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Abstract

The group Lasso is an extension of the Lasso for feature selection on (predefined)
non-overlapping groups of features. The non-overlapping group structure limits
its applicability in practice. There have been several recent attempts to study a
more general formulation, where groups of features are given, potentially with
overlaps between the groups. The resulting optimization is, however, much more
challenging to solve due to the group overlaps. In this paper, we consider the effi-
cient optimization of the overlapping group Lasso penalized problem. We reveal
several key properties of the proximal operator associatedwith the overlapping
group Lasso, and compute the proximal operator by solving the smooth and con-
vex dual problem, which allows the use of the gradient descent type of algorithms
for the optimization. We have performed empirical evaluations using both syn-
thetic and the breast cancer gene expression data set, whichconsists of 8,141
genes organized into (overlapping) gene sets. Experimental results show that the
proposed algorithm is more efficient than existing state-of-the-art algorithms.

1 Introduction
Problems with high dimensionality have become common over the recent years. The high dimen-
sionality poses significant challenges in building interpretable models with high prediction accuracy.
Regularization has been commonly employed to obtain more stable and interpretable models. A
well-known example is the penalization of theℓ1 norm of the estimator, known as Lasso [25]. The
ℓ1 norm regularization has achieved great success in many applications. However, in some appli-
cations [28], we are interested in finding important explanatory factors in predicting the response
variable, where each explanatory factor is represented by agroup of input features. In such cases,
the selection of important features corresponds to the selection of groups of features. As an exten-
sion of Lasso, group Lasso [28] based on the combination of the ℓ1 norm and theℓ2 norm has been
proposed for group feature selection, and quite a few efficient algorithms [16, 17, 19] have been
proposed for efficient optimization. However, the non-overlapping group structure in group Lasso
limits its applicability in practice. For example, in microarray gene expression data analysis, genes
may form overlapping groups as each gene may participate in multiple pathways [12].

Several recent work [3, 12, 15, 18, 29] studies the overlapping group Lasso, where groups of features
are given, potentially with overlaps between the groups. The resulting optimization is, however,
much more challenging to solve due to the group overlaps. Whenoptimizing the overlapping group
Lasso problem, one can reformulate it as a second order cone program and solve it by a generic
toolbox, which, however, does not scale well. Jenattonet al. [13] proposed an alternating algorithm
called SLasso for solving the equivalent reformulation. However, SLasso involves an expensive
matrix inversion at each alternating iteration, and there is no known global convergence rate for
such an alternating procedure. A reformulation [5] was alsoproposed such that the original problem
can be solved by the Alternating Direction Method of Multipliers (ADMM), which involves solving
a linear system at each iteration, and may not scale well for high dimensional problems. Argyriou
et al. [1] adopted the proximal gradient method for solving the overlapping group lasso, and a
fixed point method was developed to compute the proximal operator. Chenet al. [6] employed a
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smoothing technique to solve the overlapping group Lasso problem. Mairal [18] proposed to solve
the proximal operator associated with the overlapping group Lasso defined as the sum of theℓ∞
norms, which, however, is not applicable to the overlappinggroup Lasso defined as the sum of the
ℓ2 norms considered in this paper.

In this paper, we develop an efficient algorithm for the overlapping group Lasso penalized problem
via the accelerated gradient descent method. The accelerated gradient descent method has recently
received increasing attention in machine learning due to the fast convergence rate even for non-
smooth convex problems. One of the key operations is the computation of the proximal operator
associated with the penalty. We reveal several key properties of the proximal operator associated
with the overlapping group Lasso penalty, and proposed several possible reformulations that can
be solved efficiently. The main contributions of this paper include: (1) we develop a low cost
prepossessing procedure to identify (and then remove) zerogroups in the proximal operator, which
dramatically reduces the size of the problem to be solved; (2) we propose one dual formulation
and two proximal splitting formulations for the proximal operator; (3) for the dual formulation, we
further derive the duality gap which can be used to check the quality of the solution and determine
the convergence of the algorithm. We have performed empirical evaluations using both synthetic
data and the breast cancer gene expression data set, which consists of 8,141 genes organized into
(overlapping) gene sets. Experimental results demonstrate the efficiency of the proposed algorithm
in comparison with existing state-of-the-art algorithms.

