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Abstract

We derive here new generalization bounds, based on Radenm2cmplexity the-
ory, for model selection and error estimation of linear (lad) classifiers, which
exploit the availability of unlabeled samples. In partanltwo results are ob-
tained: the first one shows that, using the unlabeled santpkesonfidence term
of the conventional bound can be reduced by a factor of thteesecond one
shows that the unlabeled samples can be used to obtain ngintertbounds, by
building localized versions of the hypothesis class coingi the optimal classi-
fier.

1 Introduction

Understanding the factors that influence the performaneestéitistical procedure is a key step for
finding a way to improve it. One of the most explored procesdimehe machine learning approach
to pattern classification aims at solving the well-knawadel selection and error estimatignob-
lem, which targets the estimation of the generalizatiooreand the choice of the optimal predictor
from a set of possible classifiers. For reaching this tagmteral approaches have been proposed
[1, 2, 3, 4], which provide an upper bound on the generabirasibility of the classifier, which can
be used for model selection purposes as well. Typicalljth&lse bounds consists of three terms:
the first one is the empirical error of the classifier (i.e. ¢éner performed on the training data),
the second term is a bias that takes into account the conplehiihe class of functions, which the
classifier belongs to, and the third one is a confidence tetithadepends on the cardinality of the
training set. These approaches are quite interesting bec¢hey investigate the finite sample behav-
ior of a classifier, instead of the asymptotic one, even thahegir practical applicability has been
guestioned for a long tinte One of the most recent methods for obtaining these bouridsigloit
the Rademacher Complexity, which is a powerful statistical that has been deeply investigated
during the last years [5, 6, 7]. This approach has shown té peaotical use, by outperforming more
traditional methods [8, 9] for model selection in the smsdlmple regime [10, 5, 6], i.e. when the
dimensionality of the samples is comparable, or even latgen the cardinality of the training set.
We show in this work how its performance can be further imptbly exploiting some extra knowl-
edge on the problem. In fact, real-world classification [@ots often are composed of datasets
with labeled and unlabeled data [11, 12]: for this reasomgrésting challenge is finding a way to
exploit the unlabeled data for obtaining tighter bounds, #imerefore, better error estimations.

In this paper, we present two methods for exploiting the hbelled data in the Rademacher Com-
plexity theory [2]. First, we show how the unlabeled dataleave a role in reducing the confidence

1See, for example, the NIPS 2004 Worksl{ap)Use of Boundsr the 2002 Neurocolt Workshop &@ounds
less than 0.5



term, by obtaining a new bound that takes into account bdtbléal and unlabeled data. Then, we
propose a method, based on [7], which exploits the unlataaéal for selecting a better hypothesis
space, which the classifier belongs to, resulting in a muelpgn and accurate bound.

2 Theoretical framework and results

We consider the following prediction problem: based on aloam observation o\ ¢ X C R?
one has to estimaté € Y C {—1,1} by choosing a suitable prediction rufe: X — [—1,1].
The generalization errok(f) = Ex y£(f(X),Y) associated to the prediction rule is defined
through a bounded loss functidhf(X),Y) : [-1,1] x ¥ — [0,1]. We observe a set of labeled
samplesD,, : {(X1{,Y{),---,(XL,,Y! )} and a set of unlabeled on®s,, : {(X1"),- -, (X% )}.
The data consist of a sequence of independent, identidalijtaited {.i.d.) samples with the same
distribution P(X',Y) for D,, andD,,,. The goal is to obtain a bound afx(f) that takes into
account both the labeled and unlabeled data. As we do not #redistribution that have generated
the data, we do not know( f) but only its empirical estimatioh,,, (f) = 1/n; > i, £(f (X)), Y}).

In the typical context oStructural Risk MinimizatioiSRM) [13] we define an infinite sequence of
hypothesis spaces of increasing compleXify, i = 1,2, - - - }, then we choose a suitable function
spaceF; and, consequently, a modgt € F; that fits the data. As we do not know the true data
distribution, we can only say that:

(20) = L (D) per, < sup {L(H) = Lua (1)} (1)
or, equivalently:
L() < L)+ 599 {L() = Lu (P} VS €T, @

In this framework, the SRM procedure brings us to the follayvchoice of the function space and
the corresponding optimal classifier:

" F i in L, + L(f) — Ln 3
f arg . min | min Lo, (f)ser. fél}%{ (f) = Ln, ()} @)

Since thegeneralization bia{sup ;¢ », {L(f) — Ln,(f)}) is a random variable, it is possible to
statistically analyze it and obtain a bound that holds wightprobability [5].

