
7 Supplementary material

Definition 7.1. Characteristic Function. For a scalar random variableX, thecharacteristic func-
tion is defined as the expected value ofeitX wherei is the imaginary unit, andt ∈ R is the argument
of the characteristic function:ϕX(t) = E[eitX] =

∫∞
−∞ e

itxdFX(x) whereFX(x) is the cumula-
tive distribution function ofX. If a random variableX has a probability density functionfX , then

the characteristic function is its Fourier transform,ϕX(t) =
∞∫

−∞
eitxfX(x)dx.

7.1 Proof of Theorem 3.3

Proof.

F(p(x, y)) = F(
∗∏

i

(p(xi, y1, ∙ ∙ ∙ , ym)) =
∏

i

F(p(xi, y1, ∙ ∙ ∙ , ym)) =

=
∏

i

ϕ(ti, s1, ∙ ∙ ∙ , sm) = ϕ(t1, ∙ ∙ ∙ , tn, s1, ∙ ∙ ∙ , sm).

7.2 Proof of Theorem 3.4

Proof.
F−1(ϕ(t1, ∙ ∙ ∙ , tn, s1, ∙ ∙ ∙ , sm)) = F

−1(
∏

i

ϕ(ti, s1, ∙ ∙ ∙ , sm))

=
∗∏

i

F−1(ϕ(ti, s1, ∙ ∙ ∙ , sm)) =
∗∏

i

p(xi, y1, ∙ ∙ ∙ , ym) = p(x, y) .

7.3 Proof of Theorem 4.2

Proof. The proof follows from the Projection-Slice theorem (also known as the Central Slice theo-
rem) [20, p. 349], which is briefly stated here. Letf(x, y) be a multivariate function andF (u, v) be
its matching Fourier transform. Then

F{f(x)} = F{
∫ ∞

−∞
f(x, y)dy} =

∫ ∞

−∞
eiux[

∫ ∞

−∞
f(x, y)dy]dx =

∫ ∞

−∞

∫ ∞

−∞
eiuxf(x, y)dxdy = F (u, 0) .

This theorem is naturally extended to multiple variables. In our case,

ϕ(0, 0, ti, ∙ ∙ ∙ , 0) =
∏

j

ϕ(tj , s1, ∙ ∙ ∙ , sm)

]

T\i=0

=

∫ ∞

−∞
eitixi

[∗∏

j

p(xj , y1, ∙ ∙ ∙ , ym)
]
dX =

∫ ∞

−∞
eitixi

[∫ ∞

−∞

∗∏

j

p(xj , y1, ∙ ∙ ∙ , ym)dX\i
]
dxi = F{

∫

X\i

[∗∏

j

p(xj , y1, ∙ ∙ ∙ , ym)
]
dX\i} = F{p(xi)} .

7.4 Proof of Thm. 4.3

Proof. For simplicity, we do not handle the noise variablez in this proof. The noise can be added as a
regularization later. We use the linear relation between distributions to extractX: X = A−1Y . Note
thatX must distribute according to stable distribution since it is composed from linear combination
of stable variables. For the scale parameter we get (using the linearity ofA substituted in Prop. 2.1
(a),(b))

γαyi =
∑

j

|Aij |
αγxj

In vector notation we got
γαy = |A|

αγx .

10

Solving this linear system of equations we get

γαx|y = (|A|
α)−1[γαy].

Regarding the skew parameterβx using Prop. 2.1(a,b) we get that

βyi =

∑
j sign(Aij)|Aij |

αβxj |yγ
α
xj |y

γαyi
.

In vector notation we get

βy = γ
−α
y � [(sign(A)� |A|α)(βx � γ

α
x)] .

Now assume thatγαx is a known constant, we can exactβx and get

βx|y = γ
−α
x|y � [((sign(A)� |A|

α)−1(βy � γ
α)] .