Notations: ‖ · ‖ denotes the Euclidean norm, and0 denotes a vector of zeros.SGN(·) andsgn(·)
are defined in a component wise fashion as: 1) ift = 0, thenSGN(t) = [−1, 1] andsgn(t) = 0; 2)
if t > 0, thenSGN(t) = {1} andsgn(t) = 1; and 3) ift < 0, SGN(t) = {−1} andsgn(t) = −1.
Gi ⊆ {1, 2, . . . , p} denotes an index set, andxGi

denote a sub-vector ofx restricted toGi.

2 The Overlapping Group Lasso
We consider the following overlapping group Lasso penalized problem:

min
x∈Rp

f(x) = l(x) + φλ1

λ2
(x) (1)

wherel(·) is a smooth convex loss function, e.g., the least squares loss,

φλ1

λ2
(x) = λ1‖x‖1 + λ2

g
∑

i=1

wi‖xGi
‖ (2)

is the overlapping group Lasso penalty,λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters,
wi > 0, i = 1, 2, . . . , g, Gi ⊆ {1, 2, . . . , p} contains the indices corresponding to thei-th group
of features, and‖ · ‖ denotes the Euclidean norm. Note that the first term in (2) canbe absorbed
into the second term, which however will introducep additional groups. Theg groups of features
are pre-specified, and they may overlap. The penalty in (2) isa special case of the more general
Composite Absolute Penalty (CAP) family [29]. When the groups are disjoint withλ1 = 0 and
λ2 > 0, the model in (1) reduces to the group Lasso [28]. Ifλ1 > 0 andλ2 = 0, then the model in
(1) reduces to the standard Lasso [25].

In this paper, we propose to make use of the accelerated gradient descent (AGD) [2, 21, 22] for
solving (1), due to its fast convergence rate. The algorithmis called “FoGLasso”, which stands for
FastoverlappingGroup Lasso. One of the key steps in the proposed FoGLasso algorithm is the
computation of the proximal operator associated with the penalty in (2); and we present an efficient
algorithm for the computation in the next section.

In FoGLasso, we first construct a model for approximatingf(·) at the pointx as:

fL,x(y) = [l(x) + 〈l′(x),y − x〉] + φλ2

λ1
(y) +

L

2
‖y − x‖2, (3)

whereL > 0. The modelfL,x(y) consists of the first-order Taylor expansion of the smooth function
l(·) at the pointx, the non-smooth penaltyφλ2

λ1
(x), and a regularization termL2 ‖y − x‖2. Next, a

sequence of approximate solutions{xi} is computed as follows:xi+1 = argminy fLi,si(y), where
the search pointsi is an affine combination ofxi−1 andxi assi = xi+βi(xi−xi−1), for a properly
chosen coefficientβi, Li is determined by the line search according to the Armijo-Goldstein rule
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so thatLi should be appropriate forsi, i.e., f(xi+1) ≤ fLi,si(xi+1). A key building block in
FoGLasso is the minimization of (3), whose solution is knownas the proximal operator [20]. The
computation of the proximal operator is the main technical contribution of this paper. The pseudo-
code of FoGLasso is summarized in Algorithm 1, where the proximal operatorπ(·) is defined in
(4). In practice, we can terminate Algorithm 1 if the change of the function values corresponding to
adjacent iterations is within a small value, say10−5.

Algorithm 1 The FoGLasso Algorithm
Input: L0 > 0,x0, k
Output: xk+1

1: Initialize x1 = x0, α−1 = 0, α0 = 1, andL = L0.
2: for i = 1 to k do
3: Setβi =

αi−2−1
αi−1

, si = xi + βi(xi − xi−1)

4: Find the smallestL = 2jLi−1, j = 0, 1, . . . such thatf(xi+1) ≤ fL,si(xi+1) holds, where

xi+1 = π
λ1/L
λ2/L

(si − 1
L l

′(si))

5: SetLi = L andαi+1 =
1+

√
1+4α2

i

2
6: end for

3 The Associated Proximal Operator and Its Efficient Computation
The proximal operator associated with the overlapping group Lasso penalty is defined as follows:

