Learning Sparse Representations of High Dimensional
Data on Large Scale Dictionaries
(Supplemental Material)

1 Derivation of the dual formulation of the lasso problem

In this section, we prove that given the primal problem (i.e. the lasso problem),
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the dual problem is
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and that the relationship between the optimal solution w; of (1) and the optimal solution 6 of @) is

m ~ ~ {1} if w; > 0,
X = Zwibi +X0, bloc {-1} ifw; <0, (3)
i=1 [-1,1] ifw; =0.

To prove this, we consider a more general problem called the nonnegative lasso problem:
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It suffices to prove that the dual problem of the nonnegative lasso problem (@) is
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and that the relationship between the optimal solution @; of (@) and the optimal solution 0 of @) is

m

R A {1} ifw; >0,
X_Z;wzbﬂma, bioe{[_%” i — 0 (6)

Because if we can prove that (3)) is the dual problem of (@) via relationship (6). Then for the stan-
dard lasso problem without the nonnegative constraint, we can simply replace the codewords



{b;} with {£Db;} and the weights {w;} with {max{w;, 0}, max{—w;,0}}. This will transform the
standard lasso problem into a nonnegative lasso problem. Applying the results of the nonnegative
lasso problem proves that (2)) is the dual problem of (I)) via relationship (3).

To derive the dual problem of (@), introduce dummy variable v with A\v = x — er;l w;b; and
rewrite the primal problem (@) as:
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X — iwibi = \v.
i=1

Apparently, the Slater’s condition holds because a strictly feasible solution exists (for example, set-
tingw; = 1,7 = 1,2, ..., m). Therefore we can use the strong duality and the standard optimization
procedure (see [1]). By introducing the Lagrangian multipliers n = (11,72, ..., 7m) and A@, the
Lagrangian can be written as:
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L(w,v,n,0) = 3\\1/”3 + )\Zwi + Zm(fwi) + 207 (x - Zwibi - )\IJ) . ®
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Now we solve for the Lagrangian dual function, which is defined as g(n, 0) = infy, , L(w,v, 1, 0).
Since (§) is a linear function in w;, g(n, #) is not —oo only when the coefficient before each w; is
0,1i.e., when7; = A — A@T b;. And when this is the case,
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L(w,v,n,0) = 3”””3 + 207 (x — M) = 5 v = 6|3+ §||X||§ — 5 llo- XH%' )

To minimize this we also need v = 6. Therefore the Lagrange dual function is:
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st. n;>0,i=1,2,...,m,
can be equivalently written as
mase Sl - 20 - X3 "

st. AM1-60"b;)>0,i=1,2,...,m,
which is apparently equivalent to (3)). The relationship in () follows from the optimality condition
v = 6 and applying complementary slackness 7;w; = A(1— BTbi)wi = 0 on the optimal solutions.
2 Proof of Lemma 1

Lemma 1. If the optimal solution 6 of @) satisfies ||@ — ql|o < 7, then |bTq| < (1—7) = w; = 0.



Proof. Assume that we have |bY q| < (1 — 7). According to (3), in order to assert that w; = 0, we
only need to prove that for the optimal solution 8 of (@): [b7 8| < 1, which can be proved by:

Ib70| = [b] (6 — q) + b] q
< bl (6 —q)|+ |b]q]
< |Ibil2]|6 — all2 + [b] q
<r+(l-r)=1.

(13)

The first inequality is a simple triangle inequality. The second inequality uses the Cauchy-Schwarz

inequality. The third inequality uses our assumptions ||@ — q||o < 7 and |bXq| < (1 —r). O
3 Proof of Lemma 2
Lemma 2. Given \pax = X1 b, ||x||2 = ||bi|l2 = 1. If 0 satisfies
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which is (c). To prove (d), we first prove an intermediate result:
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This can be proved by
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which is the square of (I3). With (c) and (T3)), (d) can be proved by a simple triangle inequality:
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4 Proof of Lemma 3

Lemma 3. When A\, > \/3/2, if STI/SAFE discards b;, then ST2 also discards b,.