Regarding the location parameterδx,

δyi =
∑

j

Aijδxj + ξi ,

ξi =

{
tan(πα2)[βyiγyi −

∑
j sign(Aij)|Aij |βxjγxj] α 6= 1

2
π
[βyiγyi log(γyi)−

∑
j sign(Aij)|Aij |βxjγxj log(|Aij |γxj)] α = 1

.

In matrix notation (after some algebra) we get

δy = Aδx + ξ

ξ =

{
tan(πα2)[βy � γy −A(βx � γx)] α 6= 1
2
π
[βy � γy � log(γy)− (A� log(|A|))(βx � γx)−A(βx � γx � log(γy))] α = 1

.

In total we got a linear system that is solved using

δx|y = A
−1(δy − ξ) .

7.5 Proof of Theorem 4.4

Proof. W.l.g we prove for the Slice-product algorithm 2(a). The other algorithms are symmetric be-
cause the slice/convolution and integral/convolution operations maintain the distributivity property
as well.

We are interested in computing the posterior marginal probability

p(xi) =

∫

x\i

p(x, y)dX\i ∼
∫

X\i

p(x1, ∙ ∙ ∙ , xn, y1, ∙ ∙ ∙ , ym)dX\i (7)

= F−1{
∏

i

ϕ(ti, s1, ∙ ∙ ∙ , sm)
]

ti=0
} . (8)

W.l.g assume thatXi is a tree root. Its matching marginal cfϕ(ti) can be written as a combination
of incoming message computed by the neighboring sub trees:

ϕ(ti) ∼ ϕ(ti, s1, ∙ ∙ ∙ , sm)
∏

j∈N(i)

mji(ti) ,

where the messagesmji(ti) are defined by the algorithm 2(a). We prove using full induction on the
tree diameter. The messagesmji(ti) satisfy the recursion:

mji(ti) = ϕ(ti, s1, ∙ ∙ ∙ , sm)
∏

k∈N(j)\i

mkj(xj)
]

xj=0
.

The basis for the induction is a tree with a single nodex1. In this case there are no incoming
messages,ϕ(t1) = ϕ(ti, s1, ∙ ∙ ∙ , sm) and we are done. Now assume that the induction assumption

11

holds for a tree with diameterd − 1 or less and we want to prove it for a tree with diameterd. We
make the following construction. We add a new nodexi to the tree to get a tree with diameterd.
This node has one or more neighborsj ∈ N(i).

ϕ(ti) ∼ ϕ(ti, s1, ∙ ∙ ∙ , sm)
∏

j∈N(i)

mji(ti) =

= (ti, s1, ∙ ∙ ∙ , sm)
∏

j∈N(i)

p(tj , s1, ∙ ∙ ∙ , sm)
∏

l∈N(j)\i

mlj(tj)]
]

tj=0
.

Using distributivity of the slice/product (algorithm 2(a)), and the tree assumption (separate trees
connected to nodek are disjoint), we interchange order of operators to get:

ϕ(ti) ∼ ϕ(ti, s1, ∙ ∙ ∙ , sm)[
∏

j 6=i

ϕ(tj , s1, ∙ ∙ ∙ , sm))]
]

tj 6=i=0
=

=
∏

i

ϕ(ti, s1, ∙ ∙ ∙ , sm)
]

tX\i=0

This completes the proof since we have obtained the formulation(8).

7.6 Proof of Theorem 4.5

Proof. We start with the scale parameter calculation since it is decoupled from the other parameters.

γαxi|y = γyi −
∑

j 6=i

γαxj |y|Aij |
α

This iteration is a Jacobi iteration for solving the linear system

|A|αγαx = γy

The linear system solution is given in (4) as desired. It is further known that this iteration converges
whenρ(|R|α) < 1.

Regarding the skew parameterβ the Stable-Jacobi update rule is:

βxi|y = βyiγ
α
yi
−
∑

j 6=i

sign(Aij)|Aij |
αβxj |y .

This conforms to the Jacobi equation for solving the linear system

[|A|α � sign(A)]βx = βy � γ
α
y

Assuming this system converged, we divide byγαx to get (4)

βx|y = γ
−α
x|y � [|A|

α � sign(A)]−1[βy � γ
α
y] .

