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Abstract

We derive here new generalization bounds, based on Rademacher Complexity the-
ory, for model selection and error estimation of linear (kernel) classifiers, which
exploit the availability of unlabeled samples. In particular, two results are ob-
tained: the first one shows that, using the unlabeled samples, the confidence term
of the conventional bound can be reduced by a factor of three;the second one
shows that the unlabeled samples can be used to obtain much tighter bounds, by
building localized versions of the hypothesis class containing the optimal classi-
fier.

1 Introduction

Understanding the factors that influence the performance ofa statistical procedure is a key step for
finding a way to improve it. One of the most explored procedures in the machine learning approach
to pattern classification aims at solving the well–knownmodel selection and error estimationprob-
lem, which targets the estimation of the generalization error and the choice of the optimal predictor
from a set of possible classifiers. For reaching this target,several approaches have been proposed
[1, 2, 3, 4], which provide an upper bound on the generalization ability of the classifier, which can
be used for model selection purposes as well. Typically, allthese bounds consists of three terms:
the first one is the empirical error of the classifier (i.e. theerror performed on the training data),
the second term is a bias that takes into account the complexity of the class of functions, which the
classifier belongs to, and the third one is a confidence term, which depends on the cardinality of the
training set. These approaches are quite interesting because they investigate the finite sample behav-
ior of a classifier, instead of the asymptotic one, even though their practical applicability has been
questioned for a long time1. One of the most recent methods for obtaining these bounds isto exploit
the Rademacher Complexity, which is a powerful statisticaltool that has been deeply investigated
during the last years [5, 6, 7]. This approach has shown to be of practical use, by outperforming more
traditional methods [8, 9] for model selection in the small–sample regime [10, 5, 6], i.e. when the
dimensionality of the samples is comparable, or even larger, than the cardinality of the training set.
We show in this work how its performance can be further improved by exploiting some extra knowl-
edge on the problem. In fact, real–world classification problems often are composed of datasets
with labeled and unlabeled data [11, 12]: for this reason an interesting challenge is finding a way to
exploit the unlabeled data for obtaining tighter bounds and, therefore, better error estimations.

In this paper, we present two methods for exploiting the unlabeled data in the Rademacher Com-
plexity theory [2]. First, we show how the unlabeled data canhave a role in reducing the confidence

1See, for example, the NIPS 2004 Workshop(Ab)Use of Boundsor the 2002 Neurocolt Workshop onBounds
less than 0.5
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term, by obtaining a new bound that takes into account both labeled and unlabeled data. Then, we
propose a method, based on [7], which exploits the unlabeleddata for selecting a better hypothesis
space, which the classifier belongs to, resulting in a much sharper and accurate bound.

2 Theoretical framework and results

We consider the following prediction problem: based on a random observation ofX ∈ X ⊆ R
d

one has to estimateY ∈ Y ⊆ {−1, 1} by choosing a suitable prediction rulef : X → [−1, 1].
The generalization errorL(f) = E{X ,Y}ℓ(f(X), Y ) associated to the prediction rule is defined
through a bounded loss functionℓ(f(X), Y ) : [−1, 1] × Y → [0, 1]. We observe a set of labeled
samplesDnl

:
{
(X l

1, Y
l
1 ), · · · , (X l

nl
, Y l

nl
)
}

and a set of unlabeled onesDnu
:
{
(Xu

1 ), · · · , (Xu
nu

)
}

.
The data consist of a sequence of independent, identically distributed (i.i.d.) samples with the same
distributionP (X ,Y) for Dnl

andDnu
. The goal is to obtain a bound onL(f) that takes into

account both the labeled and unlabeled data. As we do not knowthe distribution that have generated
the data, we do not knowL(f) but only its empirical estimationLnl

(f) = 1/nl

∑nl

i=1 ℓ(f(X
l
i), Y

l
i ).