πλ1

λ2
(v) = arg min

x∈Rp

{

gλ1

λ2
(x) ≡ 1

2
‖x− v‖2 + φλ1

λ2
(x)

}

, (4)

which is a special case of (1) by settingl(x) = 1
2‖x − v‖2. It can be verified that the approximate

solutionxi+1 = argminy fLi,si(y) is given byxi+1 = π
λ1/Li

λ2/Li
(si − 1

Li
l′(si)). Recently, it has

been shown in [14] that, the efficient computation of the proximal operator is key to many sparse
learning algorithms. Next, we focus on the efficient computation of πλ1

λ2
(v) in (4) for a givenv.

The rest of this section is organized as follows. In Section 3.1, we discuss some key properties of
the proximal operator, based on which we propose a pre-processing technique that will significantly
reduce the size of the problem. We then proposed to solve it via the dual formulation in Section 3.2,
and the duality gap is also derived. Several alternative methods for solving the proximal operator
via proximal splitting methods are discussed in Section 3.3.

3.1 Key Properties of the Proximal Operator

We first reveal several basic properties of the proximal operatorπλ1

λ2
(v).

Lemma 1. Suppose thatλ1, λ2 ≥ 0, andwi > 0, for i = 1, 2, . . . , g. Let x∗ = πλ1

λ2
(v). The

following holds: 1) ifvi > 0, then0 ≤ x∗i ≤ vi; 2) if vi < 0, thenvi ≤ x∗i ≤ 0; 3) if vi = 0, then
x∗i = 0; 4) SGN(v) ⊆ SGN(x∗); and 5)πλ1

λ2
(v) = sgn(v)⊙ πλ1

λ2
(|v|).

Proof. Whenλ1, λ2 ≥ 0, andwi ≥ 0, for i = 1, 2, . . . , g, the objective functiongλ1

λ2
(·) is strictly

convex, thusx∗ is the unique minimizer. We first show ifvi > 0, then0 ≤ x∗i ≤ vi. If x∗i > vi,
then we can construct âx as follows: x̂j = x∗j , j 6= i and x̂i = vi. Similarly, if x∗i < 0, then
we can construct âx as follows: x̂j = x∗j , j 6= i and x̂i = 0. It is easy to verify that̂x achieves
a lower objective function value thanx∗ in both cases. We can prove the second and the third
properties using similar arguments. Finally, we can prove the fourth and the fifth properties using
the definition of SGN(·) and the first three properties.

Next, we show thatπλ1

λ2
(·) can be directly derived fromπ0

λ2
(·) by soft-thresholding. Thus, we only

need to focus on the case whenλ1 = 0. This simplifies the optimization in (4). It is an extension of
the result for Fused Lasso in [10].
Theorem 1. Letu = sgn(v)⊙max(|v| − λ1, 0), and

π0
λ2
(u) = arg min

x∈Rp

{

hλ2
(x) ≡ 1

2
‖x− u‖2 + λ2

g
∑

i=1

wi‖xGi
‖
}

. (5)

Then, the following holds:πλ1

λ2
(v) = π0

λ2
(u).
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Proof. Denote the unique minimizer ofhλ2
(·) asx∗. The sufficient and necessary condition for the

optimality ofx∗ is:
0 ∈ ∂hλ2

(x∗) = x∗ − u+ ∂φ0λ2
(x∗), (6)

where∂hλ2
(x) and∂φ0λ2

(x) are the sub-differential sets ofhλ2
(·) andφ0λ2

(·) atx, respectively.

Next, we need to show0 ∈ ∂gλ1

λ2
(x∗). The sub-differential ofgλ1

λ2
(·) atx∗ is given by

∂gλ1

λ2
(x∗) = x∗ − v + ∂φλ1

λ2
(x∗) = x∗ − v + λ1SGN(x∗) + ∂φ0λ2

(x∗). (7)

It follows from the definition ofu thatu ∈ v− λ1SGN(u). Using the fourth property in Lemma 1,
we have SGN(u) ⊆ SGN(x∗). Thus,

u ∈ v − λ1SGN(x∗). (8)

It follows from (6)-(8) that0 ∈ ∂gλ1

λ2
(x∗).

