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Abstract

This paper outlines a hierarchical Bayesian model for humancategory learning
that learns both the organization of objects into categories, and the context in
which this knowledge should be applied. The model is fit to multiple data sets,
and provides a parsimonious method for describing how humans learn context
specific conceptual representations.

1 Introduction

Human knowledge and expertise is often tied to particular contexts. The superior memory that chess
masters have for chessboard configurations is limited to plausible games, and does not generalize
to arbitrary groupings of pieces [1]. Expert firefighters make different predictions about the same
fire depending on whether it is described as a back-burn or a to-be-controlled fire [2]. In part,
this context specificity reflects the tendency for people to organize knowledge into independent
“bundles” which may contain contradictory information, and which may be deemed appropriate
to different contexts. This phenomenon is calledknowledge partitioning[2–6], and is observed
in artificial category learning experiments as well as real world situations. When people learn to
classify stimuli in an environment where there are systematic changes in the “context” in which
observations are made, they often construct category representations that are tightly linked to the
context, and only generalize their knowledge when the context is deemed appropriate [3, 4, 6].

Context induced knowledge partitioning poses a challenge to models of human learning. As noted in
[4] many models cannot accommodate the effect, or, as discussed later in this paper, are somewhat
unsatisfying in the manner that they do so. This paper explores the possibility that Bayesian models
of human category learning can provide the missing explanation. The structure of the paper is as
follows: first, a context-sensitive Bayesian category learning model is described. This model is
then shown to provide a parsimonious and psychologically appealing account of the knowledge
partitioning effect. Following this, a hierarchical extension is introduced to the model, which allows
it to acquire abstract knowledge about the context specificity of the categories, in a manner that is
consistent with the data on human learning.

2 Learning categories in context

This section outlines a Bayesian model that is sensitive to the learning context. It extends Anderson’s
[7] rational model of categorization (RMC) by allowing the model to track the context in which
observations are made, and draw inferences about the role that context plays.

2.1 The statistical model

The central assumption in the RMC is that the learner seeks toorganize his or her observations
into clusters. Ifzi denotes the cluster to which theith observation is assigned, then the joint prior
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distribution overzn = (z1, . . . , zn) can be specified via the Chinese restaurant process [8],

zn|α ∼ CRP(α). (1)

Each cluster of observations is mapped onto a distribution over features. Feature values are denoted
by the vectorxi = (xi1, . . . , xid), the values of theith observation for each of thed features. When
feature values vary continuously, the RMC associates thekth cluster with a multivariate Gaussian
that has mean vectorµk and covariance matrixΣk. Setting standard conjugate priors, we obtain

xi | µk,Σk, zi = k ∼ Normal(µk,Σk)
µk | Σk, κ0,µ0 ∼ Normal(µ0,Σk/κ0)
Σk | Λ0, ν0 ∼ Inv-Wishart(ν0,Λ0

−1)
(2)

This is a minor generalization of the original model, as it allows any covariance matrix (i.e., symmet-
ric positive definiteΣ) and does not require the restrictive assumption that the stimulus dimensions
are independent (which would forceΣ to be diagonal). While independence is reasonable when
stimulus dimensions are separable [9], knowledge partitioning can occur regardless of whether di-
mensions are separable or integral (see [6] for details), sothe more general formulation is useful.

In the RMC, labels are treated in the same way as discrete-valued features. Each cluster is associated
with a distribution over category labels. Ifℓi denotes the label given to theith observation, then

ℓi | zi = k, θk ∼ Bernoulli(θk)
θk | β ∼ Beta(β, β) (3)

Theβ parameter describes the extent to which items in the same cluster are allowed to have different
labels. If there are more than two labels, this generalizes to a Dirichlet-multinomial model.

Equations 1–3 define the standard RMC. The extension to handle context dependence is straight-
forward: contextual information is treated as an auxiliaryfeature, and so each cluster is linked to
a distribution over contexts. In the experiments considered later, each observation is assigned to
a context individually, which allows us to apply the exact same model for contextual features as
regular ones. Thus a very simple context model is sufficient:

ci | zi = k, φk ∼ Bernoulli(φk)
φk | γ ∼ Beta(γ, γ) (4)

The context specificity parameterγ is analogous toβ and controls the extent to which clusters can
include observations made in different contexts. In more general contexts, a richer model would be
required to capture the manner in which context can vary.