In the typical context ofStructural Risk Minimization(SRM) [13] we define an infinite sequence of
hypothesis spaces of increasing complexity{Fi, i = 1, 2, · · · }, then we choose a suitable function
spaceFi and, consequently, a modelf∗ ∈ Fi that fits the data. As we do not know the true data
distribution, we can only say that:

{L(f)− Lnl
(f)}f∈Fi

≤ sup
f∈Fi

{L(f)− Lnl
(f)} (1)

or, equivalently:
L(f) ≤ Lnl

(f) + sup
f∈Fi

{L(f)− Lnl
(f)} , ∀f ∈ Fi (2)

In this framework, the SRM procedure brings us to the following choice of the function space and
the corresponding optimal classifier:

f∗,F∗ : arg min
Fi∈{F1,F2,··· }

[

min
f∈Fi

Lnl
(f)f∈Fi

+ sup
f∈Fi

{L(f)− Lnl
(f)}

]

(3)

Since thegeneralization bias(supf∈Fi
{L(f)− Lnl

(f)}) is a random variable, it is possible to
statistically analyze it and obtain a bound that holds with high probability [5].

From this point, we will consider two types of prediction rule with the associated loss function:

fH(x) =sign(wTφ(x) + b), ℓH(fH(x), y) =
1− yfH(x)

2
(4)

fS(x) =

{
min(1,wTφ(x) + b) if wTφ(x) + b > 0

max(−1,wTφ(x) + b) if wTφ(x) + b ≤ 0
, ℓS(fS(x), y) =

1− yfS(x)

2
(5)

whereφ(·) : R
d → R

D with D >> d, w ∈ R
D andb ∈ R. The functionφ(·) is introduced to

allow for a later introduction of kernels, even though, for simplicity, we will focus only on the linear
case. Note that both thehard lossℓH(fH(x), y) and thesoft loss(or ramp loss) [14] ℓS(fS(x), y)
are bounded([0, 1]) and symmetric(ℓ(f(x), y) = 1− ℓ(f(x),−y)). Then, we recall the definition
of Rademacher Complexity(R) for a class of functionsF :

R̂nl
(F) = Eσ sup

f∈F

2

nl

nl∑

i=1

σiℓ(f(xi), yi) = Eσ sup
f∈F

1

nl

nl∑

i=1

σif(xi) (6)

whereσ1, . . . , σnl
arenl independent Rademacher random variables, i.e. independent random vari-

ables for whichP(σi = +1) = P(σi = −1) = 1/2, and the last equality holds if we use one
of the losses defined before. Note thatR̂ is a computable realization of the expected Rademacher
ComplexityR(F) = E(X ,Y)R̂(F). The most renowed result in Rademacher Complexity theory
states that [2]:

L(f)f∈F ≤ Lnl
(f)f∈F + R̂nl

(F) + 3

√

log
(
2
δ

)

2nl

(7)

which holds with probability(1− δ) and allows to solve the problem of Eq. (3).
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2.1 Exploiting unlabeled samples for reducing the confidence term

Assuming that the amount of unlabeled data is larger than thenumber of labeled samples, we split
them in blocks of similar size by defining the quantitym = ⌊nu/nl⌋+ 1, so that we can consider a
ghost sampleD′

mnl
composed ofmnl pattern. Then, we can upper bound the expected generaliza-

tion bias in the following way2:

E{X ,Y} sup
f∈F

{L(f)− Lnl
(f)} = E{X ,Y} sup

f∈F



E{X ′,Y′}




1

m

m∑

i=1

1

nl

i·nl∑

k=(i−1)·nl+1

ℓ′k



− 1

nl

nl∑

i=1

ℓi





≤ E{X ,Y}E{X ′,Y′}
1

m

m∑

i=1

sup
f∈F




1

nl

i·nl∑

k=(i−1)·nl+1

(

ℓ′k − ℓ|k|nl

)





