2. (I.3)

First it will be shown for t > 1, by induction, that ut ≥ vt. The base case follows by inspection
(since u0 = v0 = 0 and so u1 = ln(2)). Now the inductive hypothesis grants ut ≥ vt; the
case ut = vt can be directly handled by eq. (I.3), thus suppose ut > vt. But previously, it was
shown that the optimal l1 bounded choice has both coordinates equal; as such, the current iterate,
with coordinates (ut, vt), is worse than the iterate (ut, ut), and thus the line search will move in a
positive direction, giving ut+1 ≥ vt+1.

It will now be shown by induction that, for t ≥ 1, ut ≤ 1
2 ln(4t). The base case follows by the

direct inspection above. Applying the inductive hypothesis to the update rule above, and recalling
vt+1 = ut and that the weights increase (i.e., ut+1 ≥ vt+1 = ut),

exp(2ut+1) = exp(2ut)+2 exp(ut−ut+1)+2 ≤ exp(2ut)+2 exp(ut−ut)+2 ≤ 4t+4 ≤ 4(t+1).

To finish, recall by Taylor expansion that ln(1 + q) ≥ q − q2

2 ; consequently for t ≥ 1

f(Sλt)− f̄S ≥ inf
‖λ‖1≤ln(4t)

f(Sλ)− f̄S ≥ ln

(
1 +

1

4t

)
≥ 1

4t
− 1

2

(
1

4t

)2

≥ 1

8t
.
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