Implicit encoding of prior probabilities
in optimal neural populations

Deep Ganguli and Eero P. Simoncelli

Howard Hughes Medical Institute, and
Center for Neural Science
New York University
New York, NY 10003

{dgangul i , eero}@ns. nyu. edu

Optimal coding provides a guiding principle for understagdhe representation
of sensory variables in neural populations. Here we congfaeinfluence of a
prior probability distribution over sensory variables & toptimal allocation of
neurons and spikes in a population. We model the spikes of egltas samples
from an independent Poisson process with rate governed bgsotiated tuning
curve. For this response model, we approximate the Fisfi@miation in terms
of the density and amplitude of the tuning curves, under #seimption that tun-
ing width varies inversely with cell density. We consideraanfly of objective
functions based on the expected value, over the sensony pfia functional of
the Fisher information. This family includes lower boundsmutual information
and perceptual discriminability as special cases. In alksawe find a closed
form expression for the optimum, in which the density anchgsithe cells in
the population are power law functions of the stimulus pridhis also implies
a power law relationship between the prior and perceptisridgninability. We
show preliminary evidence that the theory successfullylipts the relationship
between empirically measured stimulus priors, physiaally measured neural
response properties (cell density, tuning widths, anddirates), and psychophys-
ically measured discrimination thresholds.

1 Introduction

Many bottom up theories of neural encoding posit that sgnsgstems are optimized to repre-
sent sensory information, subject to limitations of noigse aesources (e.g., number of neurons,
metabolic cost, wiring length). It is difficult to test thismcept because optimization of any formu-
lation that attempts to correctly incorporate all of theevaint ingredients is generally intractable. A
substantial literature has considered population modelghich each neuron’s mean response to a
scalar variable is characterized by a tuning curve [e.¢5].1For these simplified models, several
papers have examined the optimization of Fisher informatés a bound on mean squared error
[7-10]. In these results, the distribution of sensory \@da is assumed to be uniform and the pop-
ulations are assumed to be homogeneous with regard to tanimg shape, spacing, and amplitude.

The distribution of sensory variables encountered in thir@nment is often non-uniform, and it is
thus of interest to understand how variations in probahélffect the design of optimal populations.
It would seem natural that a neural system should devote mepeirces to regions of sensory space
that occur with higher probability, analogous to resultsading theory [11]. At the single neuron
level, several publications describe solutions in whiclnotonic neural response functions allocate
greater dynamic range to higher probability stimuli [12}-14t the population level, non-uniform
allocations of neurons with identical tuning curves haverbghown to be optimal for non-uniform
stimulus distributions [16,17].



Here, we examine the influence of a sensory prior on the optitexation of neurons and spikes
in a population, and the implications of this optimal allboa for subsequent perception. Given
a prior distribution over a scalar stimulus parameter, anglsaurce budget oV neurons with an
average ofR spikes/sec for the entire population, we seek the optimapes, positions, and am-
plitudes of tuning curves. We assume a population with iedepnt Poisson spiking, and consider
a family of objective functions based on Fisher informatidie then approximate the Fisher in-
formation in terms of two continuous resource variables,dansity and gain of the tuning curves.
This approximation allows us to obtain a closed form sotufior the optimal population. For all
objective functions, we find that the optimal tuning curveperties (cell density, tuning width, and
gain) are power-law functions of the stimulus prior, witlperents dependent on the specific choice
of objective function. Through the Fisher information, weoaderive a bound on perceptual dis-
criminability, again in the form a power-law of the stimulpsgor. Thus, our framework provides
direct and experimentally testable links between senswoysy properties of the neural representa-
tion, and perceptual discriminability. We provide prelivaiy evidence that these relationships are
supported by experimental data.

2 Encoding model

We assume a conventional model for a populatiovafieurons responding to a single scalar vari-
able, s [1-6]. The number of spikes emitted (per unit time) by tith neuron is a sample from
an independent Poisson process, with mean rate determjnéd tuning function,h,,(s). The
probability density of the population response can be amits

N

p(ls) = [

n=1

hn(s)'rn e_hn(s)

!

We also assume the total expected spike rai@&f the population is fixed, which places a constraint
on the tuning curves:

/p(s) Z hn(s) ds =R, (1)

wherep(s) is the probability distribution of stimuli in the environmie We refer to this as a sensory
prior, in anticipation of its future use in Bayesian decapdaf the population response.