From this point, we will consider two types of predictiongwlith the associated loss function:

i) =sign(uw” o(z) + b). i (faw).) = L)L (g
min(1, w? ¢(x if w?¢(x - T
Ist@) = e V20 tststany =2

whereg(-) : R? — RP with D >> d, w € R? andb € R. The functiong(-) is introduced to
allow for a later introduction of kernels, even though, fionglicity, we will focus only on the linear
case. Note that both theard lossly (fr (), y) and thesoft loss(or ramp los$ [14] {s(fs(x),y)
are bounded|0, 1]) and symmetri¢/(f(x),y) = 1 — £(f(x), —y)). Then, we recall the definition
of Rademacher Complexi{R) for a class of functiong:

. 2 & 1 &
R, (F) =E, sup — oil(f(x;),y;) = E, sup — o; f(x; 6
(F) fegm; (f(x:), ) fegnl; JED) (6)
whereoy, ..., o, aren; independent Rademacher random variables, i.e. indeperadetom vari-
ables for whichP(o; = +1) = P(o; = —1) = 1/2, and the last equality holds if we use one

of the losses defined before. Note thais a computable realization of the expected Rademacher
Complexity R(F) = E(x,y)R(F). The most renowed result in Rademacher Complexity theory
states that [2]:

log (3)

L(f)fG]—'SLm(f)fG}-"’_ﬁm(f)""S 2715

(@)

which holds with probabilitf1 — §) and allows to solve the problem of Eqg. (3).



2.1 Exploiting unlabeled samples for reducing the confidereterm

Assuming that the amount of unlabeled data is larger thanuingber of labeled samples, we split
them in blocks of similar size by defining the quantity= |n,,/n;| + 1, so that we can consider a
ghost sampléD;,,,, composed ofnn; pattern. Then, we can upper bound the expected generaliza-

tion bias in the following way:

=1 ! k=(i—1)-n;+1
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where|k|,, = (k—1) mod(n;)+ 1. The last quantity (that we calixpected Extended Rademacher
ComplexityE x 11 R, (F)) and the expected generalization bias are both deteriigisantities
and we know only one realization of them, dependent on thekanthen, we can use the McDi-
armid’s inequality [15] to obtain:

P [sup {L() = Ly (1)} 2 Ron (F) + €| < (8)
feF
P [sup {L(f) = Ln, ()} > Egxe.py sup {L(f) = L, ()} + ac| + )
fer fer
P B3y R0, (F) = R, (F) + (1 - a)e] < (10)
67271[(1262 _’_67@(17(1)262 (11)
. . _ Jm .
with a € [0, 1]. By choosingz = 51 We can write:
P {sup (L(f) — Lo (1)} = = SRS (F) 4 o] < 20 a0 (12
su — Lip =z — n el < 2e @Etvm 2
fe?: Z mi
and obtain an explicit bound which holds with probability— §):
L)ser < Lnfer + = 3 i, () 2002, e ) 3
feF > Limy feF m & ny \/E 2nl

where 7%3” (F) is the Rademacher Complexity of the cla&scomputed on the-th block of
unlabeled data. Note that fon = 1 the training set does not contain any unlabeled data
and the bound given by Eq. (3) is recovered, while for largethe confidence term is re-
duced by a factor of 3. At a first sight, it would seem impossitd compute the terrme
without knowing the labels of the data, but it is easy to shoat tthis is not the case. In

fact, let us definek; = {k e{k=(G-1)-m+1....i-m}t:og, = +1} and K =

2we definel(f(x:),y:) = £ to simplify the notation
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Figure 1: The effect of selecting a better center for the kiypsis classes.

{k: e{k=0G-1)-m+1....i-m}t:og, = —1},then we have:
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which corresponds to solving a classification problem ualhitpe available data with random labels.
The expectation can be easily computed with some Monte @zaile.

