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Abstract

The group Lasso is an extension of the Lasso for featurets@iaan (predefined)
non-overlapping groups of features. The non-overlappiogg structure limits
its applicability in practice. There have been several meettempts to study a
more general formulation, where groups of features arengipetentially with
overlaps between the groups. The resulting optimizatiphas/ever, much more
challenging to solve due to the group overlaps. In this papeiconsider the effi-
cient optimization of the overlapping group Lasso pendligeoblem. We reveal
several key properties of the proximal operator associafédthe overlapping
group Lasso, and compute the proximal operator by solviagthooth and con-
vex dual problem, which allows the use of the gradient dedgee of algorithms
for the optimization. We have performed empirical evaloagi using both syn-
thetic and the breast cancer gene expression data set, widists of 8,141
genes organized into (overlapping) gene sets. Experiesgalts show that the
proposed algorithm is more efficient than existing statéhetart algorithms.

1 Introduction

Problems with high dimensionality have become common dwerécent years. The high dimen-
sionality poses significant challenges in building intetpble models with high prediction accuracy.
Regularization has been commonly employed to obtain mafglesand interpretable models. A
well-known example is the penalization of thenorm of the estimator, known as Lass0l[25]. The
¢, norm regularization has achieved great success in manycapphs. However, in some appli-
cations [[2B], we are interested in finding important explanafactors in predicting the response
variable, where each explanatory factor is representeddipap of input features. In such cases,
the selection of important features corresponds to theteteof groups of features. As an exten-
sion of Lasso, group Lasso [28] based on the combinationeof;tihorm and the, norm has been
proposed for group feature selection, and quite a few efficiégorithms [16[ 17, 19] have been
proposed for efficient optimization. However, the non-tseping group structure in group Lasso
limits its applicability in practice. For example, in mienzay gene expression data analysis, genes
may form overlapping groups as each gene may participatesitipie pathways/[12].

Several recent work|[8, 12,115,118 29] studies the overtapgioup Lasso, where groups of features
are given, potentially with overlaps between the groupse fdsulting optimization is, however,
much more challenging to solve due to the group overlaps. Vép@mizing the overlapping group
Lasso problem, one can reformulate it as a second order cogeam and solve it by a generic
toolbox, which, however, does not scale well. Jenagtioal. [13] proposed an alternating algorithm
called SLasso for solving the equivalent reformulation.wdaer, SLasso involves an expensive
matrix inversion at each alternating iteration, and therea known global convergence rate for
such an alternating procedure. A reformulatidn [5] was pleposed such that the original problem
can be solved by the Alternating Direction Method of Muligps (ADMM), which involves solving

a linear system at each iteration, and may not scale welligdr imensional problems. Argyriou
et al. [1] adopted the proximal gradient method for solving thertapping group lasso, and a
fixed point method was developed to compute the proximalaiper Cheret al. [6] employed a



smoothing technique to solve the overlapping group Lassblem. Mairal [18] proposed to solve
the proximal operator associated with the overlapping groasso defined as the sum of the
norms, which, however, is not applicable to the overlapgraup Lasso defined as the sum of the
{5 norms considered in this paper.

In this paper, we develop an efficient algorithm for the caepling group Lasso penalized problem
via the accelerated gradient descent method. The acaadageddient descent method has recently
received increasing attention in machine learning due ¢ofdist convergence rate even for non-
smooth convex problems. One of the key operations is the atatipn of the proximal operator
associated with the penalty. We reveal several key pragsedi the proximal operator associated
with the overlapping group Lasso penalty, and proposedrakpessible reformulations that can
be solved efficiently. The main contributions of this papselude: (1) we develop a low cost
prepossessing procedure to identify (and then remove)grergs in the proximal operator, which
dramatically reduces the size of the problem to be solvedwg propose one dual formulation
and two proximal splitting formulations for the proximalemator; (3) for the dual formulation, we
further derive the duality gap which can be used to check tiadity of the solution and determine
the convergence of the algorithm. We have performed engpieicaluations using both synthetic
data and the breast cancer gene expression data set, wiisistsaf 8,141 genes organized into
(overlapping) gene sets. Experimental results demoudtnatefficiency of the proposed algorithm
in comparison with existing state-of-the-art algorithms.

