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Derivation of Equation 5

This section provides the derivation of Equation 5 in the paper.

We consider the problem of encoding N stimuli (s = [s1, . . . , sN ]) in a correlated population of K
neurons with Gaussian noise:

p(r|s) = 1√
(2π)K detQ(s)

exp[−1

2
(r− f(s))TQ−1(s)(r− f(s))] (1)

where r is a vector containing the firing rates of the neurons in the population, f(s) represents
the tuning functions of the neurons and Q represents the specific covariance structure chosen. We
assume a ‘limited range correlation structure’ for Q that has been analytically studied several times
in the literature [1-8]. In a neural population with limited range correlations, the covariance between
the firing rates of the k-th and l-th neurons (the kl-th cell of the covariance matrix) is assumed to be
a monotonically decreasing function of the distance between their preferred stimuli:

Qkl(s) = afk(s)
αfl(s)

α exp(−||c
(k) − c(l)||
L

) (2)

where c(k) and c(l) are the tuning function centers of the neurons. Under the assumptions we make
in the paper (assumptions (i)-(iii) on page 6), Equation 2 is equal to: Qkl = ρ|k−l|afαk f

α
l with

ρ = exp(−1/(Lη)) where L is a length parameter determining the spatial extent of the correlations
and η is the density of the tuning functions.

We are interested in deriving the FIM, J(s), for our correlated neural population encoding the stimuli
s. The ij-th cell of the FIM is defined as:

Jij(s) = −E[
∂2

∂si∂sj
log p(r|s)] (3)

It is easy to show that for a multivariate Gaussian distribution as in Equation 1, the ij-th element of
the Fisher information matrix is equal to (see, e.g. ref. [3]):

Jij(s) =
∂fT

∂si
Q−1

∂f

∂sj
+

1

2
Tr[

∂Q

∂si
Q−1

∂Q

∂sj
Q−1] (4)

Following [8], we denote the first term in Equation 4 as Jmean and the second term as Jcov (this is
because the first term represents the amount of information encoded in changes in the mean firing
rates of the neurons, whereas the second term represents the amount of information encoded in
changes in the covariance of the firing rates of the neurons.)

1



In order to derive Jmean and Jcov , we need to invert Q. For the limited range correlation structure
we chose (Equation 2), it is easy to show that the kl-th element of Q−1 can be written as (see, e.g.
ref. [5]):

(Q−1)kl =
1

afαk f
α
l

1 + ρ2

1− ρ2 [δkl −
ρ

1 + ρ2
(δk+1,l + δk−1,l)] (5)

where δ is the delta function. This last equation makes it clear that Q−1 is a banded matrix, which
considerably simplifies the calculation of Jmean and Jcov .

Carrying out the multiplication in the first term of Equation 4, we get:

Jmean =
∂fT

∂si
Q−1

∂f

∂sj
= −

K∑
k=2

1

afαk−1f
α
k

ρ

1− ρ2
∂fk−1
∂si

∂fk
∂sj

+

K∑
k=1

1

afαk f
α
k

1 + ρ2

1− ρ2
∂fk
∂si

∂fk
∂sj

−
K−1∑
k=1

1

afαk f
α
k+1

ρ

1− ρ2
∂fk
∂si

∂fk+1

∂sj
. (6)

=
1

a
(
1 + ρ2

1− ρ2
K∑
k=1

h
(i)
k h

(j)
k −

2ρ

1− ρ2
K−1∑
k=1

h
(i)
k h

(j)
k+1) (7)

where h(i)k = 1
fα
k

∂fk
∂si

. In Equation 6, we used the fact that Q−1 is a banded matrix.

We now move on to the derivation of Jcov . We first derive ( ∂Q∂si )kl:

(
∂Q

∂si
)kl = a

∂fαk
∂si

fαl exp(−||c
(k) − c(l)||
L

) + a
∂fαl
∂si

fαk exp(−||c
(k) − c(l)||
L

) (8)

= α(
1

fk

∂fk
∂si

+
1

fl

∂fl
∂si

)Qkl (9)

= α(g
(i)
k + g

(i)
l )Qkl (10)

where g(i)k = 1
fk

∂fk
∂si

. Using Equation 10, we get:

Jcov =
1

2
Tr[

∂Q

∂si
Q−1

∂Q

∂sj
Q−1] (11)

=
α2

2

K∑
k=1

K∑
l=1

K∑
m=1

K∑
n=1

Qkl(g
(i)
k + g

(i)
l )(Q−1)lmQmn(g

(j)
m + g(j)n )(Q−1)nk (12)

= α2
K∑

k,l=1

Qklg
(i)
k g

(j)
k (Q−1)lk + α2

K∑
k,l=1

Qklg
(i)
k g

(j)
l (Q−1)lk (13)

where in Equation 12, we used the definition of the trace operator and Equation 13 results from the
expansion and re-arrangement of Equation 12. To derive a more explicit expression for Equation 13,
we note that:

Qkl(Q
−1)lk = aρ|k−l|fαk f

α
l

1

afαk f
α
l

1 + ρ2

1− ρ2 [δlk −
ρ

1 + ρ2
(δl+1,k + δl−1,k)] (14)

