ACCELERATED ADAPTIVE MARKOV CHAIN FOR PARTITION FUNCTION COMPUTATION

Stefano Ermon^{*}, Carla Gomes^{*}, Ashish Sabharwal⁺, and Bart Selman^{*}

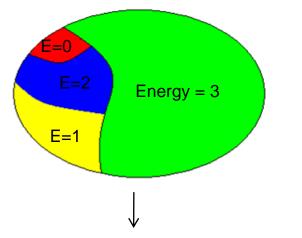
*Department of Computer Science, Cornell University *IBM Watson Research Center

Partition Function Computation

• Normalization constant in factored probabilistic models (e.g., MRFs, MLNs with soft probabilistic constraints)

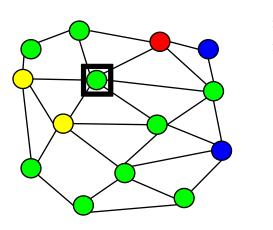
Z = Sum over exponentially many configurations

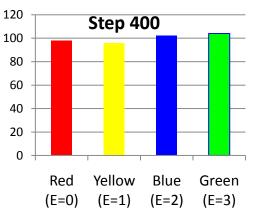
• *Flat Histogram* method (Wang-Landau)



Partition of the set of all possible configurations (according to energy)

Adaptive MCMC will eventually visit all subsets (= colors = energy levels) equally often (Contrast: Metropolis/SA, according to Boltzmann weight)





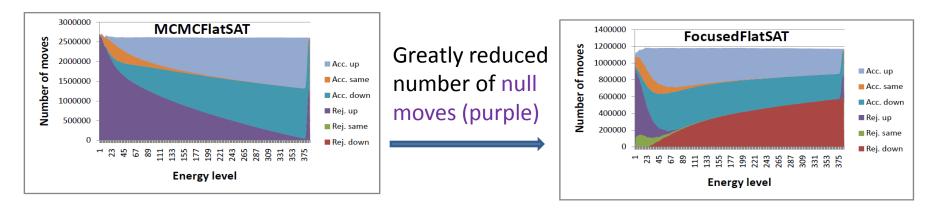
Estimates the size of the subsets (*density of states*), which also gives the partition function Z

Our Contributions

1a. Energy Saturation: single bucket for high energy states

Increasing energy

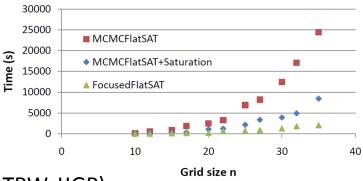
- Fewer buckets \implies faster
- (Tight) Upper bound on Z
- 1b. Focused moves: variables occurring in violated constraints are flipped more frequently (preserving detailed balance)



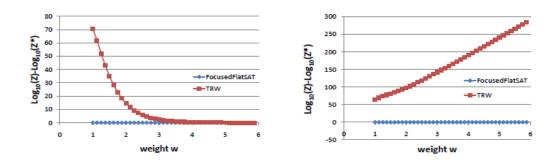
New application: density of states gives *parameterized partition function* e.g. at all temperatures, all weights of the soft constraints → learning

Experimental Results

Focused Moves + Saturation outperforms standard flat histogram



Better Accuracy (vs. Gibbs Sampling, TRW, IJGP)



- Hard Constraints (model counting)
- Soft Constraints
- Hard & Soft constraints

Improved Weight Learning

Close to optimal likelihoods for the trained weights in synthetic Markov Logic Networks