Anatomically Constrained Decoding of Finger Flexion from Electrocorticographic Signals

Zuoguan Wang¹, Gerwin Schalk², Qiang Ji¹

1. Rensselaer Polytechnic Institute 2. Wadsworth Center

Goal: Decoding finger flexion from ECoG signals

Motivations

 Existing decoding methods are mainly data-driven, ignoring anatomical and kinematic constraints on finger motion.

Bayesian Decoding

Anatomical and Kinematic Constraints

- 1. Three states: extension (S1), flexion (S2) and rest (S3)
- 2. For each state, there are predominant movement patterns
- 3. For S1 and S2, move faster at middle and slower at two ends
- 4. Finger movement is limited to certain ranges
- 5. The transition among states is limited
- 6. The probability of transitions depends on finger positions

Prior Model (SNDS)

Results

26% improvement over pace regression used in the previous work in terms of MSE