2.2 Exploiting the unlabeled data for tightening the bound

Another way of exploiting the unlabeled data is to use thensétecting a more suitable sequence of
hypothesis spaces. For this purpose we could use some afifdigeled samples or, even better, the
ne = ny, — | N /ny | n Samples left from the procedure of the previous section.idée is inspired
by the work of [3] and [7], which propose to inflate the hypdtiseclasses by centering them around
a ‘good’ classifier. Usually, in fact, we have no a-priorianhation on what can be considered a
good choice of the class center, so a natural choice is tigindfi3], as in Figure 1(a). However,
if it happens that the center is ‘close’ to the optimal cléssithe search for a suitable class will
stop very soon and the resulting Rademacher Complexitybeitonsequently reduced (see Figure
1(b)). We propose here a method for finding two possible ‘goedters for the hypothesis classes.
Let us consider.. unlabeled samples and run a clustering algorithm on thersetiing the number
of clusters to2, and obtaining two clusters; andCs. We build two distinct labeled datasets by
assigning the labels-1 and—1 to C; andCs, respectively, and then vice-versa. Finally, we build
two classifiersfc, (x) and fc, (x) = —fc, (z) by learning the two datasétsThe two classifiers,
which have been found using only unlabeled samples, canlibamsed as centers for searching
a better hypothesis class. It is worthwhile noting that amyesvised learning algorithm can be
used [16], because the centers are only a hint for a bettéereghhypothesis space: their actual
classification performance is not of paramount importaridee underlying principle that inspired

3Note that we could build only one classifier by assigning the most probaidsiéo then. samples,
according to they; labeled ones but, rigorously speaking, this is not allowed by the SRM pigndipcause
it would lead to use the same data for both choosing the space of functidnsoenputing the Rademacher
Complexity.



this procedure relies on the reasonable hypothesisPitd] is correlated withP(X', )): in fact, in
an unlucky scenario, where the two classes are heavilyapyeed, the method would obviously fail.

Choosing a good center for the SRM procedure can greatlyceethe second term of the bound
given by Eq. (13) [7] (the bias or complexity term). Note, lewsr, that the confidence term is not

affected, so we propose here an improved bound, which malsetetm depending oﬁfn (F) as
well. We use a recent concentration result $mif Bounding Functionfl7], instead of the looser
McDiarmid’s inequality. The detailed proof is omitted dwegpace constraints and we give here
only the sketch (it is a more general version of the proof B] for Rademacher Complexities):

R _ (m,nl)(lfa)252
P [Sup {L(f) = Ln,(f)} > Rn, (F) +€| < e~2ma’e 4 T yy R () (14)
fer

with a € [0, 1]. Choosingz = v/m — , we obtain:
\/E‘FQ\/E{X,AJ}% 2t Ry (F)

2mn;e?

<2e (VR ) (15)

P [Sup {L(f) = Lny ()} = R (F) + €
feF

so that the following explicit bound holds with probability — §):

2\/E(x,y) R, (F) + v [log (2) 16

\/ﬁ 21’),1

Note that, in the worst casE,{Xy}fzn“ (F) = 1 and we obtain again Eq. (13). Unfortunately, the
Expected Extended Rademacher Complexity cannot be cothpguiewe can upper bound it with
its empirical version (see, for example, [19], pages 42@-4@r a justificaton of this step) as in
Eq.(10) to obtain:

R _ (A7rml)(17a)252
P |sup {L(f) = Lu,(f)} > R, (F) + €| <72 e 2R 50=09  (17)

fer

with a € [0, 1]. Differently from Eq. (15) the previous expression canr@pht in explicit form, but
it can be simply computed numerically by writing it as:

L(f)ser < Lu(flser + - S Riy (F) 44, (18)
=1

The value<® can be obtained by upper bounding witfthe last term of Eq. (17) and solving the
inequality respect ta ande, so that the bound holds with probability — 0).

We can show the improvements obtained through these newis;elsy plotting the values of the
confidence terms and comparing them with the conventional[2h Figure 2 shows the value of
€ in Eq. (7) against,,, the corresponding term in Eq. (13), a#fd as a function of the number of
samples.

3 Performing the Structural Risk Minimization procedure

Computing the values of the bounds described in the preeatons is a straightforward process,
at least in theory. The empirical errdr,, (f) is found by learning a classifier with the original
labeled dataset, while the (Extended) Rademacher Coryplj (F) is computed by learning the
dataset composed of both labeled and unlabeled samplesanidbm labels.

In order apply in practice the results of the previous sectind to better control the hypothesis
space, we formulate the learning phase of the classifieedsllbwing optimization problem, based
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Figure 2: Comparison of the new confidence terms with the @ational one.

on the lvanov version of the Support Vector Machine (I-SVI3];

min ; ni (19)
lw —w|* < p?
yi (who(m;) +b) >1-¢
where the size of the hypothesis space, centerad,iis controlled by the hyperparameteand
the last constraint is introduced for bounding the SVM lagscfion, which would be otherwise
unbounded and would prevent the application of the theovgldped so far. Note that, in practice,

two sub-problems must be solved: the first one with= +w, and the second one witly =
—wc, , then the solution corresponding to the smaller value obthjective function is selected.