= E{X ,Y}E{X ′,Y′}Eσ

1

m

m∑

i=1

sup
f∈F




1

nl

i·nl∑

k=(i−1)·nl+1

σ|k|nl

[

ℓ′k − ℓ|k|nl

]





≤ E{X ,Y}Eσ

1

m

m∑

i=1

sup
f∈F




2

nl

i·nl∑

k=(i−1)·nl+1

σ|k|nl
ℓk



 = E{X ,Y}
1

m

m∑

i=1

R̂i
nl
(F)

where|k|nl
= (k−1) mod(nl)+1. The last quantity (that we callExpected Extended Rademacher

ComplexityE{X ,Y}R̂nu
(F)) and the expected generalization bias are both deterministic quantities

and we know only one realization of them, dependent on the sample. Then, we can use the McDi-
armid’s inequality [15] to obtain:

P

[

sup
f∈F

{L(f)− Lnl
(f)} ≥ R̂nu

(F) + ǫ

]

≤ (8)

P

[

sup
f∈F

{L(f)− Lnl
(f)} ≥ E{X ,Y} sup

f∈F
{L(f)− Lnl

(f)}+ aǫ

]

+ (9)

P

[

E{X ,Y}R̂nu
(F) ≥ R̂nu

(F) + (1− a)ǫ
]

≤ (10)

e−2nla
2ǫ2 + e−

(mnl)

2 (1−a)2ǫ2 (11)

with a ∈ [0, 1]. By choosinga =
√
m

2+
√
m

, we can write:

P

[

sup
f∈F

{L(f)− Lnl
(f)} ≥ 1

m

m∑

i=1

R̂i
nl
(F) + ǫ

]

≤ 2e
− 2mnlǫ

2

(2+
√

m)2 (12)

and obtain an explicit bound which holds with probability(1− δ):

L(f)f∈F ≤ Lnl
(f)f∈F +

1

m

m∑

i=1

R̂i
nl
(F) +

2 +
√
m√

m

√

log
(
2
δ

)

2nl

(13)

where R̂i
nl
(F) is the Rademacher Complexity of the classF computed on thei-th block of

unlabeled data. Note that form = 1 the training set does not contain any unlabeled data
and the bound given by Eq. (3) is recovered, while for largem the confidence term is re-
duced by a factor of 3. At a first sight, it would seem impossible to compute the term̂Ri

nl

without knowing the labels of the data, but it is easy to show that this is not the case. In

fact, let us defineK+
i =

{

k ∈ {k = (i− 1) · nl + 1, . . . , i · nl} : σ|k|nl
= +1

}

and K−
i =

2we defineℓ(f(xi), yi) ≡ ℓi to simplify the notation
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(a) Coventional function classes (b) Localized function classes

Figure 1: The effect of selecting a better center for the hypothesis classes.

{

k ∈ {k = (i− 1) · nl + 1, . . . , i · nl} : σ|k|nl
= −1

}

, then we have:

R̂nu
(F) = 1 +

1

m

m∑

i=1

Eσ sup
f∈F

2

nl




∑

k∈K+
i

ℓ(fk, yk)−
∑

k∈K−
i

ℓ(fk, yk)−
∑

k∈K+
i

1





= 1 +
1

m

m∑

i=1

Eσ sup
f∈F



− 2

nl

∑

k∈K+
i

ℓ(fk,−yk)−
2

nl

∑

k∈K−
i

ℓ(fk, yk)





= 1 +
1

m

m∑

i=1

Eσ sup
f∈F



− 2

nl

i·nl∑

k=(i−1)·nl+1

ℓ(fk,−σ|k|nl
yk)





= 1− 1

m

m∑

i=1

Eσ inf
f∈F




2

nl

i·nl∑

k=(i−1)·nl+1

ℓ(fk, σ|k|nl
)





which corresponds to solving a classification problem usingall the available data with random labels.
The expectation can be easily computed with some Monte Carlotrials.