3 Objectivefunction

We now ask: what is the best way to represent values drawn geingiven the limited resources
of NV neurons andr total spikes? To formulate a family of objective functionkigh depend on
bothp(s), and the tuning curves, we first rely on Fisher informatibiis), which can be written as
a function of the tuning curves [1, 18]:
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The Fisher information can be used to express lower bounasutnal information [16], the vari-
ance of an unbiased estimator [18], and perceptual distaibility [19]. Specifically, the mutual
information, (7 s), is bounded by:

2me

I6s) 2 H(s) ~ 5 [ blo) log (If (s)) s, @)

whereH (s) is the entropy, or amount of information inherenifs), which is independent of the
neural population. The Cramer-Rao inequality allows us<ress the minimum expected squared
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stimulus discriminability achievable by any decoder

52 > AQ/p(—S)ds. ©)
Iy (s)
The constanf\ determines the performance level at threshold in a disnation task.

We formulate a generalized objective function that inckittee Fisher bounds on information and
discriminability as special cases:

N op2(s N
argmax/p(S) f ( Z:((s))> ds, s.t. /p(s) Zhn(s) ds = R, (4)

hn(s)

where f(-) is either the natural logarithm, or a power function. Whgn) = log(x), optimizing
Eq. (4) is equivalent to maximizing the lower bound on mutinérmation given in Eq. (2). We
refer to this as thenfomax objective function. Otherwise, we assurfie:) = =, for some exponent
«. Optimizing Eg. (4) witha. = —1 is equivalent to minimizing the squared discriminabilityund
expressed in Eq. (3). We refer to this as tihgrimax objective function.

4 How to optimize?

The objective function expressed in Eq. (4) is difficult tdtiopze because it is non-convex. To
make the problem tractable, we first introduce a paraméwizaf the population in terms of cell

density and gain. The cell density controls both the spaamnagvidth of the tuning curves, and the
gain controls their maximum average firing rates. Secondsheev that Fisher information can be
closely approximated as a continuous function of densitygain. Finally, re-writing the objective

function and constraints in these terms allows us to obtaised-form solutions for the optimal

tuning curves.

4.1 Density and gain for a homogeneous population
If p(s) is uniform, then by symmetry, the Fisher information for @timal neural population should

also be uniform. We assume a convolutional population ahtyaurves, evenly spaced on the unit
lattice, such that they approximately “tile” the space:

N
Z h(s—n) ~ 1.
n=1

We also assume that this population has an approximatebtaanFisher information:

o h?%(s —n)
If(s) = _—
£(s) nz::l h(s )
N
:Zgb(s—n)%[conv. )

I
-

n

That is, we assume that the Fisher information curves foiirttliwidual neuronsg(s — n), also
tile the stimulus space. The value of the constdgn},., is dependent on the details of the tuning
curve shapeh(s), which we leave unspecified. As an example, Fig. 1(a-b) shbaisthe Fisher
information for a convolutional population of Gaussianitgncurves, with appropriate width, is
approximately constant.

Now we introduce two scalar values, a gai),(and a densityd), that affect the convolutional
population as follows:

n

han(s) = g b (d(s = ). (6)
The conventional Cramer-Rao bound expresses the minimum mearedaarror of any estimator, and in

general requires a correction for the estimator bias [18]. Here, @é ts bound the squarediscriminability

of the estimator, as expressed in the stimulus space, which is indepefté [19].
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Fig. 1. Construction of a heterogeneous population of neurdas.Homogeneous population with
Gaussian tuning curves on the unit lattice. The tuning width ef 0.55 is chosen so that the curves
approximately tile the stimulus spacéb) The Fisher information of the convolutional population
(green) is approximately constanfc) Inset showsi(s), the tuning curve density. The cumulative
integral of this densityD(s), alters the positions and widths of the tuning curves in the convolutional
population.(d) The warped population, with tuning curve peaks (aligned with tick markecations

sn = D7!(n)), is scaled by the gain functiom,(s) (blue). A single tuning curve is highlighted
(red) to illustrate the effect of the warping and scaling operatigesThe Fisher information of the
inhomogeneous population is approximately proportionafia)g(s).