Applying the model requires values to be chosen forα, β, γ, µ, Λ0, ν0 andκ0, most of which can
be fixed in a sensible way. Firstly, since the categories do not overlap in the experiments discussed
here it makes sense to setβ = 0, which has the effect of forcing each cluster to be associated only
with one category. Secondly, human learners rarely have strong prior knowledge about the features
used in artificial category learning experiments, expressed by settingκ0 = 1 andν0 = 3 (ν0 is larger
to ensure that the priors over features always has a well defined covariance structure). Thirdly, to
approximate the fact that the experiments quickly reveal the full range of stimuli to participants,
it makes sense to setµ0 andΛ0 to the empirical mean and covariances across all training items.
Having made these choices, we may restrict our attention toα (the bias to introduce new clusters)
andγ (the bias to treat clusters as context general).

2.2 Inference in the model

Inference is performed via a collapsed Gibbs sampler, integrating outφ, θ, µ andΣ and defining a
sampler only over the cluster assignmentsz. To do so, note that

P (zi = k|x, ℓ, c, z−i) ∝ P (xi, ℓi, ci|x−i, ℓ−i, c−i, z−i, zi = k)P (zi = k|z−i) (5)

= P (xi|x−i, z−i, zi = k)P (ℓi|ℓ−i, z−i, zi = k)

P (ci|c−i, z−i, zi = k)P (zi = k|z−i) (6)

where the dependence on the parameters that describe the prior (i.e.,α, β, γ, Λ0, κ0, ν0, µ0) is sup-
pressed for the sake of readability. In this expressionz−i denotes the set of all cluster assignments
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except theith, and the normalizing term is calculated by summing Equation 6 over all possible clus-
ter assignmentsk, including the possibility that theith item is assigned to an entirely new cluster.

The conditional prior probabilityP (zi = k|z−i) is

P (zi = k|z−i) =

{ nk

n−1+α
if k is old

α
n−1+α

if k is new (7)

wherenk counts the number of items (not including theith) that have been assigned to thekth
cluster. Since the context is modelled using a beta-Bernoulli model:

P (ci|c−i, z−i, zi = k) =

∫ 1

0

P (ci|φk, zi = k)P (φk|c−i, z−i) dφk =
n
(ci)
k + γ

nk + 2γ
(8)

wheren(ci)
k counts the number of observations that have been assigned toclusterk and appeared in

the same context as theith item. A similar result applies to the labelling scheme:

P (ℓi|ℓ−i, z−i, zi = k) =

∫ 1

0

P (ℓi|θk, zi = k)P (θk|ℓ−i, z−i) dθk =
n
(ℓi)
k + β

nk + 2β
(9)

wheren(ℓi)
k counts the number of observations that have been assigned toclusterk and given the

same label as observationi. Finally, integrating out the mean vectorµk and covariance matrixΣk

for the feature values yields ad-dimensional multivariatet distribution (e.g., [10], ch. 3):

P (xi|x−i, z−i, zi = k) =

∫

P (xi|µk,Σk, zi = k)P (µk,Σk|x−i, z−i) d(µk,Σk) (10)

=
Γ(

ν′

k
+d

2 )

Γ(
ν′

k

2 )(πν′k)
d

2 |Λ′

k|
1
2

(

1 +
(xi − µ′

k)Λ
′

k

−1
(xi − µ′

k)
T

ν′k

)

−

ν
′

k
+d

2

(11)

In this expression the posterior degrees of freedom for cluster k is ν′k = ν0 + nk − d + 1 and the
posterior mean isµ′

k = (κ0µ0 + nkx̄k)/(κ0 + nk), wherex̄k denotes the empirical mean feature
values for items in the cluster. Finally, the posterior scale matrix is

Λ
′

k =

(

Λ0 + Sk +
κ0nk

κ0 + nk

(x̄k − µ0)
T(x̄k − µ0)

)

κ0 + nk + 1

(κ0 + nk)(ν0 + nk − 2d+ 2)
(12)

whereSk =
∑

(xi − x̄k)
T(xi− x̄k) is the sum of squares matrix around the empirical cluster mean

x̄k, and the sum in question is taken over all observations assigned to clusterk.

