
Supplementary Material: MAP Inference for
Bayesian Inverse Reinforcement Learning

Jaedeug Choi and Kee-Eung Kim
Department of Computer Science

Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea

jdchoi@ai.kaist.ac.kr, kekim@cs.kaist.ac.kr

Corollary 1 Given an MDP\R 〈S,A, T, γ, α〉, policyπ is optimal if and only if reward functionR
satisfies

[

I − (IA − γT )(I − γT π)−1Eπ
]

R ≤ 0, (1)

whereEπ is an |S| × |S||A| matrix with the(s, (s′, a′)) element being 1 ifs = s′ andπ(s′) = a′,
andIA is an|S||A| × |S| matrix constructed by stacking the|S| × |S| identity matrix|A| times.

Proof

Policyπ is optimal

⇔ Qπ
a(R) ≤ V π(R)

⇔ Ra + γT aV π(R) ≤ Rπ + γT πV π(R)

⇔ Ra + γT a(I − γT π)−1Rπ ≤ Rπ + γT π(I − γT π)−1Rπ

⇔ Ra − (I − γT a)(I − γT π)−1Rπ ≤ Rπ − (I − γT π)(I − γT π)−1Rπ

⇔ Ra − (I − γT a)(I − γT π)−1EπR ≤ 0 (2)

The third equivalence holds byV π(R) = (I − γT π)−1Rπ. The fifth equivalence holds because
the right-hand side is0 andRπ = EπR. Stacking up Equation (2) for alla ∈ A, we obtain
Equation (1).

Theorem 1 IRL algorithms listed in Table 1 are equivalent to computingthe MAP estimates with
the prior and the likelihood usingf(X ;R) defined as follows:

• fV (X ;R) = V̂ E(R) − V ∗(R) • fG(X ;R) = mini

[

V
π∗(R)
i − V̂ E

i

]

• fJ (X ;R) = −
∑

s,a µ̂E(s) (J(s, a;R) − π̂E(s, a))
2 • fE(X ;R) = logPMaxEnt(X|T ,R)

where π∗(R) is an optimal policy induced by the reward functionR, J(s, a;R) is a smooth
mapping from reward functionR to a greedy policy such as the soft-max function, andPMaxEnt
is the distribution on the behaviour data (trajectory or path) satisfying the principle of maximum
entropy.

We prove Theorem 1 by the following lemmas.

Lemma 1 The reward function sought by Ng and Russell’s IRL algorithmfrom sampled trajec-
tories [2] is equivalent to the MAP estimate with the uniformprior and the likelihood using
fV (X ;R) = V̂ E(R) − V ∗(R).

1



Table 1: IRL algorithms and their equivalentf(X ;R) and prior for the Bayesian formulation.q ∈
{1, 2} is for representingL1 or L2 slack penalties.

Previous algorithm f(X ; R) Prior

Ng and Russell’s IRL from sampled trajectories [2] fV Uniform
MMP without the loss function [3] (fV )q Gaussian

MWAL [4] fG Uniform
Policy matching [1] fJ Uniform

MaxEnt [5] fE Uniform

Proof This IRL algorithm seeks the reward function defined by

RN&R = argmax
R

[

V̂ E(R) − V ∗(R)
]

.

The MAP estimate with the uniform prior and the likelihood using fV is computed as

RMAP = argmax
R

P (R|X ) = argmax
R

log P (R|X )

= argmax
R

[log P (X|R) + log P (R)] = argmax
R

fV (X ;R)

= argmax
R

[

V̂ E(R) − V ∗(R)
]

.

The MAP estimate is thus equivalent toRN&R .

Lemma 2 The reward function sought by the MMP algorithm [3] without the loss function is equiv-
alent to the MAP estimate with a Gaussian prior and the likelihood using(fV )q whereq ∈ {1, 2}.

Proof Without the loss function, the MMP algorithm seeks the reward function defined by

RMMP = argmin
R

[

(

V ∗(R) − V̂ E(R)
)q

+
λ

2
‖ R ‖2

2

]

whereq ∈ {1, 2} denotesL1 or L2 slack penalties. The MAP estimate with a Gaussian prior
N (0, σ2) and the likelihood using(fV )q is computed as

RMAP = argmax
R

P (R|X ) = argmax
R

[log P (X|R) + log P (R)]

= argmax
R

[

β (fV (X ;R))
q −

1

2σ2

∑

s,a

R(s, a)2

]

= argmax
R

[

(fV (X ;R))
q −

1

2βσ2
‖ R ‖2

2

]

= argmin
R

[

(

V ∗(R) − V̂ E(R)
)q

+
1

2βσ2
‖ R ‖2

2

]

.

If we setλ = 1/(βσ2), the MAP estimate is equivalent toRMMP.