The gain modulates the maximum average firing rate of eactonén the population. The density
controls both the spacing and width of the tuning curveshaglensity increases, the tuning curves
become narrower, and are spaced closer together so as tamdieir tiling of stimulus space. The
effect of these two parameters on Fisher information is:

N(d)
If(s) =d’g Y ¢(ds — n)
n=1

~ d29 Leony-

The second line follows from the assumption of Eq. (5), thatEisher information of the convolu-
tional population is approximately constant with respect t

The total resourcesy and R, naturally constrai andg, respectively. If the original (unit-spacing)
convolutional population is supported on the interial@) of the stimulus space, then the number
of neurons in the modulated population must¥é&l) = Qd to cover the same interval. Under
the assumption that the tuning curves tile the stimulusepgg. (1) implies thai? = ¢ for the
modulated population.

4.2 Density and gain for a heterogeneous population

Intuitively, if p(s) is non-uniform, the optimal Fisher information should atgonon-uniform. This
can be achieved through inhomogeneities in either the guriimve density or gain. We thus gener-
alize density and gain to be continuous functions of theutisid(s) andg(s), that warp and scale
the convolutional population:

hn(s) = g(sn) W(D(s) —n). ()



I nfomax Discrimax General
Optimized function:| f(z) =logz | f(z)=—a7' | f(z) = —2% a <3
Density (Tuning width)=!  d(s) | Np(s) Npz(s) Npsa=1 (s)
Gain g(s) | R Rp=i(s) | Rp75a(s)
Fisher information I¢(s) | o< RN?*p*(s) | o RNQp%(s) x RNZpﬁ(s)
Discriminability bound  §,i,(s) | o< p~1(s) x pi(s) x p3aT(s)

Table 1. Optimal heterogeneous population properties, for objective functipefeed by Eq. (9).

Here,D(s) = ffoo d(t)dt, the cumulative integral af(s), warps the shape of the prototype tuning

curve. The value,, = D~!(n) represents the preferred stimulus value of the (warpéufuning
curve (Fig. 1(b-d)). Note that the warped population retaime tiling properties of the original
convolutional population. As in the uniform case, the dgnsbntrols both the spacing and width
of the tuning curves. This can be seen by rewriting Eq. (7)fastorder Taylor expansion dp(s)
arounds,,

hn(s) = g(sn) h(d(sn)(s — sn)),
which is a generalization of Eq. (6).
We can now write the Fisher information of the heterogengmyailation of neurons in Eq. (7) as

N
It(s) =Y d*(s) g(sn) (D(s) —n)
n=1

~ d?(s) g(s) Teony- (8)

In addition to assuming that the Fisher information is agpnately constant (Eq. (5)), we have
also assumed that(s) is smooth relative to the width af(D(s) — n) for all n, so that we can
approximatey(s,) asg(s) and remove it from the sum. The end result is an approximaifon
Fisher information in terms of the continuous parametéiorneof cell density and gain. As earlier,
the constani.,,,, is determined by the precise shape of the tuning curves.

As in the homogeneous case, the global resource valuasd R will place constraints om/(s)
andg(s), respectively. In particular, we require tha{-) map the entire input space onto the range
[1, N], and thusD(c0) = N, or equivalently,[ d(s) ds = N. To attain the proper rate, we use the
fact that the warped tuning curves sum to unity (before mlidttion by the gain function) and use
Eq. (1) to obtain the constrairftp(s)g(s) ds = R.

4.3 Objective function and solution for a heterogeneous population

Approximating Fisher information as proportional to seeadensity and gain allows us to re-write
the objective function and resource constraints of Eq.$4) a

arg max /p(s) f(d?(s) g(s)) ds, s.t. /d(s) ds =N, and /p(s)g(s) ds=R. (9)
d(s),g(s)

A closed-form optimum of this objective function is easilgtermined by taking the gradient of the

Lagrangian, setting to zero, and solving the resultingesysif equations. Solutions are provided in

Table 1 for the infomax, discrimax, and general power cases.