Unfortunately, solving a classification problem with a bded loss function is computationally in-
tractable, because the problem is no longer convex and &atendcf-the-art solvers like, for example,
CPLEX [20] fail to found an exact solution, when the traingej size exceeds few tens of samples.
Therefore, we propose here to find an approximate solutimugh well-known algorithms like,
for example, the Peeling [6] or the Convex—Concave ComstthProgramming (CCCP) technique
[14, 21, 22]. Furthermore, we derive a dual formulation aflgem (19) that allows us exploiting
the well known Sequential Minimal Optimization (SMO) algbm for SVM learning [23].

Problem (19) can be rewritten in the equivalent Tikhonowfolation:

) 1 . "
min g flw - @ +C;m (20)
yi (who(m;) +b) >1-§&
& >0, m=min(2,¢)

which gives the same solution of the Ivanov formulation fome value ofC' [13]. The method

for finding the value of”, corresponding to a given value pfis reported in [10], where it is also
shown that”' cannot be used directly to control the hypothesis spacen,Tihis possible to apply
the CCCP technique, which is synthesized in Algorithm 1, fittihg the objective function in its
convex and concave parts:

JCDnVeX(e) jcol‘lca\/ée)
—
S ;. n n
1E}r}lllygiﬂw—w” —&-C’;& —C;Q (21)

yi (whp(w;) +b) > 1-¢
& >0, ¢ =max(0,§ —2)



where@ = [w]b] is introduced to simplify the notation. Obviously, the aigfam does not guarantee
to find the optimal solution, but it converges to a (usuallpdjosolution in a finite number of steps
[14]. To apply the algorithm we must compute the derivati¥¢he concave part of the objective

function:
dJeoncavd®) _ [y d=C)
(] o= (5%

de

i=1

> 0=> By (we(x;)+0) (22)
ot i=1
Then, the learning problem becomes:

1 A n n
mli)]f3135||7~0_“’H2 +CZ§i +ZAiyi (w”p(2i) + b) (23)
” i=1 i=1
yi (who(z)+b) >1-¢&, &>0
where
o C if yzft(]}t) < -1
Ai= { 0 otherwise (24)

Finally, it is possible to obtain the dual formulation (detion is omitted due to lack of space):

Hgn% Z Zﬁiﬁjyiyﬂ{(ﬂ?i,l‘j) + Z {Z oy K (5, @) — 1] Bi (25)

i=1 j=1 i=1 |j=1

—A<B<C—A, Y Biyi=0

i=1

where we have used the kernel trick [24]-,-) = ¢(-)T #(-).

4 A case study

We consider the MNIST dataset [25], which consist$2000 images, representing the numbers
from 0 to 9: in particular, we consider the3074 patterns containing@’s and1’s, allowing us to deal
with a binary classification problem. We simulate the snsaimple regime by randomly sampling
a training set with low cardinality; < 500), while the remainind3074 — n; images are used as
a test set or as an unlabeled dataset, by simply discardinklbiels. In order to build statistically
relevant results, this procedure is repeaedmes.

In Table 1 we compare the conventional bound with our prdpdsahe first column the number
of labeled patternsn) is reported, while the second column shows the number ahehbd ones
(nw). The optimal classifielf* is selected by varying in the rangg10~¢,1], and selecting the
function corresponding to the minimum of the generalizagaoor estimate provided by each bound.
Then, for each case, the selecidis tested on the remaining074 — (n; + n,,) Samples and the
classification results are reported in column three and fegpectively. The results show that the
f* selected by exploiting the unlabeled patterns behavesrlibtin the other and, furthermore, the
estimatedL(f), reported in column five and six, shows that the bound is eigtes expected by
theory.

The most interesting result, however, derives from the filgsonew bound of Eq. (18), as reported
in Table 2, where the unlabeled data is exploited for selgaimore suitable center of the hypoth-
esis space. The results are reported analogously to TatNmte that, for each experimer#)%

Algorithm 1 CCCP procedure

Initialize 6°
repeat

0" = argming Teonve 0) + (M%(z\vég)
until 6" = 6"

.




Table 1: Model selection and error estimation, exploitingabeled data for tightening the bound.