Notations: || - || denotes the Euclidean norm, addienotes a vector of zeroSGN(-) andsgn(+)
are defined in a component wise fashion as: 1)+ 0, thenSGN(¢) = [—1, 1] andsgn(t) = 0; 2)
if t > 0, thenSGN(¢) = {1} andsgn(t) = 1; and 3) ift < 0, SGN(¢) = {—1} andsgn(t) = —1.
G; C{1,2,...,p} denotes an index set, ang:, denote a sub-vector of restricted to5;.

2 The Overlapping Group Lasso
We consider the following overlapping group Lasso pendl®blem:

min £(x) = 1(x) + 631 (%) 1)

wherel(-) is a smooth convex loss function, e.g., the least squarss los

9
(bii(x) = )‘1HXHI + )\2 ZwiHXGi
i=1

)

is the overlapping group Lasso penalty, > 0 and A > 0 are regularization parameters,
w; > 0,1 =1,2,...,9, G; € {1,2,...,p} contains the indices corresponding to thln group

of features, and - || denotes the Euclidean norm. Note that the first ternilin (2)b=aabsorbed
into the second term, which however will introdue@dditional groups. The groups of features
are pre-specified, and they may overlap. The penaltiin (2)special case of the more general
Composite Absolute Penalty (CAP) family [29]. When the gmape disjoint with\; = 0 and

A2 > 0, the model in[{]l) reduces to the group Lasso [28]If> 0 and ), = 0, then the model in
(@) reduces to the standard Lassd [25].

In this paper, we propose to make use of the acceleratedegtadiéscent (AGD) [2, 21, 2] for
solving 1), due to its fast convergence rate. The algorithoalled “FoGLasso”, which stands for
FastoverlappingGroup Lassa One of the key steps in the proposed FoGLasso algorithneis th
computation of the proximal operator associated with theaftg in (2); and we present an efficient
algorithm for the computation in the next section.

In FoGLasso, we first construct a model for approximatfiig at the pointx as:

Frly) = 1) + {10,y =)+ 62() + gy — I, ®

whereL > 0. The modelf;, «(y) consists of the first-order Taylor expansion of the smootiction
I(-) at the point, the non-smooth penalty,*(x), and a regularization terrg|ly — x||%. Next, a

sequence of approximate solutiofzs; } is computed as followsk; ;1 = arg miny, fz, s, (y), where
the search poirg; is an affine combination of, _; andx; ass; = x; + 3;(x; —x;_1), for a properly
chosen coefficieng;, L; is determined by the line search according to the Armijoestain rule



so thatZ; should be appropriate faf;, i.e., f(x;+1) < fr,s:(xi+1). A key building block in
FoGLasso is the minimization dfl(3), whose solution is knagrthe proximal operator [20]. The
computation of the proximal operator is the main technicaltgbution of this paper. The pseudo-
code of FoGLasso is summarized in Algorithin 1, where the iprekoperatorr(-) is defined in
(4). In practice, we can terminate Algorittidh 1 if the chan§éhe function values corresponding to
adjacent iterations is within a small value, Say>.

Algorithm 1 The FoGLasso Algorithm

Input: Loy > 0,xq, k

Output: xp41
1: Initialize x; = xg, a_1 =0, a9 = 1, andL = L.
2: fori=1tokdo
3 Setp; = aﬁf;l.si =X + Bi(Xi — Xi-1)

4:  Find the smallesL = 27L; 1,5 = 0,1,... such thatf(x;+1) < fLs, (xi+1) holds, where
) _ M/L. ll/ )
Xi+1 = WAQ/L(SZ 3 (si))
5. Setl; = Landa;11 = Liylitdor V;Ma?
6: end for

3 The Associated Proximal Operator and Its Efficient Computaton
The proximal operator associated with the overlapping gilocasso penalty is defined as follows:

. 1
w1 =g iy {4200 = 5lIx— vIP + 000} @

which is a special case dfl(1) by settifig) = %Hx — v||?. It can be verified that the approximate

solutionx; 1 = argminy f1, s, (y) IS given byx;;; = wiiﬁ?(si — %l’(si)). Recently, it has

been shown in [14] that, the efficient computation of the prat operator is key to many sparse
learning algorithms. Next, we focus on the efficient comporteof ”i; (v) in @) for a givenv.
The rest of this section is organized as follows. In Sediidh ®e discuss some key properties of
the proximal operator, based on which we propose a pre-psowgtechnique that will significantly
reduce the size of the problem. We then proposed to solva the dual formulation in Sectién 3.2,
and the duality gap is also derived. Several alternativehaukt for solving the proximal operator
via proximal splitting methods are discussed in Sedfioh 3.3

3.1 Key Properties of the Proximal Operator
We first reveal several basic properties of the proximal amewi; (V).

Lemma 1. Suppose thah;, As > 0, andw; > 0, fori = 1,2,...,g. Letx* = m!(v). The
following holds: 1) ifv; > 0, then0 < z} < v;; 2) if v; < 0, thenv; < zf < 0; 3) if v; = 0, then
xf =0;4) SGN(v) C SGN(x*); and 5)7?25 (v) =sgn(v) ® ﬂi‘; (Iv]).

Proof. When Ay, Ao > 0, andw; > 0, fori = 1,2, ..., g, the objective functioryi;() is strictly
convex, thusx* is the unique minimizer. We first showdf > 0, then0 < 27 < v;. If 27 > v,
then we can construct 2 as follows: &; = z7,j # i and#; = v;. Similarly, if z7 < 0, then

we can construct & as follows: 2; = z%,j # i andz; = 0. It is easy to verify thak achieves

a lower objective function value thax* in both cases. We can prove the second and the third
properties using similar arguments. Finally, we can prdwefourth and the fifth properties using
the definition of SGN) and the first three properties.

Next, we show thadrié () can be directly derived from_(-) by soft-thresholding. Thus, we only
need to focus on the case when= 0. This simplifies the optimization if{4). It is an extensidn o
the result for Fused Lasso in [10].

Theorem 1. Letu = sgn(v) ® max(|v| — A,0), and

xERP

: 1 .
73, (u) = arg min {h,\2 (x) = §Hx —ul* + X\ ZU}Z”XG } . (5)
i=1

Then, the following holds}! (v) = 7%, (u).



Proof. Denote the unique minimizer éfy, () asx*. The sufficient and necessary condition for the
optimality of x* is:

0 € Ohy, (x*) = x* — u+ 043, (x*), (6)
wheredh,, (x) andd¢)_(x) are the sub-differential sets b, (-) and¢$_(-) atx, respectively.

Next, we need to sho® € dg;! (x*). The sub-differential of}' (-) atx* is given by

Ogi‘; (x*)=x"—v+ 8¢§; (x*) =x" — v+ M SGN(x") + 8(;5(/{2 (x¥). (7
It follows from the definition ofu thatu € v — A\ SGN(u). Using the fourth property in Lemnia 1,
we have SGNu) C SGN(x*). Thus,

u e v — A SGN(x"). (8)

It follows from (@)-(8) that0 € dg; (x*). O
It follows from TheorentIL that, we only need to focus on thdrojation of [8) in the following
discussion. The difficulty in the optimization dfl(5) lies the large number of groups that may
overlap. In practice, many groups will be zero, thus achig\a sparse solution (a sparse solution
is desirable in many applications). However, the zero gsaane not known in advance. The key

guestion we aim to address is how we can identify as many zexgpg as possible to reduce the
complexity of the optimization. Next, we present a suffitieondition for a group to be zero.

Lemma 2. Denote the minimizer df,,(-) in (B) by x*. If thei-th group satisfiegug, || < Aaw;,
thenxg,, = 0, i.e., thei-th group is zero.