It follows from Theorem 1 that, we only need to focus on the optimization of (5) in the following
discussion. The difficulty in the optimization of (5) lies inthe large number of groups that may
overlap. In practice, many groups will be zero, thus achieving a sparse solution (a sparse solution
is desirable in many applications). However, the zero groups are not known in advance. The key
question we aim to address is how we can identify as many zero groups as possible to reduce the
complexity of the optimization. Next, we present a sufficient condition for a group to be zero.
Lemma 2. Denote the minimizer ofhλ2

(·) in (5) byx∗. If the i-th group satisfies‖uGi
‖ ≤ λ2wi,

thenx∗
Gi

= 0, i.e., thei-th group is zero.

Proof. We decomposehλ2
(x) into two parts as follows:

hλ2
(x) =

(

1

2
‖xGi

− uGi
‖2 + λ2wi‖xGi

‖
)

+





1

2
‖xGi

− uGi
‖2 + λ2

∑

j 6=i

wj‖xGj
‖



 , (9)

whereGi = {1, 2, . . . , p} − Gi is the complementary set ofGi. We consider the minimization of
hλ2

(x) in terms ofxGi
whenxGi

= x∗
Gi

is fixed. It can be verified that if‖uGi
‖ ≤ λ2wi, then

x∗
Gi

= 0 minimizes both terms in (9) simultaneously. Thus we havex∗
Gi

= 0.

Lemma 2 may not identify many true zero groups due to the strong condition imposed. The lemma
below weakens the condition in Lemma 2. Intuitively, for a groupGi, we first identify all existing
zero groups that overlap withGi, and then compute the overlapping index subsetSi of Gi as:

Si =
⋃

j 6=i,x∗
Gj

=0

(Gj ∩Gi). (10)

We can show thatx∗
Gi

= 0 if ‖uGi−Si
‖ ≤ λ2wi is satisfied. Note that this condition is much weaker

than the condition in Lemma 2, which requires that‖uGi
‖ ≤ λ2wi.

Lemma 3. Denote the minimizer ofhλ2
(·) by x∗. Let Si, a subset ofGi, be defined in(10). If

‖uGi−Si
‖ ≤ λ2wi holds, thenx∗

Gi
= 0.

Proof. Suppose that we have identified a collection of zero groups. By removing these groups, the
original problem (5) can then be reduced to:

min
x(I1)∈R|I1|

1

2
‖x(I1)− u(I1)‖2 + λ2

∑

i∈G1

wi‖xGi−Si
‖

whereI1 is the reduced index set, i.e.,I1 = {1, 2, . . . , p} −
⋃

i:x∗
Gi

=0
Gi, andG1 = {i : x∗

Gi
6= 0}

is the index set of the remaining non-zero groups. Note that∀i ∈ G1, Gi − Si ∈ I1. By applying
Lemma 2 again, we show that if‖uGi−Si

‖ ≤ λ2wi holds, thenx∗
Gi−Si

= 0. Thus,x∗
Gi

= 0.

Lemma 3 naturally leads to an iterative procedure for identifying the zero groups: For each group
Gi, if ‖uGi

‖ ≤ λ2wi, then we setuGi
= 0; we cycle through all groups repeatedly untilu does not

change. Letp′ = |{ui : ui 6= 0}| be the number of nonzero elements inu, g′ = |{uGi
: uGi

6= 0}|
be the number of the nonzero groups, andx∗ denote the minimizer ofhλ2

(·). It follows from
Lemma 3 and Lemma 1 that, ifui = 0, thenx∗i = 0. Therefore, by applying the above iterative
procedure, we can find the minimizer of (5) by solving a reduced problem that hasp′ ≤ p variables
andg′ ≤ g groups. With some abuse of notation, we still use (5) to denote the resulting reduced
problem. In addition, from Lemma 1, we only focus onu > 0 in the following discussion, and the
analysis can be easily generalized to the generalu.
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3.2 Reformulation as an Equivalent Smooth Convex Optimization Problem
It follows from the first two properties of Lemma 1 that, we canrewrite (5) as:

π0
λ2
(u) = arg min

x∈R
p

0�x�u

hλ2
(x), (11)

where� denotes the element-wise inequality, and

hλ2
(x) =

1

2
‖x− u‖2 + λ2

g
∑

i=1

wi‖xGi
‖,

and the minimizer ofhλ2
(·) is constrained to be non-negative due tou > 0 (refer to the discussion

at the end of Section 3.1).