’ ! Test error off* H EstimatedL ( f)

n | na Eq. (7) | Eqg. (13) Eq. (7) | Eqg. (13)
10 20 13.20 £ 0.86 12.40 4+ 0.82 194.00 + 0.97 157.70 £+ 0.97
20 40 8.93 + 1.20 8.93 +1.29 142.00 + 1.06 116.33 £+ 1.06
40 80 6.26 + 0.16 6.02 +0.17 103.00 + 0.59 84.85 £ 0.59
60 120 5.95+0.12 5.88 £ 0.13 85.50 + 0.48 70.68 + 0.48
80 160 5.61 +0.07 5.30 £ 0.07 73.70 4+ 0.40 60.86 + 0.40
100 | 200 5.36 + 0.21 5.51 +0.22 66.10 + 0.37 54.62 + 0.37
120 240 4.98 +0.40 5.36 & 0.40 61.30 + 0.33 50.82 + 0.33
150 300 4.41 £ 0.53 4.08 + 0.51 55.10 £ 0.28 45.73 £ 0.28
170 | 340 3.59 £ 0.57 3.40 £ 0.64 52.40 £+ 0.26 43.60 £+ 0.26
200 | 400 2.75 +0.47 2.67 +0.48 48.10 + 0.19 39.98 £0.19
250 | 500 2.07 £0.03 2.05 £+ 0.03 42.70 + 0.22 35.44 + 0.22
300 600 2.02 +£0.04 1.94 £+ 0.04 39.20 +0.17 32.57 £0.17
400 | 800 1.93 £ 0.02 1.79 £ 0.02 34.90 £ 0.19 29.16 + 0.19

Table 2: Model selection and error estimation, exploitingabeled data for selecting a more suitable
hypothesis center.

’ ! Test error off* H EstimatedL (f)

n | n. Eq. (7) | Eg. (18) Eq. (7) | Eq. (18)

7 3 13.20 £+ 0.86 8.98 +1.12 219.15 4+ 0.97 104.01 £+ 1.62
14 6 8.93 +£1.20 5.10 £ 0.67 159.79 £ 1.06 86.70 £+ 0.01
28 12 6.26 £ 0.16 3.05 +£0.23 115.58 £ 0.59 51.35 £+ 0.00
42 18 5.95 + 0.12 2.36 +0.23 95.77 + 0.48 38.37 £ 0.00
56 24 5.61 & 0.07 1.96 +£0.14 82.59 + 0.40 31.39 £+ 0.00
70 30 5.36 & 0.21 1.63 £0.11 74.05 + 0.37 26.83 £ 0.00
84 36 4.98 + 0.40 1.44 +0.11 68.56 + 0.33 23.77 £ 0.00
105 45 4.41 +£0.53 1.27 £ 0.09 61.59 + 0.28 20.36 + 0.00
119 51 3.59 £ 0.57 1.20 £ 0.08 58.50 + 0.26 18.77 + 0.00
140 60 2.75 +0.47 1.08 £ 0.09 53.72 +0.19 16.82 + 0.00
175 75 2.07 £ 0.03 0.92 £+ 0.05 47.73 £ 0.22 14.52 4+ 0.00
210 90 2.02 +0.04 0.81 £+ 0.07 43.79 £ 0.17 12.91 + 0.00
280 | 120 1.93 4+ 0.02 0.70 £+ 0.06 38.88 +0.19 10.86 + 0.00

of the data #.,) are used for selecting the hypothesis center and the r@rgaomes {;) are used
for training the classifier. The proposed method consistesglects a better classifier, which reg-
isters a threefold classification error reduction on theget especially for training sets of smaller
cardinality. The estimation af(f) is largely reduced as well.

We have to consider that this very clear performance ineregsalso favoured by the characteristics
of the MNIST dataset, which consists of well-separatedselsisthis particular data distribution im-
plies that only few samples suffice for identifying a good biyyesis center. Many more experiments
with different datasets and varying the ratio between kdbahd unlabeled samples are needed, and
are currently underway, for establishing the general itgliof our proposal but, in any case, these
results appear to be very promising.

5 Conclusion

In this paper we have studied two methods which exploit weiEb samples to tighten the
Rademacher Complexity bounds on the generalization efriimear (kernel) classifiers. The first
method improves a very well-known result, while the secomel @ms at changing the entire ap-
proach by selecting more suitable hypothesis spaces, hotaoting on the bound itself. The recent
literature on the theory of bounds attempts to obtain tighteinds through more refined concentra-
tion inequalities (e.g. improving Mc Diarmid’s inequalityput we believe that the idea of reducing
the size of the hypothesis space is a more appealing fieldsefireh because it opens the road to
possible significant improvements.
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