Proof. We decomposé,, (x) into two parts as follows:

1 1
) = (e, = e P+ dawilea ) + ( 55, — v 1+ 20 D wslia, ] @)
J#
whereG; = {1,2,...,p} — G; is the complementary set 6f;. We consider the minimization of
h, (x) in terms ofo whenxgz = Xz is fixed. It can be verified that ifug, || < Aw;, then
x¢, = 0 minimizes both terms in{9) S|multaneously Thus we hage = 0. O
Lemma2 may not identify many true zero groups due to the gtoomdition imposed. The lemma
below weakens the condition in Leminla 2. Intuitively, for agp G;, we first identify all existing
zero groups that overlap withi;, and then compute the overlapping index sulsseif G; as:
Ssi= U @naG. (10)
j;&i,xgj =0

We can show thaty, = 01if [[ug, s, || < Aw; is satisfied. Note that this condition is much weaker
than the condition in Lemnid 2, which requires that;, | < Aw;.
Lemma 3. Denote the minimizer of,(-) by x*. LetS;, a subset of7;, be defined in(@0). If
| ; holds, thenxy, = 0.

Proof. Suppose that we have identified a collection of zero grougsieBioving these groups, the
original problem([(b) can then be reduced to:

in —||x(f) —u()|?+ A
i O S
wherel; is the reduced index set, i.dy, = {1,2,...,p} — sz _oGi,yandG, = {i: x5, # 0}
is the index set of the remaining non-zero groups. Note\tha G1,G; — S; € I. By applymg

Lemmd2 again, we show that|jfic, s, || < Aow; holds, therxy, ¢ = 0 Thusxg, = 0.

Lemmal3 naturally leads to an iterative procedure for idgint the zero groups: For each group
G, if [Jug, || < Xaw;, then we seti;, = 0; we cycle through all groups repeatedly untitioes not
change. Lep’ = [{u; : u; # 0}| be the number of nonzero elementaiyy’ = |{ug, : ug, # 0}|

be the number of the nonzero groups, atfddenote the minimizer of,(-). It follows from
LemmaB and Lemm@d 1 that, if; = 0, thenz = 0. Therefore, by applying the above iterative
procedure, we can find the minimizer Bf (5) by solving a redus®blem that hag’ < p variables
andg’ < g groups. With some abuse of notation, we still Use (5) to detim resulting reduced
problem. In addition, from Lemnid 1, we only focus an> 0 in the following discussion, and the
analysis can be easily generalized to the general

4



3.2 Reformulation as an Equivalent Smooth Convex Optimizabn Problem
It follows from the first two properties of Lemnia 1 that, we cawrite [3) as:
wgg (u) = arg min Ay, (x), (112)
d?ﬂgu

where= denotes the element-wise inequality, and

1 g9
haa () = 5 lx = ul + de - willxe,
i=1

)

and the minimizer oh,, () is constrained to be non-negative duaito- 0 (refer to the discussion
at the end of Sectidn 3.1).

Making use of the dual norm of the Euclidean ndftm|, we can rewritér,, (x) as:

1 2 ! 7
i, (%) = max o [lx —uf* + 3 (Y7, 12)

=1
wheref) is defined as follows:
Q={Y eR”Y: YL =0,[[Y']| < hows,i = 1,2,...,9},

G, is the complementary set 6;, Y is a sparse matrix satisfying,; = 0 if the i-th feature does
not belong to the-th group, i.e.; ¢ G;, andY* denotes the-th column ofY". As a result, we can
reformulate[(Il) as the following min-max problem:

x€R?  YeQ
0<x=<u

min  max {w(x, Y)= %Hx —u? + (x, Ye}} , (13)

wheree € RY is a vector of ones. It is easy to verify thatx, V') is convex inx and concave ifY’,
and the constraint sets are closed convex for bo#imdY . Thus, [IB) has a saddle point, and the
min-max can be exchanged.