In all cases, the solution specifies a power-law relatignbleitween the prior, and the density and
gain of the tuning curves. In general, all solutions allecatore neurons, with correspondingly
narrower tuning curves, to higher-probability stimuli. garticular, the infomax solution allocates
an approximately equal amount of probability mass to eaciname The shape of the optimal gain
function depends on the objective function: foer< 0, neurons with lower firing rates are used
to represent stimuli with higher probabilities, and ter> 0, neurons with higher firing rates are
used for stimuli with higher probabilities. Note also thhé tglobal resource value®y and R,
enter only as scale factors on the overall solution, allgwis to easily test the validity of the
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Fig. 2. (a) Distribution of orientations averaged across three natural image dagaf23-22]. (b)
Density, or total number of Macaque V1 cells tuned to each preferiedtation [23].(c) Orientation
discrimination thresholds averaged across four human subjects(f24].€) Infomax and discrimax
predictions of orientation distribution. Blue: prediction from cell densitydRgrediction from dis-
crimination thresholds. Predictions were made by exponentiating the rawndth the appropriate
exponent from Table 1, then normalizing to integrate to one.

predicted relationships on experimental data. In addiiiquower-law relationships between tuning
properties and sensory priors, our formulation offers adlirelationship between the sensory prior
and perceptual discriminability. This can be obtained Hyssituting the optimal solutions fai{(s)
and g(s) into Eq. (8), and using the resulting Fisher information tuibd the discriminability,

d(s) > omin(s) = A/y/I(s) [19]. The resulting expressions are provided in Table 1.

5 Experimental evidence

Our framework predicts a quantitative link between the sgnprior, physiological parameters (the
density, tuning widths, and gain of cells), and psychoptalsi measured discrimination thresholds.
We obtained subsets of these quantities for two visual $tismariables, orientation and spatial
frequency, both of believed to be encoded by cells in primésyal cortex (area V1). For each
variable, we use the infomax and discrimax solutions to ednthe physiological and perceptual
measurements, using the appropriate exponents from TaliitoJpredictions of the stimulus prior

p(s). We then compare these predictions to the empirically nredspriorp(s).

5.1 Orientation

We estimated the prior distribution of orientations in theieonment by averaging orientation statis-
tics across three natural image databases. Two databassast@ntirely of natural scenes [20, 21],
and the third contains natural and manmade scenes [22]nt@tiien statistics depend on scale, so
we measured statistics at a scale matching the psychophgsiseriment from which we obtained
perceptual data. The average distribution of orientatexsbits higher probability at the cardinal
orientations (vertical and horizontal) than at the obliguentations (Fig. 2(a)). Measurements of
cell density for a population &t orientation-tuned V1 cells in Macaque [23] show more celised

to the cardinal orientations than the oblique orientati@tig. 2(b)). Finally, perceptual discrimi-
nation thresholds, averaged across four human subjedtsHipdv a similar bias (Fig. 2(c)), with
humans better able to discriminate orientations near trdire directions.

All of the orientation data exhibit similar biases, but oledry makes precise and testable predic-
tions about these relationships. If a neural populatiorefghed to maximize information, then the
cell density and inverse discrimination thresholds shaoédch the stimulus prior, as expressed in
infomax column of Table 1. We normalize these predictionstegrate to one (since the theory
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Fig. 3. (a) Distribution of spatial frequencies computed across two natural imagéates [20, 21].
(b) Cell density as a function of preferred spatial frequency for a psipulaf 317 V1 cells [25,
28] Dark blue: average number of cells tuned to each spatial fregudight blue: average tuning
width. (c) Average spatial frequency discrimination thresholds. Dark red: libtds obtained at
10% contrast averaged across 3 human subjects [26]. Light redhtiidssobtained a25% contrast
averaged across 7-13 human subjects [2(.& €) Infomax and discrimax predictions of spatial
frequency distribution. Blues: predictions from cell density and tuninghsidReds: predictions from
discrimination thresholds.

provides only the shapes of the functions, up to unknownegbf the resource variabléé and
R), and plot them against the measured prior (Fig. 2(d)). Veetlsat the predictions arising from
cell density and discrimination thresholds are consisiétit one another, and both are consistent
with the stimulus prior. This is especially remarkable gitbat the measurements come from very
different domains (in the case of the perceptual and phygical data, different species). For the
discrimax objective function, the exponents in the povesv-telationships (expressed in Table 1)
are too small, resulting in poor qualitative agreement betwthe stimulus prior and predictions
from the physiology and perception (Fig. 2(e)). For examptedicting the prior from perceptual
data, under the discrimax objective function, requiresoegntiating discrimination thresholds to
the fourth power, resulting in an over exaggeration of threical bias.

