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1 Recall dynamics for single module

The Gibbs sampler dynamics assume that at each step the activity of one unit i is updated by sam-
pling the probability P(xi|x\i, x̃,W). Since the neurons have binary activations, this is equivalent
to sampling σ(I), where σ(x) = 1

1+e−x , with the total current given as the log-odds ratio:

Ii = log
P(xi = 1|x\i,W, x̃i)

P(xi = 0|x\i,W, x̃i)
= Irec,ini + Irec,outi + ax̃i + b, (1)

with parameters a = 2 log
(
1−r
r

)
, and b = log

(
fr

(1−f)(1−r)

)
.

The contribution of the recurrent weights has the form:

Ireci =
∑
j

(c1 ·Wij xj + c2 ·Wij + c3 · xj + c4) , (2)

where the constants ci can be computed as c1 = s11 + s00 − s01 − s10, c2 = s10 − s00, c3 =

s01 − s00, c4 = s00 , with swx = log
(

P(Wij=w|xi=1,xj=x)
P(Wij=w|xi=0,xj=x)

)
for incoming weights and swx =

log
(

P(Wji=w|xi=1,xj=x)
P(Wji=w|xi=0,xj=x)

)
for outgoing weights, respectively. These values are uniquely deter-

mined by the parameters defining the learning rule, n, the pattern distribution, f , and the average
pattern age, t̄.

2 Tempered transitions

The tempered transitions sampling procedure uses annealing, and systematically increases and de-
creases the temperature to ensure a better exploration of the parameter space [1]. To sample from
distribution P (x|W, x̃), one needs to define the intermediate probability distributions for a set of
S (inverse) temperatures βs. Here, we assume linear variations in inverse temperature, between
βS = 1, for the distribution of interest, and β0 = 0; βs = s · ds, with ds = 1

S (ds = 0.1 for the
results presented in the main text).

We assume the temperature modulates only the contribution of the recurrent weights to the posterior
as:

Ps (x|W, x̃) ∝ Pstore(x) · Pnoise(x̃|x) · (P(W|x))
βs . (3)
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The transition operator for each step is a single component Gibbs sampler, Ts (x′ ← x), with the
reverse transition operator T̃s (x← x′) being the same single component Gibbs sampler (since the
operator is reversible); the index of the component is selected at random for each temperature level
during a cycle.

Given a current state x of the Markov chain, sampling proceeds by applying the sequence of tran-
sition operators TS−1...T0T̃0...T̃S−1, with the final state x′ being accepted with a probability given
by the ratios of probabilities of intermediate states [1].

3 The dual memory system

If we ignore the contribution of information that cannot be accessed across modules, W, the poste-
rior over pattern ages can be computed as:

P
(
t|x,Wfam

)
=

1

Z
P
(
Wfam|x, t

)
, (4)

where Z is the unknown partition function.

Using again the assumption that the weight distribution factorizes and taking the logarithm of the
above expression we obtain the total input to a neuron: I fami = log P(t = i|x,Wfam) which
translates into a simple linear activation function:

I fami =
∑
j

log P(W fam
ij |xi = 1, xj , t) + log P(t)− log(Z) (5)

=
∑
j

[
cfam1,i W

fam
ij xj + cfam2,i W

fam
ij + cfam3,i xj + cfam4,i

]
+ log P(t)− log(Z) (6)

with constants cfami computed as before cfam1,i = si11 + si00 − si01 − si10, cfam2,i = s10 − s00, cfam3,i =

si01 − si00, cfam4,i = si00, with siwy = log (P (W = w|xi = 1, xj , t = i)).

4 Default simulation parameters

We use balanced patterns, f = 0.5, the mean pattern age t̄ = 25, recall cue noise r = 0.1 (for
recognition, r = 0.001, to be closer to previous models, e.g. [2], which assume the true x is used
for familiarity detection ). This translates into an average mutual information between a synaptic
weight and the stored pattern of 0.0034 bits (this can be used as a palimpsest memory equivalent
to the memory load traditionally used in Hopfield-like autoassociative memory networks). Perfor-
mance is estimated in all cases by storing and recalling 250 patterns, with t distributed according
to the prior. The error estimates are based on the posterior mean (minimizing mean-squared error)
computed from 40000 samples (without burn-in, at least 10000 samples are needed for a reliable
mean estimate). For the GP classifier, we use the GPML toolbox, with the logistic regression likeli-
hood function; each class has 125 data points.

5 Beyond sampling-based representations

To derive the mean-field equivalent dynamics, we assume the N neurons in the network now have
analog activations µi, which define a probability distribution over patterns x as a set of independent
Bernoulli random variables. Neural dynamics during recall optimize the parameters µ to bring
this distribution as close as possible to the true posterior, P(x|W, x̃). The similarity between the
two is measured using the Kullback-Leibler divergence and the recall dynamics are constructed as to
minimize this cost function. Note that the distribution represented by the neural population preserves
the marginals, but ignores all higher order structure of the original posterior.

If using coordinate descent [3] and restricting inputs to incoming synapses yields simple neural-like
network dynamics:

µi(t+ 1) = σ
(
Irec,ini + Irec,outi + ax̃i + b

)
, (7)
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Figure 1: Comparison of the recall performance of single vs. dual memory system using a mean-field
representation.

with σ(x) = 1
1+e−x and a1 < 0 and the recurrent current contributions:

Irec,ini =
∑
j

(
cin1 ·Wij µj + cin2 ·Wij + cin3 · µj + cin4

)
(8)

Irec,outi =
∑
j

(
cout1 ·Wji µj + cout2 ·Wji + cout3 · µj + cout4

)
. (9)

Note that the total input current has a very similar form to that obtained for the sampling based
dynamics (Eq. 7 in main text), with the same scaling constants a, b and cin/out1−4 as before.

A dual memory system implementation in this case will have a similar architecture as in the sampling
case, with the activity in the familiarity module given by:

I fami =
∑
j

log
(
P(W fam

ij |xi = 1, xj = 1, t) · µj + P(W fam
ij |xi = 1, xj = 0, t) · (1− µj)

)
+ log(P(t))− log(Z). (10)

Again, softmax competition ensures that the corresponding distribution of the pattern ages in prop-
erly normalized. In this case, the signal transmitted to the recognition module can be the MAP
estimate of this posterior or the average t, translating into a corresponding set of values for the
parameters cin/out1−4 , as before.

The Gibbs sampling and the mean-field implementation behave similarly in the monolithic memory
system, as both are poor at representing correlated probability distributions (Fig.1). Moreover, both
benefit from the explicit estimation of pattern age, suggesting that the effects presented are not
specific to the selected representation.
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