Taken together, Equations 6, 8, 9 and 11 suggest a simple a Gibbs sampler over the cluster assign-
mentsz. Cluster assignmentszi are initialized randomly, and are then sequentially redrawn from
the conditional posterior distribution in Equation 6. For the applications in this paper, the sampler
typically converges within only a few iterations, but a muchlonger burn in (usually 1000 iterations,
never less than 100) was used in order to be safe. Successive samples are drawn at a lag of 10
iterations, and multiple runs (between 5 and 10) are used in all cases.

3 Application to knowledge partitioning experiments

To illustrate the behavior of the model, consider the most typical example of a knowledge partition-
ing experiment [3, 4, 6]. Stimuli vary along two continuous dimensions (e.g., height of a rectangle,
location of a radial line), and are organized into categories using the scheme shown in Figure 1a.
There are two categories organized into an “inside-outside” structure, with one category (black cir-
cles/squares) occupying a region along either side of the other one (white circles/squares). The
critical characteristic of the experiment is that each stimulus is presented in a particular “context”,
usually operationalized as an auxiliary feature not tied tothe stimulus itself, such as the background
color. In Figure 1a, squares correspond to items presented in one context, and circles to items pre-
sented in the other context. Participants are trained on these items in a standard supervised catego-
rization experiment: stimuli are presented one at a time (with the context variable), and participants
are asked to predict the category label. After making a prediction, the true label is revealed to them.
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Figure 1: Stimuli used in the typical knowledge partitioning design (left) and the different general-
ization patterns that are displayed by human learners (right). Percentages refer to the probability of
selecting category label A.

This procedure is repeated until participants can correctly label all items. At this point, participants
are shown transfer items (the crosses in Figure 1a), and asked what category label these items should
be given. No feedback is given during this phase. Critically, each transfer item is presented in both
contexts, to determine whether people generalize in a context specific way.

The basic effect, replicated across several different experiments, is that there are strong individual
differences in how people solve the problem. This leads to the two characteristic patterns of general-
ization shown in Figure 1b (these data are from Experiments 1and 2A in [6]). Some participants are
context insensitive (lower two panels) and their predictions about the transfer items do not change
as a function of context. However, other participants are context sensitive (upper panels) and adopt
a very different strategy depending on which context the transfer item is presented in. This is taken
to imply [3, 4, 6] that the context sensitive participants have learned a conceptual representation in
which knowledge is “partitioned” into different bundles, each associated with a different context.

3.1 Learning the knowledge partition

The initial investigation focused on what category representations the model learns, as a function
of α andγ. After varying both parameters over a broad range, it was clear that there are two quite
different solutions that the model can produce, illustrated in Figure 2. In the four cluster solution
(panel b, smallγ), the clusters never aggregate across items observed in different contexts. In
contrast, the three cluster solution (panel a, largerγ) is more context general, and collapses category
B into a single cluster. However, there is an interaction withα, since largeα values drive the model
to introduce more clusters. As a result, forα > 1 the model tends not to produce the three cluster
solution. Given that the main interest is inγ, we can fixα such that the prior expected number of
clusters is 3.5, so as to be neutral with respect to the two solutions. Since the expected number of
clusters is given byα

∑n−1
k=0 (α+ k) [11] and there aren = 40 observations, this value isα = 0.72.