2.2 Exploiting the unlabeled data for tightening the bound

Another way of exploiting the unlabeled data is to use them for selecting a more suitable sequence of
hypothesis spaces. For this purpose we could use some of the unlabeled samples or, even better, the
nc = nu − ⌊nu/nl⌋nl samples left from the procedure of the previous section. Theidea is inspired
by the work of [3] and [7], which propose to inflate the hypothesis classes by centering them around
a ‘good’ classifier. Usually, in fact, we have no a-priori information on what can be considered a
good choice of the class center, so a natural choice is the origin [13], as in Figure 1(a). However,
if it happens that the center is ‘close’ to the optimal classifier, the search for a suitable class will
stop very soon and the resulting Rademacher Complexity willbe consequently reduced (see Figure
1(b)). We propose here a method for finding two possible ‘good’ centers for the hypothesis classes.
Let us considernc unlabeled samples and run a clustering algorithm on them, bysetting the number
of clusters to2, and obtaining two clustersC1 andC2. We build two distinct labeled datasets by
assigning the labels+1 and−1 to C1 andC2, respectively, and then vice-versa. Finally, we build
two classifiersfC1

(x) andfC2
(x) = −fC1

(x) by learning the two datasets3. The two classifiers,
which have been found using only unlabeled samples, can thenbe used as centers for searching
a better hypothesis class. It is worthwhile noting that any supervised learning algorithm can be
used [16], because the centers are only a hint for a better centered hypothesis space: their actual
classification performance is not of paramount importance.The underlying principle that inspired

3Note that we could build only one classifier by assigning the most probable labels to thenc samples,
according to thenl labeled ones but, rigorously speaking, this is not allowed by the SRM principle, because
it would lead to use the same data for both choosing the space of functions and computing the Rademacher
Complexity.
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this procedure relies on the reasonable hypothesis thatP(X ) is correlated withP(X ,Y): in fact, in
an unlucky scenario, where the two classes are heavily overlapped, the method would obviously fail.

Choosing a good center for the SRM procedure can greatly reduce the second term of the bound
given by Eq. (13) [7] (the bias or complexity term). Note, however, that the confidence term is not
affected, so we propose here an improved bound, which makes this term depending on̂Ri

nl
(F) as

well. We use a recent concentration result forSelf Bounding Functions[17], instead of the looser
McDiarmid’s inequality. The detailed proof is omitted due to space constraints and we give here
only the sketch (it is a more general version of the proof in [18] for Rademacher Complexities):

P

[

sup
f∈F

{L(f)− Lnl
(f)} ≥ R̂nu

(F) + ǫ

]

≤ e−2nla
2ǫ2 + e

− (mnl)(1−a)2ǫ2

2E{X ,Y}R̂nu (F) (14)

with a ∈ [0, 1]. Choosinga =
√
m

√
m+2

√

E{X ,Y}
1
m

∑

m
i=1 R̂i

nl
(F)

, we obtain:

P

[

sup
f∈F

{L(f)− Lnl
(f)} ≥ R̂nu

(F) + ǫ

]

≤ 2e
− 2mnlǫ

2

(√m+2
√

E{X ,Y}R̂nu (F))
2

(15)

so that the following explicit bound holds with probability(1− δ):

L(f)f∈F ≤ Lnl
(f)f∈F + R̂nu

(F) +
2
√

E{X ,Y}R̂nu
(F) +

√
m

√
m

√

log
(
2
δ

)

2nl

(16)

Note that, in the worst case,E{X ,Y}R̂nu
(F) = 1 and we obtain again Eq. (13). Unfortunately, the

Expected Extended Rademacher Complexity cannot be computed, but we can upper bound it with
its empirical version (see, for example, [19], pages 420–422, for a justificaton of this step) as in
Eq.(10) to obtain:

P

[

sup
f∈F

{L(f)− Lnl
(f)} ≥ R̂nu

(F) + ǫ

]

≤ e−2nla
2ǫ2 + e

− (mnl)(1−a)2ǫ2

2(R̂nu (F)+(1−a)ǫ) (17)

with a ∈ [0, 1]. Differently from Eq. (15) the previous expression cannot be put in explicit form, but
it can be simply computed numerically by writing it as:

L(f)f∈F ≤ Lnl
(f)f∈F +

1

m

m∑

i=1

R̂i
nl
(F) + ǫbu (18)

The valueǫbu can be obtained by upper bounding withδ the last term of Eq. (17) and solving the
inequality respect toa andǫ, so that the bound holds with probability(1− δ).