= ρ|k−l|
1 + ρ2

1− ρ2 [δlk −
ρ

1 + ρ2
(δl+1,k + δl−1,k)] (15)

If we plug this last expression into Equation 13, the first term in Equation 13 becomes
α2

∑K
k=1 g

(i)
k g

(j)
k , because

∑K
k=1Qkl(Q

−1)lk = 1. For the second term of Equation 13, we have:

K∑
k,l=1

g
(i)
k g

(j)
l ρ|k−l|

1 + ρ2

1− ρ2 [δlk −
ρ

1 + ρ2
(δl+1,k + δl−1,k)] = −

K∑
k=2

g
(i)
k−1g

(j)
k

ρ2

1− ρ2 +

K∑
k=1

g
(i)
k g

(j)
k

1 + ρ2

1− ρ2

−
K−1∑
k=1

g
(i)
k g

(j)
k+1

ρ2

1− ρ2 = α2
K∑
k=1

g
(i)
k g

(j)
k

1 + ρ2

1− ρ2 − α
2
K−1∑
k=1

g
(i)
k g

(j)
k+1

2ρ2

1− ρ2 . (16)
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Combining this with the first term in Equation 13, we get:

Jcov = α2(
2

1− ρ2
K∑
k=1

g
(i)
k g

(j)
k −

2ρ2

1− ρ2
K−1∑
k=1

g
(i)
k g

(j)
k+1) (17)

Finally, combining Jmean (Equation 7) and Jcov (Equation 17) together, the ij-th element of the
Fisher information matrix is given by:

Jij(s) = Jmean + Jcov =
1

a
(
1 + ρ2

1− ρ2
K∑
k=1

h
(i)
k h

(j)
k −

2ρ

1− ρ2
K−1∑
k=1

h
(i)
k h

(j)
k+1)

+α2(
2

1− ρ2
K∑
k=1

g
(i)
k g

(j)
k −

2ρ2

1− ρ2
K−1∑
k=1

g
(i)
k g

(j)
k+1). (18)

where h(i)k = 1
fα
k

∂fk
∂si

and g(i)k = 1
fk

∂fk
∂si

. Equation 18 is identical to Equation 5 in the paper.

An alternative mean firing rate function (f )

In the paper, for convenience, we assumed that the neurons can be divided into N groups where in
each group the tuning functions are a function of the feature value of only one of the stimuli, i.e.
fk(s) = fk(sn) for neurons in group n, so that the effects of other stimuli on the mean firing rates
of neurons in group n are negligible. Here, we relax this assumption and consider a mean firing rate
function of the form:

fk(s) =
1

N

N∑
n=1

gk,n exp(−
(sn − ck)2

σ2
) (19)

where gk,n represents the effect of the n-th stimulus on the mean firing rate of the k-th neuron. In
this case, all stimuli influence the mean firing rate of each neuron, but in varying degrees. In our
application, there are N = 2 stimuli, so Equation 19 takes the form:

fk(s) =
1

2
[gk,1 exp(−

(s1 − ck)2
σ2

) + gk,2 exp(−
(s2 − ck)2

σ2
)] (20)

We again divide the neurons into two groups and assume that the mean firing rates of the neurons
in the first group are affected more by the first stimulus, i.e. gk,1 > gk,2 for the first group of
neurons and the mean firing rates of the neurons in the second group are affected more by the
second stimulus, i.e. gk,2 > gk,1 for the second group of neurons. This is a reasonable assumption
in our case, because the two stimuli have different vertical locations in our experiment and they
can be expected to influence the mean firing rates of the neurons that have similar preferred vertical
locations more than the firing rates of the neurons that have less similar preferred vertical locations.
Figure 1 shows the simulation results for this alternative mean firing rate function (compare with
Figure 4 in the paper). It is clear that this generalization of the mean firing rate function we used in
the paper can also explain the pattern of correlations we observed in our experiment. However, with
this mean firing rate function (i.e. Equation 20), the specific pattern of correlations predicted by
the model depends strongly on the correlation scale length parameter L. Figure 2 shows predicted
mean correlation coefficients as a function of |s1 − s2| for different L values. For large L values,
the predicted pattern of correlations is qualitatively similar to the correlation pattern we observed in
our experiment. However, for small L values, the predicted correlation pattern is reversed such that
small |s1− s2| values produce strong negative correlations in the stimulus estimates. As |s1− s2| is
increased, correlations increase as well.
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Figure 1: (a) Correlation coefficients estimated from the inverse of the FIM for all stimuli pairs s1,
s2. (b) Mean correlation coefficients as a function of |s1 − s2| (red: model’s prediction; black:
collapsed data from all 4 subjects in the experiment with N = 2). Parameter values: gk,1 = 50,
gk,2 = 30 for the first group of neurons and gk,1 = 30, gk,2 = 50 for the second group of neurons,
K = 500 (250 neurons in each group), σ = 12.0, L = 0.165, α = 0.5, a = 1. Only σ and L
parameters were optimized.
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Figure 2: Predicted mean correlation coefficients as a function of |s1 − s2| for different L values.
Other parameter values were the same as in the previous figure.
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