The next aim was to quantify the extent to whichγ influences the relative prevalence of the four
cluster solution versus the three cluster solution. For anygiven partition produced by the model, the
adjusted Rand index [12] can be used to assess its similarityto the two idealized solutions (Figure 2a
and 2b). Since the adjusted Rand index measures the extent towhich any given pair of items are clas-
sified in the same way by the two solutions, it is a natural measure of how close a model-generated
solution is to one of the two idealized solutions. Then, adopting an approach loosely inspired by
PAC-learning [13], two partitions were deemed to be approximately the same if the adjusted Rand

4



3 cluster solution

both contexts

context 2 only

context 1 only

4 cluster solution

context 1 only

context 2 only

0 5 10 15
0

0.2

0.4

0.6

0.8

1

gamma

po
st

er
io

r 
pr

ob
ab

ili
ty

 o
f a

pp
ro

xi
m

at
e 

ag
re

em
en

t

 

 

4 cluster solution
3 cluster solution

(a) (b) (c)

Figure 2: The two different clustering schemes produced by the context sensitive RMC, and the
values ofγ that produce them (forα fixed at 0.72). See main text for details.

index between the two exceeded 0.9. The estimated posteriorprobability that the model solutions
approximate either of the the two idealized partitions is plotted in Figure 2c as a function ofγ.
At smaller values ofγ (below about 3.7) the four cluster solution is extremely dominant whereas
at larger values the three cluster solution is preferred. Since there are approximately1.6 × 1035

possible partitions of 40 objects, the extent of this dominance is clearly very strong.

The fact that the model concentrates on two different but entirely sensible solutions as a function of
γ is very appealing from a psychological perspective. One of the most desirable characteristics is the
fact that the partitioning of the learners knowledge is madeexplicit. That is, the model learns a much
more differentiated and context bound representation whenγ is small, and a more context general
and less differentiated representation whenγ is large. By way of comparison, the only other model
that has been shown to produce the effect is ATRIUM [14], which in its standard form consists of
a linked “rule learning” module and an “exemplar learning” module. In order to fit the data, the
model was modified [4] so that it starts with two rule modules and an exemplar model. During
training, the model learns to weight each of the rule modulesdifferently depending on context,
thereby producing context specific generalizations. This provides a partial explanation of the effect,
but it is rather unsatisfying in some ways. In ATRIUM, the knowledge partition is represented via
the learned division of responsibilities between two hard coded rule modules [4]. In a very real
sense, the partition is actually hard coded into the architecture of the model. As such, ATRIUM
learns the context dependence, but not the knowledge partition itself.

3.2 Generalizing in context-specific and context-general ways

The discussion to this point shows how the value ofγ shapes the conceptual knowledge that the
model acquires, but has not looked at what generalizations the model makes. However, it is straight-
forward to show that varyingγ does allow the context sensitive RMC to capture the two generaliza-
tion patterns in Figure 1. With this in mind, Figure 3 plots the generalizations made by the model
for two different levels of context specificity (γ = 0 andγ = 10) and for the two different clustering
solutions. Obviously, in view of the results in Figure 2c themost interesting cases are panels (a) and
(d), since those correspond to the solutions most likely to be learned by the model, but it is useful
to consider all four cases. As is clear from inspection – and verified by the squared correlations
listed in the Figure caption – whenγ is small the model generalizes in a context specific manner,
but whenγ is large the generalizations are the same in all contexts. This happens for both clustering
solutions, which implies thatγ plays two distinct but related roles, insofar as it influences the context
specificity ofboththe learned knowledge partition and the generalizations tonew observations.

4 Acquiring abstract knowledge about context specificity

One thing missing from both ATRIUM and the RMC is an explanation for how the leaner decides
whether context specific or context general representations are appropriate. In both cases, the model
has free parameters that govern the switch between the two cases, and these parameters must be
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Figure 3: Generalizations made by the model. In panel (a) themodel accounts for 82.1% of the
variance in the context sensitive data, but only 35.2% of thevariance in the context insensitive data.
For panel (b) these numbers are 77.9% and 3.6% respectively.Whenγ is large the pattern reverses:
in panel (c) only 23.6% of the variance in the context sensitive data is explained, whereas 67.1% of
the context insensitive data can be accounted for. In panel (d), the numbers are 17.5% and 73.9%.

estimated from data. In the RMC,γ is a free parameter that does all the work; for ATRIUM,
four separate parameters are varied [4]. This poses the question: how do people acquire abstract
knowledge about which way to generalize? In RMC terms, how dowe infer the value ofγ?