We can show the improvements obtained through these new results, by plotting the values of the
confidence terms and comparing them with the conventional one [2]. Figure 2 shows the value of
ǫl in Eq. (7) againstǫu, the corresponding term in Eq. (13), andǫbu, as a function of the number of
samples.

3 Performing the Structural Risk Minimization procedure

Computing the values of the bounds described in the previoussections is a straightforward process,
at least in theory. The empirical errorLnl

(f) is found by learning a classifier with the original
labeled dataset, while the (Extended) Rademacher Complexity R̂i

nl
(F) is computed by learning the

dataset composed of both labeled and unlabeled samples withrandom labels.

In order apply in practice the results of the previous section and to better control the hypothesis
space, we formulate the learning phase of the classifier as the following optimization problem, based

5
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Figure 2: Comparison of the new confidence terms with the conventional one.

on the Ivanov version of the Support Vector Machine (I-SVM) [13]:

min
w,b,ξ

n∑

i=1

ηi (19)

‖w − ŵ‖2 ≤ ρ2

yi
(
w

Tφ(xi) + b
)
≥ 1− ξi

ξi ≥ 0, ηi = min (2, ξi)

where the size of the hypothesis space, centered inŵ, is controlled by the hyperparameterρ and
the last constraint is introduced for bounding the SVM loss function, which would be otherwise
unbounded and would prevent the application of the theory developed so far. Note that, in practice,
two sub-problems must be solved: the first one withŵ = +ŵC1

and the second one witĥw =
−ŵC1

, then the solution corresponding to the smaller value of theobjective function is selected.

Unfortunately, solving a classification problem with a bounded loss function is computationally in-
tractable, because the problem is no longer convex and even state-of-the-art solvers like, for example,
CPLEX [20] fail to found an exact solution, when the trainingset size exceeds few tens of samples.
Therefore, we propose here to find an approximate solution through well–known algorithms like,
for example, the Peeling [6] or the Convex–Concave Constrained Programming (CCCP) technique
[14, 21, 22]. Furthermore, we derive a dual formulation of problem (19) that allows us exploiting
the well known Sequential Minimal Optimization (SMO) algorithm for SVM learning [23].

Problem (19) can be rewritten in the equivalent Tikhonov formulation:

min
w,b,ξ

1

2
‖w − ŵ‖2 + C

n∑

i=1

ηi (20)

yi
(
w

Tφ(xi) + b
)
≥ 1− ξi

ξi ≥ 0, ηi = min (2, ξi)

which gives the same solution of the Ivanov formulation for some value ofC [13]. The method
for finding the value ofC, corresponding to a given value ofρ, is reported in [10], where it is also
shown thatC cannot be used directly to control the hypothesis space. Then, it is possible to apply
the CCCP technique, which is synthesized in Algorithm 1, by splitting the objective function in its
convex and concave parts:

min
w,b,ξ

Jconvex(θ)
︷ ︸︸ ︷

1

2
‖w − ŵ‖2 + C

n∑

i=1

ξi

Jconcave(θ)
︷ ︸︸ ︷

−C

n∑

i=1

ςi (21)

yi
(
w

Tφ(xi) + b
)
≥ 1− ξi

ξi ≥ 0, ςi = max(0, ξi − 2)
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whereθ = [w|b] is introduced to simplify the notation. Obviously, the algorithm does not guarantee
to find the optimal solution, but it converges to a (usually good) solution in a finite number of steps
[14]. To apply the algorithm we must compute the derivative of the concave part of the objective
function:

(
dJconcave(θ)

dθ

∣
∣
∣
∣
θt

)

θ =

(
n∑

i=1

d (−Cςi)

dθ

∣
∣
∣
∣
∣
θt

)

θ =

n∑

i=1

βiyi
(
w

Tφ(xi) + b
)

(22)

Then, the learning problem becomes:

min
w,b,ξ

1

2
‖w − ŵ‖2 + C

n∑

i=1

ξi +
n∑

i=1

∆iyi
(
w

Tφ(xi) + b
)

(23)

yi
(
w

Tφ(xi) + b
)
≥ 1− ξi, ξi ≥ 0

where

∆i =

{

C if yif t(xt) < −1
0 otherwise (24)

Finally, it is possible to obtain the dual formulation (derivation is omitted due to lack of space):

min
β

1

2

n∑

i=1

n∑

j=1

βiβjyiyjK(xi,xj) +

n∑

i=1





nC1∑

j=1

α̂jyiŷjK(x̂j ,xi)− 1



βi (25)

−∆i ≤ βi ≤ C −∆i,
n∑

i=1

βiyi = 0

where we have used the kernel trick [24]K(·, ·) = φ(·)Tφ(·).

4 A case study

We consider the MNIST dataset [25], which consists of62000 images, representing the numbers
from 0 to 9: in particular, we consider the13074 patterns containing0’s and1’s, allowing us to deal
with a binary classification problem. We simulate the small–sample regime by randomly sampling
a training set with low cardinality (nl < 500), while the remaining13074 − nl images are used as
a test set or as an unlabeled dataset, by simply discarding the labels. In order to build statistically
relevant results, this procedure is repeated30 times.

In Table 1 we compare the conventional bound with our proposal. In the first column the number
of labeled patterns (nl) is reported, while the second column shows the number of unlabeled ones
(nu). The optimal classifierf∗ is selected by varyingρ in the range[10−6, 1], and selecting the
function corresponding to the minimum of the generalization error estimate provided by each bound.
Then, for each case, the selectedf∗ is tested on the remaining13074 − (nl + nu) samples and the
classification results are reported in column three and four, respectively. The results show that the
f∗ selected by exploiting the unlabeled patterns behaves better than the other and, furthermore, the
estimatedL(f), reported in column five and six, shows that the bound is tighter, as expected by
theory.

The most interesting result, however, derives from the use of the new bound of Eq. (18), as reported
in Table 2, where the unlabeled data is exploited for selecting a more suitable center of the hypoth-
esis space. The results are reported analogously to Table 1.Note that, for each experiment,30%

Algorithm 1 CCCP procedure

Initialize θ
0

repeat

θ
t+1 = argminθ Jconvex(θ) +

(
dJconcave(θ)

dθ

∣
∣
∣
θt

)

θ

until θt+1 = θ
t

7



Table 1: Model selection and error estimation, exploiting unlabeled data for tightening the bound.
Test error off∗ EstimatedL(f)

nl nu Eq. (7) Eq. (13) Eq. (7) Eq. (13)