5.2 Spatial frequency

We obtained a prior distribution over spatial frequencigsraged across two natural image
databases [20, 21]. For each image, we computed the magrspattrum, and averaged over ori-
entation. We averaged these across images, and fit the vagulh power law of exponent1.3
(Fig. 3(a)). We also obtained spatial frequency tuning proes for a population a$17 V1 cells
[25]. On average, we see there are more cells, with correspgly narrower tuning widths, tuned
to low spatial frequencies (Fig. 3(b)). These data supperhtodel assumption that tuning width
is inversely proportional to cell density. We also obtaiaedrage discrimination thresholds for si-
nusoidal gratings of different spatial frequencies frono studies (Fig. 3(c)). The gratings were
shown atl0% contrast td3 human subjects for one study [26], a2&ls contrast for7 — 13 human
subjects for the other [27]. The thresholds show that, oresye humans are better at discriminating
low spatial frequencies.

We again test the infomax and discrimax solutions by compgapredicted distributions obtained
from the physiological and perceptual data, to the measpried We normalize each prediction
to integrate to the corresponding area under the prior. fifeeniax case shows striking agreement
between the measured stimulus prior, and predictions basdte physiological and perceptual
measurements (Fig. 3(d)). However, as in the orientatige,adiscrimax predictions are poor (Fig.
3(e)), suggesting that information maximization providdxetter optimality principle for explaining
the neural and perceptual encoding of spatial frequencydiscrimination maximization.



6 Discussion

We have examined the influence sensory priors on the optiimaiation of neural resources, as
well as the influence of these optimized resources on subségerception. For a family of ob-

jective functions, we obtain closed-form solutions spgnif power law relationships between the
probability distribution of a sensory variable encounteirethe environment, the tuning properties
of a population that encodes that variable, and the minimamgptual discrimination thresholds
achievable for that variable. We've shown preliminary sutige evidence for these relationships
for two different perceptual attributes.

Our analysis requires several approximations and assangpin order to arrive at an analytical
solution. We first rely on lower bounds on mutual informatéord discriminability based on Fisher
information. Fisher information is known to provide a poaubnd on mutual information when
there are a small number of neurons, a short decoding timereismooth tuning curves [16, 29].
It also provides a poor bound on supra-threshold discribilitya [30, 31]. But note that we do not
require the bounds on either information or discrimin&pilo be tight, but rather that their optima
be close to that of their corresponding true objective fiomst We also made several assumptions in
deriving our results: (1) the tuning curvég,D(s) —n), evenly tile the stimulus space; (2) the single
neuron Fisher informationg,(D(s) — n), evenly tile the stimulus space; and (3) the gain function,
g(s), varies slowly and smoothly over the width ¢fD(s) — n). These assumptions allow us to
approximate Fisher information in terms of cell density gadh (Fig. 1(e)), to express the resource
constraints in simple form, and to obtain a closed-formtsmfuto the optimization problem.

Our framework offers an important generalization of theydapon coding literature, allowing for
non-uniformity of sensory priors, and corresponding fegeneity in tuning and gain properties.
Nevertheless, it suffers from many of the same simplificetifiound in previous literature. First,
neural spike trains are not Poisson, and they are (at leastnte cases) correlated [32]. Second,
tuning curve encoding models only specify neural respotssigle stimulus values. The model
should be generalized to handle arbitrary combinationgiofusi. And third, the response model
should be generalized to handle multi-dimensional sensmuyts. Each of these limitations offers
an important opportunity for future work.

Finally, our encoding model has direct implications for Bsian decoding, a problem that has re-
ceived much attention in recent literature [e.g., 5, 6, 53-8 Bayesian decoder must have knowl-
edge of prior probabilities, but it is unclear how such knedge is obtained or represented in the
brain [34]. Previous studies assume that prior probadslitire either uniform [6], represented in
the spiking activity of a separate population of neurons ¢bJrepresented (in sample form) in the
spontaneous activity [35]. Our encoding formulation pded a mechanism whereby the prior is im-
plicitly encoded in the density and gains of tuning curvesicly presumably arise from the strength
of synaptic connections. We are currently exploring theimegments for a decoder that can correctly
utilize this form of embedded prior information to obtainy@aian estimates of stimulus variables.
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