To answer this, note that if the context varies in a systematic fashion, an intelligent learner might
come to suspect that the context matters, and would be more likely to decide to generalize in a
context specific way. On the other hand, if there are no systematic patterns to the way that observa-
tions are distributed across contexts, then the learner should deem the context to be irrelevant and
hence decide to generalize broadly across contexts. Indeed, this is exactly what happens with human
learners. For instance, consider the data from Experiment 1in [4]. One condition of this experiment
was a standard knowledge partitioning experiment, identical in every meaningful respect to the data
described earlier in this paper. As is typical for such experiments, knowledge partitioning was ob-
served for at least some of the participants. In the other condition, however, the context variable was
randomized: each of the training items was assigned to a randomly chosen context. In this condition,
no knowledge partitioning was observed.

What this implies is that human learners use the systematicity of the context as a cue to determine
how broadly to generalize. As such, the model shouldlearn thatγ is small when the context varies
systematically; and similarly should learn thatγ is large if the context is random. To that end, this
section develops a hierarchical extension to the model thatis able to do exactly this, and shows that
it is able to capture both conditions of the data in [4] without varying any parameter values.

4.1 A hierarchical context-sensitive RMC

Extending the statistical model is straightforward: we place priors overγ, and allow the model to
infer a joint posterior distribution over the cluster assignmentsz and the context specificityγ. This is
closely related to other hierarchical Bayesian models of category learning [15–19]. A simple choice
of prior for this situation is the exponential distribution,

γ|λ ∼ Exponential(λ) (13)

Following the approach taken withα, λ was fixed so as to ensure that the model has no a priori bias
to prefer either of the two solutions. Whenγ = 3.7 the two solutions are equally likely (Figure 2);
a value ofλ = .19 ensures that this value ofγ is the prior median.
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Figure 4: Learned distributions overγ in the systematic (dark rectangles) and randomized (light
rectangles) conditions, plotted on a logarithmic scale. The dashed line shows the location of the
prior median (i.e.,γ = 3.7).

Inference in the hierarchical model proceeds as before, with a Metropolis step added to resampleγ.
The acceptance probabilities for the Metropolis sampler may be calculated by observing that

P (γ|x, ℓ, c, z) ∝ P (x, ℓ, c|z, γ)P (γ) (14)

∝ P (c|z, γ)P (γ) (15)

=

∫

P (c|z,φ)P (φ|γ) dφ P (γ) (16)

= P (γ)

K
∏

k=1

∫ 1

0

P (c(k)|φk)P (φk|γ) dφk (17)

= λ exp(−λγ)

K
∏

k=1

nk!

n
(c=1)
k !n

(c=2)
k !

B(n
(c=1)
k + γ, n

(c=2)
k + γ)

B(γ, γ)
(18)

∝ exp(−λγ)

K
∏

k=1

B(n
(c=1)
k + γ, n

(c=2)
k + γ)

B(γ, γ)
(19)

whereB(a, b) = Γ(a)Γ(b)/Γ(a + b) denotes the beta function, andn(c=j)
k counts the number of

items in clusterk that appeared in contextj.

4.2 Application of the extended model

To explore the performance of the hierarchical extension ofthe context sensitive RMC, the model
was trained on both the original, systematic version of the knowledge partitioning experiments, and
on a version with the context variables randomly permuted. The posterior distributions overγ that
this produces are shown in Figure 4. As expected, in the systematic condition the model notices the
fact that the context varies systematically as a function ofthe feature valuesx, and learns to form
context specific clusters. Indeed, 97% of the posterior distribution overz is absorbed by the four
cluster solution (or other solutions that are sufficiently similar in the sense discussed earlier). In the
process, the model infers thatγ is small and generalizes in a context specific way (as per Figure 3).
Nevertheless, without changing any parameter values, the same model in the randomized condition
infers that there is no pattern to the context variable, which ends up being randomly scattered across
the clusters. For this condition 57% of the posterior mass isapproximately equivalent to the three
cluster solution. As a result, the model infers thatγ is large, and generalizes in the context general
fashion. In short, the model captures human performance quite effectively.