Making use of the dual norm of the Euclidean norm‖ · ‖, we can rewritehλ2
(x) as:

hλ2
(x) = max

Y ∈Ω

1

2
‖x− u‖2 +

g
∑

i=1

〈x, Y i〉, (12)

whereΩ is defined as follows:

Ω = {Y ∈ R
p×g : Y i

Gi
= 0, ‖Y i‖ ≤ λ2wi, i = 1, 2, . . . , g},

Gi is the complementary set ofGi, Y is a sparse matrix satisfyingYij = 0 if the i-th feature does
not belong to thej-th group, i.e.,i 6∈ Gj , andY i denotes thei-th column ofY . As a result, we can
reformulate (11) as the following min-max problem:

min
x∈R

p

0�x�u

max
Y ∈Ω

{

ψ(x, Y ) =
1

2
‖x− u‖2 + 〈x, Y e〉

}

, (13)

wheree ∈ R
g is a vector of ones. It is easy to verify thatψ(x, Y ) is convex inx and concave inY ,

and the constraint sets are closed convex for bothx andY . Thus, (13) has a saddle point, and the
min-max can be exchanged.

It is easy to verify that for a givenY , the optimalx minimizingψ(x, Y ) in (13) is given by

x = max(u− Y e,0). (14)

Plugging (14) into (13), we obtain the following minimization problem with regard toY :

min
Y ∈Rp×g:Y ∈Ω

{ω(Y ) = −ψ(max(u− Y e,0), Y )} . (15)

Our methodology for minimizinghλ2
(·) defined in (5) is to first solve (15), and then construct the

solution tohλ2
(·) via (14). Using standard optimization techniques, we can show that the function

ω(·) is continuously differentiable with Lipschitz continuousgradient. We include the detailed proof
in the supplemental material for completeness. Therefore,we convert the non-smooth problem (11)
to the smooth problem (15), making the smooth convex optimization tools applicable. In this paper,
we employ the accelerated gradient descent to solve (15), due to its fast convergence property. Note
that, the Euclidean projection onto the setΩ can be computed in closed form. We would like to
emphasize here that, the problem (15) may have a much smallersize than (4).

3.2.1 Computing the Duality Gap

We show how to estimate the duality gap of the min-max problem(13), which can be used to check
the quality of the solution and determine the convergence ofthe algorithm.

For any given approximate solutioñY ∈ Ω for ω(Y ), we can construct the approximate solution
x̃ = max(u− Ỹ e,0) for hλ2

(x). The duality gap for the min-max problem (13) at the point(x̃, Ỹ )
can be computed as:

gap(Ỹ ) = max
Y ∈Ω

ψ(x̃, Y )− min
x∈R

p

0�x�u

ψ(x, Ỹ ). (16)

The main result of this subsection is summarized in the following theorem:
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Theorem 2. Letgap(Ỹ ) be the duality gap defined in(16). Then, the following holds:

gap(Ỹ ) = λ2

g
∑

i=1

(wi‖x̃Gi
‖ − 〈x̃Gi

, Ỹ i
Gi
〉). (17)

In addition, we have
ω(Ỹ )− ω(Y ∗) ≤ gap(Ỹ ), (18)

h(x̃)− h(x∗) ≤ gap(Ỹ ). (19)

Proof. Denote(x∗, Y ∗) as the optimal solution to the problem (13). From (12)-(15),we have

− ω(Ỹ ) = ψ(x̃, Ỹ ) = min
x∈R

p

0�x�u

ψ(x, Ỹ ) ≤ ψ(x∗, Ỹ ), (20)

ψ(x∗, Ỹ ) ≤ max
Y ∈Ω

ψ(x∗, Y ) = ψ(x∗, Y ∗) = −ω(Y ∗), (21)

hλ2
(x∗) = ψ(x∗, Y ∗) = min

x∈R
p

0�x�u

ψ(x, Y ∗) ≤ ψ(x̃, Y ∗), (22)

ψ(x̃, Y ∗) ≤ max
Y ∈Ω

ψ(x̃, Y ) = hλ2
(x̃). (23)

Incorporating (11), (20)-(23), we prove (17)-(19).

