Phase transition in the family of *p*-resistances

Morteza Alamgir Ulrike von Luxburg

Max Planck Institute for Intelligent Systems Tübingen, Germany

Resistance distance R(s, t)

Consider the electrical network corresponding to a graph.

R(s,t): The effective resistance between s and t.

R(**s**, **t**) = min_i $\sum_{e \in E} r_e i_e^2$ $i = (i_e)_{e \in E}$ is a unit *s*-*t* flow.

Pro: In small graphs, it captures the cluster structure!

Small resistance distance

Large resistance distance

Con: (von Luxburg et al. 2010) In large geometric graphs, it converges to the trivial limit

$$R(s,t)\approx\frac{1}{d_s}+\frac{1}{d_t}$$

p-Resistance

How we can cure this problem?

p-Resistance : For $p \ge 1$, define

$$R_{\mathbf{p}}(s,t) := \min_{i} \sum_{e \text{ edge}} r_{e} |i_{e}|^{\mathbf{p}}$$

Theorem (Special cases of $R_p(s, t)$)

- **\rho = 1:** Shortest path distance
- **p = 2:** Standard resistance distance
- **p** $\rightarrow \infty$: Related to *s*-*t*-mincut