Proof. If ST1/SAFE discards b;, then we must have 0 < |x”b;| < A — 1 4+ A/Aaz. In order to
prove that ST?2 also discards b;, we only need to prove the following inequality:

)\ ]- )\max
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We calculate the difference of the two sides in (I7):

R.H.S. of — L.H.S. of
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We need to prove that this is positive. We have already known that A\, > A. From 0 < A —
14+ A/ Amaz we know that A > Ai\ni::il When A > /3/2 we have % > 2Amazt/ %;;‘T:Z:

Therefore A > % > 2Amazt/ ij&% So by (18) the R.H.S of is indeed greater than the
L.H.S. of (T7). 0

5 Proof of Lemma 4

Lemma 4. Given any x, b, and )\, if ST2 discards b;, then ST3 also discards b;.
Proof. 1f ST2 discards b;, then we have

1
IxTb;| < Amax (1 27— ! (A“;‘x - 1)) : (19)
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We can prove that b, also satisfies the discarding criteria of ST3:
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The first inequality is a simple triangle inequality. The second inequality uses the Cauchy-Schwarz
inequality. The third inequality uses the intermediate result (I3) in proving Lemma 2, ||b;|l2 = 1,

and (19). O

6 Proof of Theorem 2

Theorem 2. Assume that X satisfies SI and has a k-sparse representation using dictionary B. Then
the projected data T'(X) satisfies SI if

(2k — 1)M(TB) < 1, 1)
where M (+) is the mutual coherence of a matrix.

Proof. If T'(X) doesn’t satisfy SI, then there exists (x1,%x2) € X x X and v ¢ {0,1} so that
Tx; = 7yTx3. Let x; = Bw; and xo = Bwsy. We have TB(w; — ywy) = 0. Both w; and
Wo are Kk sparse so (Wi — yws) is at most 2k sparse and nonzero (otherwise contradicting with
the SI property of X’). However, it’s well know that the minimum [/g-norm of vectors in the null
space of TB (i.e. the “spark” of TB) is lower bounded by 1 + 1/M(TB) (Lemma 2.1, [2]). So,
2k > ||[w1 —ywzllo > 1 + 1/M(TB), contradicting (Z1)). Therefore T'(X) satisfies SI. O



7 Proof of Theorem 3

Theorem 3. Let the data points lie on a K-dimensional Riemannian submanifold X C RP that
is compact, has volume V, conditional number 1/7, and geodesic covering regularity R (see [3)]).
Assume that in the optimal solution of the sparse representation problem for the projected data:

. 1 2
min  SIITX - BW]E + A[Wl|;

(22)
st |bilE <1, Vi=1,2,...,m,

data points Tx, and Txy have nonzero weights on the same set of k codewords. Let w; be the
new representation of x; and p; = || Tx; — Bw||2 be the length of the residual (j = 1,2). With
probability 1 — p:

I = xall3 < £+ €)1+ ea)(lwr = wal3 + 203 + 243)
p
5

Ix1 — %23 > Flhe e1)(1 — ) (lwi — wa3,

with €, = O((KIH(NVRZ_l) In(1/0))0-5-1Y (for any small n > 0) and e = (. — 1)M(B).

Proof. Using Theorem 3.1 in [3|] on random projection T and the simple fact that Ve < 0.2 :

(1-€)?> 350, (1+€)? < 25, ford = O(KIH(NVRT;(l)m(l/p)), with probability 1 — p:

1 d d Tx; — Txz||3 d 1 d

— - =< (1_6)2, < M < (1_’_6)2, <=

(1+36)p P % —xa3 p~ (1-3¢p

To bound ||Tx; — Txz]|3, let b; be a codeword in B that has nonzero weight, by 3) (Tx; —

Bw;)?Tb; = (Txz — Bwy)Tb; = Asignw;. So (Tx; — Bwy) — (Txs — Bwy) is orthogonal to
any codewords b; that has nonzero weight, and therefore is orthogonal to B(w; — ws). Thus:

[Txy — Txa|5 = [B(w1 — w2) |13 + | T(x1 — x2) — B(wy — w2)]|3 (24)

(23)

Using (24) and the fact that any singular value o of B satisfies 1 — (k — 1)M(B) < 02 < 1+ (k —
1)M (B) (Proposition 4.3, [4]), we can upper bound and lower bound | Tx; — Tx2||3 by:

[Tx1 — Txs|[3 < [[B(w1 — w2)|3 + 2(| Tx1 — Bwy |5 + | Tx2 — Bwal[3)
= ||IB(w; — w2)||§ + Q;ﬁ + 2u§ < (14 e)|wi — w2||§ + 2;@ + 2u§ (25)

ITx1 = Txz2[l5 > [B(w1 — wa)|[3 > (1 — e2) w1 — w3

Plug these into (23) gives us the desired bounds with €; = 3e and by d = O(£ IH(NVRT;E?I) In(1/p)y.
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€ = for any small > 0. O
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