In our experiments, we terminate the algorithm when the estimated duality gap is less than10−10.

3.3 Proximal Splitting Methods

Recently, a family of proximal splitting methods [8] have been proposed for converting a challenging
optimization problem into a series of sub-problems with a closed form solution. We consider two
reformulations of the proximal operator (4), based on the Dykstra-like Proximal Splitting Method
and the alternating direction method of multipliers (ADMM). The efficiency of these two methods
for overlapping Group Lasso will be demonstrated in the nextsection.

In [5], Boyd et al. suggested that the original overlapping group lasso problem (1) can be reformu-
lated and solved by ADMM directly. We include the implementation of ADMM for our comparative
study. We provide the details of all three reformulations inthe supplemental materials.

4 Experiments

In this section, extensive experiments are performed to demonstrate the efficiency of our proposed
methods. We use both synthetic data sets and a real world dataset and the evaluation is done in
various problem size and precision settings. The proposed algorithms are mainly implemented in
Matlab, with the proximal operator implemented in standardC for improved efficiency. Several
state-of-the-art methods are also included for comparisonpurpose, including SLasso algorithm de-
veloped by Jenattonet al. [13], the ADMM reformulation [5], the Prox-Grad method by Chenet
al. [6] and the Picard-Nesterov algorithm by Argyriouet al. [1].

4.1 Synthetic Data

In the first set of simulation we consider only the key component of our algorithm, the proximal
operator. The group indices are predefined such thatG1 = {1, 2, . . . , 10},G2 = {6, 7, . . . , 20}, . . .,
with each group overlapping half of the previous group. 100 examples are generated for each set of
fixed problem sizep and group sizeg, and the results are summarized in Figure 1. As we can observe
from the figure, the dual formulation yields the best performance, followed closely by ADMM and
then the Dykstra method. We can also observe that our method scales very well to high dimensional
problems, since even withp = 106, the proximal operator can be computed in a few seconds. It
is also not surprising that Dykstra method is much more sensitive to the number of groups, which
equals to the number of projections in one Dykstra step.

To illustrate the effectiveness of our pre-processing technique, we repeat the previous experiment by
removing the pre-processing step. The results are shown in the right plot of Figure 1. As we can ob-
serve from the figure, the proposed pre-processing technique effectively reduces the computational
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Figure 1: Time comparison for computing the proximal operators. The group number is fixed in the
left figure and the problem size is fixed in the middle figure. Inthe right figure, the effectiveness of
the pre-processing technique is illustrated.

time. As is evident from Figure 1, the dual formulation proposed in Section 3.2 consistently outper-
forms other proximal splitting methods. In the following experiments, only the dual method will be
used for computing the proximal operator, and our method will then be called as “FoGLasso”.

4.2 Gene Expression Data

We have also conducted experiments to evaluate the efficiency of the proposed algorithm using the
breast cancer gene expression data set [26], which consistsof 8,141 genes in 295 breast cancer
tumors (78 metastatic and 217 non-metastatic). For the sakeof analyzing microarrays in terms
of biologically meaningful gene sets, different approaches have been used to organize the genes
into (overlapping) gene sets. In our experiments, we follow[12] and employ the following two
approaches for generating the overlapping gene sets (groups): pathways [24] and edges [7]. For
pathways, the canonical pathways from the Molecular Signatures Database (MSigDB) [24] are used.
It contains 639 groups of genes, of which 637 groups involve the genes in our study. The statistics of
the 637 gene groups are summarized as follows: the average number of genes in each group is 23.7,
the largest gene group has 213 genes, and 3,510 genes appear in these 637 groups with an average
appearance frequency of about 4. For edges, the network built in [7] will be used, and we follow [12]
to extract 42,594 edges from the network, leading to 42,594 overlapping gene sets of size 2. All
8,141 genes appear in the 42,594 groups with an average appearance frequency of about 10. The
experimental settings are as follows: we solve (1) with the least squares lossl(x) = 1

2‖Ax − b‖2,
and we setwi =

√

|Gi|, andλ1 = λ2 = γ × λmax
1 , where|Gi| denotes the size of thei-th group

Gi, λmax
1 = ‖ATb‖∞ (the zero point is a solution to (1) ifλ1 ≥ λmax

1 ), andγ is chosen from the
set{5× 10−1, 2× 10−1, 1× 10−1, 5× 10−2, 2× 10−2, 1× 10−2, 5× 10−3, 2× 10−3, 1× 10−3}.