10 20 13.20 ± 0.86 12.40 ± 0.82 194.00 ± 0.97 157.70 ± 0.97
20 40 8.93 ± 1.20 8.93 ± 1.29 142.00 ± 1.06 116.33 ± 1.06
40 80 6.26 ± 0.16 6.02 ± 0.17 103.00 ± 0.59 84.85 ± 0.59
60 120 5.95 ± 0.12 5.88 ± 0.13 85.50 ± 0.48 70.68 ± 0.48
80 160 5.61 ± 0.07 5.30 ± 0.07 73.70 ± 0.40 60.86 ± 0.40
100 200 5.36 ± 0.21 5.51 ± 0.22 66.10 ± 0.37 54.62 ± 0.37
120 240 4.98 ± 0.40 5.36 ± 0.40 61.30 ± 0.33 50.82 ± 0.33
150 300 4.41 ± 0.53 4.08 ± 0.51 55.10 ± 0.28 45.73 ± 0.28
170 340 3.59 ± 0.57 3.40 ± 0.64 52.40 ± 0.26 43.60 ± 0.26
200 400 2.75 ± 0.47 2.67 ± 0.48 48.10 ± 0.19 39.98 ± 0.19
250 500 2.07 ± 0.03 2.05 ± 0.03 42.70 ± 0.22 35.44 ± 0.22
300 600 2.02 ± 0.04 1.94 ± 0.04 39.20 ± 0.17 32.57 ± 0.17
400 800 1.93 ± 0.02 1.79 ± 0.02 34.90 ± 0.19 29.16 ± 0.19

Table 2: Model selection and error estimation, exploiting unlabeled data for selecting a more suitable
hypothesis center.

Test error off∗ EstimatedL(f)
nl nu Eq. (7) Eq. (18) Eq. (7) Eq. (18)

7 3 13.20 ± 0.86 8.98 ± 1.12 219.15 ± 0.97 104.01 ± 1.62
14 6 8.93 ± 1.20 5.10 ± 0.67 159.79 ± 1.06 86.70 ± 0.01
28 12 6.26 ± 0.16 3.05 ± 0.23 115.58 ± 0.59 51.35 ± 0.00
42 18 5.95 ± 0.12 2.36 ± 0.23 95.77 ± 0.48 38.37 ± 0.00
56 24 5.61 ± 0.07 1.96 ± 0.14 82.59 ± 0.40 31.39 ± 0.00
70 30 5.36 ± 0.21 1.63 ± 0.11 74.05 ± 0.37 26.83 ± 0.00
84 36 4.98 ± 0.40 1.44 ± 0.11 68.56 ± 0.33 23.77 ± 0.00
105 45 4.41 ± 0.53 1.27 ± 0.09 61.59 ± 0.28 20.36 ± 0.00
119 51 3.59 ± 0.57 1.20 ± 0.08 58.50 ± 0.26 18.77 ± 0.00
140 60 2.75 ± 0.47 1.08 ± 0.09 53.72 ± 0.19 16.82 ± 0.00
175 75 2.07 ± 0.03 0.92 ± 0.05 47.73 ± 0.22 14.52 ± 0.00
210 90 2.02 ± 0.04 0.81 ± 0.07 43.79 ± 0.17 12.91 ± 0.00
280 120 1.93 ± 0.02 0.70 ± 0.06 38.88 ± 0.19 10.86 ± 0.00

of the data (nu) are used for selecting the hypothesis center and the remaining ones (nl) are used
for training the classifier. The proposed method consistently selects a better classifier, which reg-
isters a threefold classification error reduction on the test set, especially for training sets of smaller
cardinality. The estimation ofL(f) is largely reduced as well.

We have to consider that this very clear performance increase is also favoured by the characteristics
of the MNIST dataset, which consists of well–separated classes: this particular data distribution im-
plies that only few samples suffice for identifying a good hypothesis center. Many more experiments
with different datasets and varying the ratio between labeled and unlabeled samples are needed, and
are currently underway, for establishing the general validity of our proposal but, in any case, these
results appear to be very promising.

5 Conclusion

In this paper we have studied two methods which exploit unlabeled samples to tighten the
Rademacher Complexity bounds on the generalization error of linear (kernel) classifiers. The first
method improves a very well–known result, while the second one aims at changing the entire ap-
proach by selecting more suitable hypothesis spaces, not only acting on the bound itself. The recent
literature on the theory of bounds attempts to obtain tighter bounds through more refined concentra-
tion inequalities (e.g. improving Mc Diarmid’s inequality), but we believe that the idea of reducing
the size of the hypothesis space is a more appealing field of research because it opens the road to
possible significant improvements.
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