The iteration for computing a skew parameterβ converges whenρ(|R|α � sign(R)) < 1. Using [9,
Theorem 8.4.5, Section 8.4] we get thatρ(|Rα � sign(R)|) = ρ(|Rα|) > ρ(|R|α � sign(R)). In
other words, when the sufficient condition for the scale parameterγ holds (ρ(|Rα|) < 1), then the
skew parameterβ converges as well.

Now we analyze the shift parameterδ evolution. The parameter is given by

δxi|y = δyi −
∑

j 6=i

Aijδxj |y − ξxj |y ,

This is a Jacobi equation for solving the linear system

Aδx = δy − ξx

Is given in (4). This iteration converges whenρ(R) < 1, which is the second sufficient condition for
convergence.

12

7.7 Synthetic example

We demonstrate the properties Stable-Jacobi, using a small toy example. Experimental settings
are borrowed from [32]. The linear transformation matrix is a synchronous CDMA channel trans-

formation with a cross correlation matrixA3 = 1
7

7 −1 3
−1 7 5
3 −5 7

. As expected from the conver-

gence analysis, the sufficient conditions for convergence hold sinceρ(|R3|) = 0.9008 < 1 and
ρ(|R3|1.5) = 0.6875 < 1, and indeed the algorithm converges. We initializedx = [1, 1, 1] and
the additive noiseZ1 ∼ S(1.5, 0, 1, 0), Z2 ∼ S(1.5, 0.5, 1, 0), Z3 ∼ S(1.5, 0, 1, 0). After comput-
ing p(y), we computedp(x|y) using Stable-Jacobi. Regarding convergence dynamics, convergence
analysis shows thatδ is converging more slowly since it is dependent on bothβ andγ. Figure 3(a)
shows convergence of message L2 norms. Figure 3(b) plots the Euclidian distance of the intermedi-
ate solution on each round (as a vector inR3) to the exact solution computed by LCM-Stable. This
distance indeed goes to zero as expected. Figure 3(c) shows the same distance but using log plot.
The almost straight line indicates that the distance is diminishing in a geometric fashion. Unlike the
global distance which diminishes monotonically, when examining the second entry of the interme-
diate solution vectorx2 (Figure 3(d)), we see the zigzag behavior which is a well known property
of the Jacobi algorithm [2]. This non-monotonic behavior is demonstrated also when examining the
Euclidian distance along the single dimension ofx2 (Figure 3(e)).

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Iteration Number

M
sg

 N
or

m

δ

γ

β

(a) Convergence of message
norms

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration Number

E
uc

lid
ia

n
D

is
ta

nc
e

to
 E

xa
ct

 S
ol

ut
io

n

δ

γ

β

(b) Distance to true solution

0 10 20 30 40 50
10

-10

10
-5

10
0

10
5

Iteration Number

E
uc

lid
ia

n
D

is
ta

nc
e

to
 E

xa
ct

 S
ol

ut
io

n

δ

γ

β

(c) Distance to true solution (log
scale)

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

Iteration Number

V
al

ue

δ

γ

β

(d) Posterior marginal ofx2

0 10 20 30 40 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Iteration Number

E
uc

lid
ia

n
D

is
ta

nc
e

to
 E

xa
ct

 S
ol

ut
io

n

δ

γβ

(e) Distance to true solution ofx2

Figure 3: Evolution dynamics of the Stable-Jacobi algorithm using CDMA correlation matrixA3.
All three parametersβ, γ, δ are plotted per round, where the parameter of interest is the scale pa-
rameterδ (since i detection is performed by applying thesign operation on it. (a) Convergence of
message norm (norm of the current posterior relative to the posterior from previous round) when
β 6= 0. (b) Distance of marginal to true solution (using regular plot). (c) Distance of the vector of
marginals for the three users relative to the real transmission (using log plot). (d) Marginal posterior
for user 2. The location parameterδ conforms to the binary transmission. (e) Distance between the
posterior of user 2 to the true solution per iteration.