It is easy to verify that for a givelr, the optimalx minimizing ¥ (x,Y") in (I3) is given by
x = max(u — Ye,O0). (14)
Plugging [3#) into[(1B), we obtain the following minimizai problem with regard t&":

verR {w(Y) Y(max(u—Ye, 0),Y)}. (15)
Our methodology for minimizing,, () defined in[(b) is to first solvé(15), and then construct the
solution toh,, () via (I4). Using standard optimization techniques, we canvsthat the function
w(+) is continuously differentiable with Lipschitz continuogiadient. We include the detailed proof
in the supplemental material for completeness. Therefeee;onvert the non-smooth probleinj(11)
to the smooth probleni_(15), making the smooth convex optititn tools applicable. In this paper,
we employ the accelerated gradient descent to sbie (18)iadits fast convergence property. Note
that, the Euclidean projection onto the $etan be computed in closed form. We would like to
emphasize here that, the probldml(15) may have a much sreikethan[{}).

3.2.1 Computing the Duality Gap

We show how to estimate the duality gap of the min-max prodE®), which can be used to check
the quality of the solution and determine the convergendbeélgorithm.

For any given approximate solutidn € Q for w(Y), we can construct the approximate solution
x = max(u — Ye, 0) for hy,(x). The duality gap for the min-max problef{13) at the p¢#ty")
can be computed as:

gapY) = maxy(x,Y) — 0’212]%: ¥(x,Y). (16)

The main result of this subsection is summarized in theatig theorem:



Theorem 2. Letgap(Y') be the duality gap defined {@8). Then, the following holds:

g

gap(Y) = A2 ) _(willke, || - (%a.,, Y4,)- 17
i=1
In addition, we have ~ ~
w(Y) —w(Y") < gap(Y), (18)
h(%) = h(x") < gap(Y). (19)

Proof. Denote(x*, Y*) as the optimal solution to the problem113). Fréml (12} (¥ have

—w(V) = $(xY) = min (xY) < oY), (20)
0=<x=u
V(" Y) < maxgp(x,Y) = g(x", V) = —w(Y), (21)
has () = (V) = min $(x V) < V(% V), (22)
0<x=<u
YY) S maxy(x,Y) = hy, (%). (23)
Incorporating[(Th) [(20)E(23), we provie (17)-[19). O

In our experiments, we terminate the algorithm when thereggd duality gap is less than—1°.

3.3 Proximal Splitting Methods

Recently, a family of proximal splitting methods [8] havesheproposed for converting a challenging
optimization problem into a series of sub-problems with@setl form solution. We consider two
reformulations of the proximal operatdd (4), based on thé&dbw-like Proximal Splitting Method
and the alternating direction method of multipliers (ADMNhe efficiency of these two methods
for overlapping Group Lasso will be demonstrated in the sextion.

In [5], Boyd et al. suggested that the original overlapping group lasso prolfl can be reformu-
lated and solved by ADMM directly. We include the implemdiata of ADMM for our comparative
study. We provide the details of all three reformulationthia supplemental materials.

4 Experiments

In this section, extensive experiments are performed tootstnate the efficiency of our proposed
methods. We use both synthetic data sets and a real worldsdatnd the evaluation is done in
various problem size and precision settings. The propokgatitams are mainly implemented in
Matlab, with the proximal operator implemented in stand@rébr improved efficiency. Several
state-of-the-art methods are also included for companEmpose, including SLasso algorithm de-
veloped by Jenattoat al. [13], the ADMM reformulation&E], the Prox-Grad method byhéhet
al. [6] and the Picard-Nesterov algorithm by Argyrietial. [1].

4.1 Synthetic Data

In the first set of simulation we consider only the key comprad our algorithm, the proximal
operator. The group indices are predefined suchdhat {1,2,...,10}, Gy = {6,7,...,20},...,

with each group overlapping half of the previous group. IX¥neples are generated for each set of
fixed problem size and group siz@, and the results are summarized in Figdre 1. As we can observe
from the figure, the dual formulation yields the best perfance, followed closely by ADMM and
then the Dykstra method. We can also observe that our metfadelssvery well to high dimensional
problems, since even with = 10°, the proximal operator can be computed in a few seconds. It
is also not surprising that Dykstra method is much more segagb the number of groups, which
equals to the number of projections in one Dykstra step.