Comparison with SLasso, Prox-Grad and ADMM We first compare our proposed FoGLasso
with the SLasso algorithm [13], ADMM [5] and Prox-Grad [6]. The comparisons are based on
the computational time, since all these methods have efficient Matlab implementations with key
components written in C. For a givenγ, we first run SLasso till a certain precision level is reached,
and then run the others until they achieve an objective function value smaller than or equal to that
of SLasso. Different precision levels of the solutions are evaluated such that a fair comparison can
be made. We vary the number of genes involved, and report the total computational time (seconds)
including all nine regularization parameters in Figure 2. We can observe that: 1) for all precision
levels, our proposed FoGLasso is much more efficient than SLasso, ADMM and Prox-Grad; 2) the
advantage of FoGLasso over other three methods in efficiencygrows with the increasing number of
genes (variables). For example, with the grouping by pathways, FoGLasso is about 25 and 70 times
faster than SLasso for 1000 and 2000 genes, respectively; and 3) the efficiency on edges is inferior
to that on pathways, due to the larger number of overlapping groups. Additional scalability study of
our proposed method using larger problem size can be found inthe supplemental materials.

Comparison with Picard-NesterovSince the code acquired for Picard-Nesterov is implemented
purely in Matlab, a computational time comparison might notbe fair. Therefore, only the number
of iterations required for convergence is reported, as bothmethods adopt the first order method.
We use edges to generate the groups, and vary the problem sizefrom 100 to 400, using the same
set of regularization parameters. For each problem, we record both the number of outer iterations
(the gradient steps) and the total number of inner iterations (the steps required for computing the
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Figure 2: Comparison of SLasso [13], ADMM [5], Prox-Grad [6]and our proposed FoGLasso
algorithm in terms of computational time (in seconds and in the logarithmic scale) when different
numbers of genes (variables) are involved. Different precision levels are used for comparison.

Table 1: Comparison of FoGLasso and Picard-Nesterov using different numbers (p) of genes and
various precision levels. For each particular method, the first row denotes the number of outer itera-
tions required for convergence, while the second row represents the total number of inner iterations.

Precision Level 10−2 10−4 10−6

p 100 200 400 100 200 400 100 200 400

FoGLasso 81 189 353 192 371 1299 334 507 1796
288 401 921 404 590 1912 547 727 2387

Picard-Nesterov 78 176 325 181 304 1028 318 504 1431
8271 6.8e4 2.2e5 2.6e4 1.0e5 7.8e5 5.1e4 1.3e5 1.1e6

proximal operators). The average number of iterations among all the regularization parameters are
summarized in Table 1. As we can observe from the table, though Picard-Nesterov method often
takes less outer iterations to converge, it takes a lot more inner iterations to compute the proximal
operator. It is straight forward to verify that the inner iterations in Picard-Nesterov method and our
proposed method have the same complexity ofO(pg).

5 Conclusion

In this paper, we consider the efficient optimization of the overlapping group Lasso penalized prob-
lem based on the accelerated gradient descent method. We reveal several key properties of the
proximal operator associated with the overlapping group Lasso, and compute the proximal operator
via solving the smooth and convex dual problem. Numerical experiments on both synthetic and
the breast cancer data set demonstrate the efficiency of the proposed algorithm. Although with an
inexact proximal operator, the optimal convergence rate ofthe accelerated gradient descent might
not be guaranteed [23, 11], the algorithm performs quite well empirically. A theoretical analysis on
the convergence property will be an interesting future direction. In the future, we also plan to apply
the proposed algorithm to other real-world applications involving overlapping groups.
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