Lemma 3 When the reward function is linearly parameterized using the weight vectorw ≥ 0 such
that

∑

i wi = 1, the policy sought by the MWAL algorithm [4] is equivalent toan optimal policy
on the reward function which is the MAP estimate with the uniform prior and the likelihood using
fG(X ;R) = mini[V

π∗(R)
i − V̂ E

i ] whereπ∗(R) is an optimal policy induced by the reward function
R.

Proof The MWAL algorithm seeks the policyπMWAL defined by

πMWAL = argmax
π

min
i

[

V π
i − V̂ E

i

]

,
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with an implicitly computed reward functionRMWAL that inducesπMWAL as an optimal policy.
Hence, we can rewriteπMWAL = π∗(RMWAL ) where

RMWAL = argmax
R

min
i

[

V
π∗(R)
i − V̂ E

i

]

.

The MAP estimate of the reward function with the uniform prior and the likelihood usingfG is
computed as

RMAP = argmax
R

P (R|X ) = argmax
R

fG(X ;R) = argmax
R

min
i

[

V
π∗(R)
i − V̂ E

i

]

.

Hence, the optimal policy induced byRMAP is equivalent toπMWAL sinceRMAP = RMWAL .

Lemma 4 The policy sought by the policy matching algorithm [1] is equivalent to an optimal policy
on the reward function which is the MAP estimate with the uniform prior and the likelihood using
fJ(X ;R) = −

∑

s,a µ̂E(s)(J(s, a;R) − π̂E(s, a))2, whereJ(s, a;R) is a smooth mapping from
reward functionR to a greedy policy, such as the soft-max function.

Proof The policy matching algorithm seeks the policyπPM = J(RPM) such that

RPM = argmin
R

∑

s,a

µ̂E(s)(J(s, a;R) − π̂E(s, a))2.

The MAP estimate of the reward function with the uniform prior and the likelihood usingfJ is
computed as

RMAP = argmax
R

P (R|X ) = argmax
R

fJ(X ;R) = argmin
R

∑

s,a

µ̂E(s)(J(s, a;R) − π̂E(s, a))2.

Hence,RMAP = RPM and the optimal policy induced byRMAP is equivalent toπPM.

Lemma 5 The reward function sought by the MaxEnt algorithm [5] is equivalent to the MAP es-
timate with the uniform prior and the likelihood usingfE(X ;R) = logPMaxEnt(X|T ,R) where
PMaxEnt is the distribution for the behavior data (trajectory or path) satisfying the principle of max-
imum entropy.

Proof The MaxEnt algorithm seeks the reward function defined by

RMaxEnt = argmax
R

logPMaxEnt(X|T ,R)

where

PMaxEnt(X|T ,R) =
M
∏

m=1

PMaxEnt(Xm|T ,R)

=
M
∏

m=1

1

Z
exp

(

H
∑

h=1

γh−1R(sm
h , am

h )

)

H−1
∏

h=1

T (sm
h , am

h , sm
h+1).

The MAP estimate with the uniform prior and the likelihood using fE is computed as

RMAP = argmax
R

P (R|X ) = argmax
R

fE(X ;R) = argmax
R

logPMaxEnt(X|T ,R).

The MAP estimate is thus equivalent toRMaxEnt.

Theorem 2 V ∗(R) andQ∗(R) are convex.

3



Proof Let C(π) be the reward optimality region w.r.t.π. V ∗(R) = V π(R) = (I − γT π)−1EπR
for anyR ∈ C(π), V ∗(R) is linear w.r.t.R. For each and everyR1, R2, and0 ≤ µ ≤ 1,

V ∗(µR1 + (1 − µ)R2) = Hπ(µR1 + (1 − µ)R2) = µHπR1 + (1 − µ)HπR2

= µV π(R1) + (1 − µ)V π(R2) ≤ µV ∗(R1) + (1 − µ)V ∗(R2)

whereπ is an optimal policy forµR1 + (1 − µ)R2 andHπ = (I − γT π)−1Eπ. Thus,V ∗(R)
is convex. In the same manner, we can also show thatQ∗(R) is convex using the definition
Qπ(R) = R + γTEπQπ(R).

Theorem 3 V ∗(R) andQ∗(R) are differentiable almost everywhere.

Proof Let C(π) be the reward optimality region w.r.t.π. Since V ∗(R) = V π(R) =
(I − γT π)−1EπR is linear for any R ∈ C(π), V ∗(R) is differentiable and
∇RV ∗(R) = (I − γT π)−1Eπ when R is strictly inside the region. On the boundary,
∇RV π(R) is a subgradient ofV ∗(R) since the function is convex from Theorem 2 and thus
∇RV π(R)(R − R′) ≤ V ∗(R) − V ∗(R′) for any R′. In the same manner, we can also show
thatQ∗(R) is differentiable with∇RQ∗(R) = (I − γTEπ)−1 strictly inside reward optimality
regions and∇RQπ(R) is a subgradient on the boundaries.
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