To illustrate the effectiveness of our pre-processingrigpie, we repeat the previous experiment by
removing the pre-processing step. The results are shovire inght plot of Figur&ll. As we can ob-
serve from the figure, the proposed pre-processing tecar@tfactively reduces the computational
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Figure 1: Time comparison for computing the proximal operst The group number is fixed in the
left figure and the problem size is fixed in the middle figurethia right figure, the effectiveness of
the pre-processing technique is illustrated.

time. As is evident from Figuld 1, the dual formulation prepd in Sectioh 3]2 consistently outper-
forms other proximal splitting methods. In the followingoeximents, only the dual method will be
used for computing the proximal operator, and our methottkén be called as “FoGLasso”.

4.2 Gene Expression Data

We have also conducted experiments to evaluate the effic@ftbe proposed algorithm using the
breast cancer gene expression datalsét [26], which comdi§d41 genes in 295 breast cancer
tumors (78 metastatic and 217 non-metastatic). For the shk@alyzing microarrays in terms
of biologically meaningful gene sets, different approachave been used to organize the genes
into (overlapping) gene sets. In our experiments, we foll@@j and employ the following two
approaches for generating the overlapping gene sets (groppthways/[24] and edgées [7]. For
pathways, the canonical pathways from the Molecular SigeatDatabase (MSigDE) [24] are used.
It contains 639 groups of genes, of which 637 groups invdieggenes in our study. The statistics of
the 637 gene groups are summarized as follows: the averageanwf genes in each group is 23.7,
the largest gene group has 213 genes, and 3,510 genes apfiezsea 637 groups with an average
appearance frequency of about 4. For edges, the netwothrbjii] will be used, and we follow [12]
to extract 42,594 edges from the network, leading to 42,58tlapping gene sets of size 2. All
8,141 genes appear in the 42,594 groups with an averagerappedrequency of about 10. The
experimental settings are as follows: we solde (1) with &t squares logéx) = 3[|Ax — b|?,

and we setw; = +/|G;|, andA; = Ay = v x AT"®*, where|G;| denotes the size of thieth group
G, NP = || ATb||, (the zero point is a solution tE1(1) ¥; > A#%), and+ is chosen from the
set{s x1071,2x 1071, 1 x1071,5x 1072,2 x 1072,1 x 1072,5 x 1073,2 x 1073, 1 x 1073}.

Comparison with SLasso, Prox-Grad and ADMM We first compare our proposed FoGLasso
with the SLasso algorithm [1.3], ADMM [5] and Prox-Grad [6].h& comparisons are based on
the computational time, since all these methods have effiditatlab implementations with key
components written in C. For a given we first run SLasso till a certain precision level is reached
and then run the others until they achieve an objective fanatalue smaller than or equal to that
of SLasso. Different precision levels of the solutions ar@ated such that a fair comparison can
be made. We vary the number of genes involved, and reporbthecomputational time (seconds)
including all nine regularization parameters in Figure 2e ®én observe that: 1) for all precision
levels, our proposed FoGLasso is much more efficient thars&1,sADMM and Prox-Grad; 2) the
advantage of FoGLasso over other three methods in efficigmys with the increasing number of
genes (variables). For example, with the grouping by pagswaoGLasso is about 25 and 70 times
faster than SLasso for 1000 and 2000 genes, respectively3)ahe efficiency on edges is inferior
to that on pathways, due to the larger number of overlappiogms. Additional scalability study of
our proposed method using larger problem size can be fouthetisupplemental materials.