When considering the implications of Figure 4, it is clear that the model captures the critical fea-
ture of the experiment: the ability tolearn when to make context specific generalizations and when
not to. The distributions overγ are very different as a function of condition, indicating that the
model learns appropriately. What is less clear is the extentto which the model would be expected
to produce the correct pattern of individual differences. Inspection of Figure 4 reveals that in the
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randomized context condition the posterior distribution overγ does not move all that far above the
prior median of 3.7 (dashed line) which by construction is intended to be a fairly neutral value,
whereas in the systematic condition nearly the entire distribution lies below this value. In other
words, the systematic condition produces more learning about γ. If one were to suppose that people
had no inherent prior biases to prefer to generalize one way or the other, it should follow that the
less informative condition (i.e., random context) should reveal more individual differences. Empir-
ically, the reverse is true: in the less informative condition, all participants generalize in a context
general fashion; whereas in the more informative condition(i.e., systematic context) some but not
all participants learn to generalize more narrowly. This does not pose any inherent difficulty for the
model, but it does suggest that the “unbiased” prior chosen for this demonstration is not quite right:
people do appear to have strong prior biases to prefer context general representations. Fortunately, a
cursory investigation revealed that altering the prior over γ moves the posteriors in a sensible fashion
while still keeping the two distributions distinct.

5 Discussion

The hierarchical Bayesian model outlined in this paper explains how human conceptual learning
can be context general in some situations, and context sensitive in others. It captures the critical
“knowledge partitioning” effect [2–4, 6] and does so without altering the core components of the
RMC [7] and its extensions [15, 16, 18, 20]. This success leads to an interesting question: why does
ALCOVE [21] not account for knowledge partitioning (see [4])? Arguably, ALCOVE has been
the dominant theory for learned selective attention for almost 20 years, and its attentional learning
mechanisms bear a striking similarity to the hierarchical Bayesian learning idea used in this paper
and elsewhere [15–19], as well as to statistical methods forautomatic relevance determination in
Bayesian neural networks [22]. On the basis of these similarities, one might expect similar behavior
from ALCOVE and the context sensitive RMC. Yet this is not thecase. The answer to this lies in
the details ofwhyone learns dimensional biases. In ALCOVE, as in many connectionist models, the
dimensional biases are chosen to optimize the ability to predict the category label. Since the context
variable is not correlated with the label in these experiments (by construction), ALCOVE learns to
ignore the context variable in all cases. The approach takenby the RMC is qualitatively different:
it looks for clusters of items where the label, the context and the feature values are all similar to
one another. Knowledge partitioning experiments more or less require that such clusters exist, so
the RMC can learn that the context variable is not distributed randomly. In short, ALCOVE treats
context as important only if it can predict the label; the RMCtreats the context as important if it
helps the learner infer the structure of the world.

Looking beyond artificial learning tasks, learning the situations in which knowledge should be ap-
plied is an important task for an intelligent agent operating in a complex world. Moreover, hierar-
chical Bayesian models provide a natural formalism for describing how human learners are able to
do so. Viewed in this light, the fact that it is possible for people to hold contradictory knowledge
in different “parcels” should be viewed as a special case of the general problem of learning the set
of relevant contexts. Consider, for instance, the example in which fire fighters make different judg-
ments about the same fire depending on whether it is called a back-burn or a to-be-controlled fire
[2]. If fire fighters observe a very different distribution offires in the context of back-burns than
in the context of to-be-controlled fires, then it should be nosurprise that they acquire two distinct
theories of “fires”, each bound to a different context. Although this particular example is a case in
which the learned context specificity is incorrect, it takesonly a minor shift to make the behavior
correct. While the behavior of fires does not depend on the reason why they were lit, it does depend
on what combustibles they are fed. If the distinction were between fires observed in a forest con-
text and fires observed in a tyre yard, context specific category representations suddenly seem very
sensible. Similarly, social categories such as “polite behavior” are necessarily highly context depen-
dent, so it makes sense that the learner would construct different rules for different contexts. If the
world presents the learner with observations that vary systematically across contexts, partitioning
knowledge by context would seem to be a rational learning strategy.
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