Comparison with Picard-Nesterov Since the code acquired for Picard-Nesterov is implemented
purely in Matlab, a computational time comparison might letfair. Therefore, only the number
of iterations required for convergence is reported, as bwdthods adopt the first order method.
We use edges to generate the groups, and vary the problerfri@izel00 to 400, using the same
set of regularization parameters. For each problem, weddnath the number of outer iterations
(the gradient steps) and the total number of inner iteratidime steps required for computing the



Edges with Precision 1e-02 Edges with Precision 1e-04 Edges with Precision 1e-06

10 10 10
<+ FoGLasso -+ FoGLasso -+ FoGLasso y
5 [|—B~ADMM 1] 5 [| “B~ADMM - E 5 || —B~ADMM - 4
10" | =A~sSLasso i 10" {| =&~ SLasso 10" {| =&~ SLasso
-9-Prox-Grad - -9 -Prox-Grad -9-Prox-Grad
2 10 g 10° g 10’
I I =
2 1ot hOR 0 ] 2.1 g
510 510 510 -
- -
10° g: o 10°F - 10 o
10" 107" 0™
100 200 300 400 500 1000 1500 2000 100 200 300 400 500 1000 1500 2000 100 200 300 400 500 1000 1500 2000
Number of involved genes Number of involved genes Number of involved genes
5 Pathways with Precision 1e-02 . Pathways with Precision 1e-04 4 Pathways with Precision 1e-06
10 10 10
-+ FoGLasso f <+ FoGLasso -0+ FoGLasso
-8 ADMM b , || -=~ADMM -8~ ADMM
102 || #A-SLasso ~-4 10" { -A-sLasso ; 10° —A-SlLasso _ 3
-€-Prox-Grad 24 =€ -Prox-Grad| s -€-Prox-Grad _ ’
o7 5 ze s,
r il 10 e g

CPU Time
CPU Time
CPU Time

r

10 10

100 200 300 400 500 1000 1500 2000 0 100 200 300 400 500 1000 1500 2000 100 200 300 400 500 1000 1500 2000
Number of involved genes Number of involved genes Number of involved genes

Figure 2: Comparison of SLassio [13], ADMMI [5], Prox-Gradl Ejd our proposed FoGLasso
algorithm in terms of computational time (in seconds anchilbgarithmic scale) when different
numbers of genes (variables) are involved. Different [sienilevels are used for comparison.

Table 1: Comparison of FoGLasso and Picard-Nesterov usffeyeht numbers)f) of genes and
various precision levels. For each particular method, tiserfdbw denotes the number of outer itera-
tions required for convergence, while the second row remtsshe total number of inner iterations.
Precision Level 1072 1072 10°°
D 100 200 400| 100 200 400| 100 200 400
81 189 353 | 192 371 1299| 334 507 1796
288 401 921 | 404 590 1912| 547 727 2387
. 78 176 325| 181 304 1028| 318 504 1431
Picard-NesteroV g>71  5ge4 2.2¢52.6e4 1.0e5 7.8¢55.le4 1.3e5 1.1e6

FoGLasso

proximal operators). The average number of iterations @nadirthe regularization parameters are
summarized in Tablgl 1. As we can observe from the table, th&igard-Nesterov method often

takes less outer iterations to converge, it takes a lot moreriiterations to compute the proximal

operator. It is straight forward to verify that the innerégons in Picard-Nesterov method and our
proposed method have the same complexit® g ).

5 Conclusion

In this paper, we consider the efficient optimization of thertapping group Lasso penalized prob-
lem based on the accelerated gradient descent method. \&al sewveral key properties of the
proximal operator associated with the overlapping grougsbaand compute the proximal operator
via solving the smooth and convex dual problem. Numericakeerents on both synthetic and
the breast cancer data set demonstrate the efficiency ofdpeged algorithm. Although with an
inexact proximal operator, the optimal convergence ratéhefaccelerated gradient descent might
not be guaranteed [23,]11], the algorithm performs quité @mapirically. A theoretical analysis on
the convergence property will be an interesting futuredfiom. In the future, we also plan to apply
the proposed algorithm to other real-world application®iving overlapping groups.

Acknowledgments

This work was supported by NSF 11S-0812551, 11S-0953662 BVItD26710, CCF-1025177, NGA
HM1582-08-1-0016, and NSFC 60905035, 61035003.



References
[1] A. Argyriou, C.A. Micchelli, M. Pontil, L. Shen, and Y. Xu. Efficierfirst order methods for linear
composite regularizerg\rxiv preprint arXiv:1104.14362011.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholditggpathm for linear inverse problems.
SIAM Journal on Imaging Scienge1):183-202, 2009.

[3] H. D. Bondell and B. J. Reich. Simultaneous regression shrinkaag@ble selection and clustering of
predictors with oscaBiometrics 64:115-123, 2008.

[4] J. F. Bonnans and A. Shapiro. Optimization problems with perturbsttidrguided tour.SIAM Review
40(2):228-264, 1998.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distribopinization and statistical learning
via the alternating direction method of multipliers. 2010.

[6] X.Chen, Q. Lin, S.Kim, J.G. Carbonell, and E.P. Xing. An effitiproximal gradient method for general
structured sparse learningrxiv preprint arXiv:1005.47172010.

[7]1 H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee, and T. Ideker. Netwdr&sed classification of breast cancer
metastasisMolecular Systems Biolog$(140), 2007.

[8] P.L. Combettes and J.C. Pesquet. Proximal splitting methods in sggnaéssing. Arxiv preprint
arXiv:0912.35222009.

[9] J. M. Danskin. The theory of max-min and its applications to weapons allocation problé&psinger-
Verlag, New York, 1967.

[10] J. Friedman, T. Hastie, H.dling, and R. Tibshirani. Pathwise coordinate optimizatidnnals of Applied
Statistics 1(2):302—-332, 2007.

[11] B. He and X. Yuan. An accelerated inexact proximal point algoritor convex minimization. 2010.
[12] L. Jacob, G. Obozinski, and J. Vert. Group lasso with overlapgaagh lasso. IMCML, 2009.

[13] R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variadkcten with sparsity-inducing norms.
Technical report, arXiv:0904.3523, 2009.

[14] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal nustlior sparse hierarchical dictionary
learning. INICML, 2010.

[15] S. Kim and E. P. Xing. Tree-guided group lasso for multi-taskesgjion with structured sparsity. In
ICML, 2010.

[16] H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate despemtedures for the multi-task lasso,
with applications to neural semantic basis discoveryCKIL, 2009.

[17] J.Liu, S. Ji, and J. Ye. Multi-task feature learning via efficiént-norm minimization. InUAI, 2009.

[18] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flowrtlgms for structured sparsity. In
NIPS 2010.

[19] L. Meier, S. Geer, and P.iBImann. The group lasso for logistic regressiaiournal of the Royal
Statistical Society: Series B0:53—-71, 2008.

[20] J.-J. Moreau. Proximétet dualie dans un espace hilbertidBull. Soc. Math. Franced3:273-299, 1965.
[21] A. Nemirovski. Efficient methods in convex programmingecture Notes, 1994.

[22] Y. Nesterov.Introductory Lectures on Convex Optimization: A Basic Coukdeawer Academic Publish-
ers, 2004.

[23] R.T. Rockafellar. Monotone operators and the proximal pointritlym. SIAM Journal on Control and
Optimization 14:877, 1976.

[24] A. Subramanian and et al. Gene set enrichment analysis: Alkdge-based approach for interpreting
genome-wide expression profile®roceedings of the National Academy of Sciend@®(43):15545—
15550, 2005.

[25] R. Tibshirani. Regression shrinkage and selection via the laksonal of the Royal Statistical Society
Series B58(1):267-288, 1996.

[26] M. J. Van de Vijver and et al. A gene-expression signature asdigior of survival in breast cancerhe
New England Journal of Medicin847(25):1999-2009, 2002.

[27] Y. Ying, C. Campbell, and M. Girolami. Analysis of svm with indefiniteakels. InNIPS 2009.

[28] M. Yuan and Y. Lin. Model selection and estimation in regression wittuged variablesJournal Of
The Royal Statistical Society SeriesdB(1):49-67, 2006.

[29] P. Zhao, G. Rocha, and B. Yu. The composite absolute penaltigyfeor grouped and hierarchical
variable selectionAnnals of Statistics37(6A):3468-3497, 2009.