7.8 Comparison to previous work

In this section we compare our exact computation of inference in the linear stable model to pre-
vious techniques. Since stable distributions do not have a closed-form in the probability domain,
any solution deployed in the pdf domainmust involve approximation. We investigate two existing

13

approximate inference methods as a reference to our newly developed methods. The first algorithm
we implemented is Non-parametric belief propagation (NBP) [29]. NBP works by approximating
the observed stable distribution using a Gaussian mixture, and then computes a belief propagation
procedure using a linear graphical model [5]. The second algorithm is Expectation Propagation
(EP) variant of belief propagation [21], which approximates each Gaussian mixture message using
a single Gaussian.

Algorithm 3 lists the approximation methodology we used. Figure 4 depicts the different steps in-
volved. The first tree steps prepare the input to the NBP/EP algorithms by converting the distribution
into a mixture of Gaussians, with a relatively low number of mixture components (to allow for effi-
cient execution). We construct a linear model graphical as described in [5]. Then we run NBP/EP for
a predefined number of rounds and output the computed belief. Next we can fit stable distribution
parameter to the output.

As well known, a drawback of the NBP algorithm is that the number of mixture components grows
exponentially when computing the product step of the belief propagation algorithm. To avoid expo-
nential blowup, efficient reduction methods where developed [11, 7]. However, the efficiency comes
at the cost of reduced accuracy.

When working even with small problems (tens of variables) both algorithms did not perform well
relative to our exact inference method. For example, on a 2D grid graph of 100 hidden nodes and
100 observation nodes, we got an average scale around 0.8146 while the average of true hidden scale
was 1. The averages of the skew and shift parameters where even worse, since they are dependent
on the scale parameter.

We tried to pinpoint to the root causes of reduced accuracy by constructing a small toy example. We
constructed a small graphical model of two hodden nodesX1, X2 and two observed nodesY1, Y2.
The hidden node are initialized using a Cauchy distribution with variance 1. To further simplify

we set all the edge weights to one, soA =

(
1 1
1 1

)

. Observations are received using the linear

transformationy = Ax.

Even for this small problem we can see (Fig. 4(d)) that the NBP output does not match exactly the
true solution. We believe that the largest error is rooted in the product step approximation.

Another possible approach is to use Expectation Propagation. EP operates by approximating each
Gaussian mixture with a single mixture, creating a light weight and faster approximation (relative
to NBP). Fig. 4(e) shows an EP approximation of a single mixture. For Cauchy distributions, EP
captured quite well the shape of the distribution (Fig. 4(f)), but less well the exact mean. However,
for skewed distributions, EP does not capture well the distribution shape, since the distribution shape
can not be approximated using a single Gaussian (Fig. 4(g)).

1. Quantisize the stable distribution.

2. Fit a Gaussian mixture to the quantisized observation using Kernel Ridge Regression.

3. Optional: reduce the number of mixture components using sampling techniques.

4. Run non-parametric belief propagation [29] or expectation propagation [21].

5. Quantisize the resulting mixture.

6. Fit a stable distribution to the quantization and retrieve the parameters.

Algorithm 3: Approximate inference for linear stable model.

Overall, we conclude that using previous techniques, it is significantly more difficult to compute
inference in a linear-stable model and the results obtained are not accurate. In contrast, using our
developed exact inference procedure the solution is obtained exactly by simply computing three
matrix inverses.

14

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

p(
x)

(a) Step 1: quantization

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

x

C
oe

ffi
ci

en
t W

ei
gh

t

(b) Step 2: fitting a Gaus-
sian mixture

-15 -10 -5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(c) Step 3: Resampling

-10 -5 0 5 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

x

p(
X

)

bel(x
1
)

p(x
1
)

bel(x
2
)

p(x
2
)

(d) Step 4: Output of
NBP

-15 -10 -5 0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

x

p(
x)

Mixture

EP Estimate

(e) Expectation-Propagation
estimate

-10 -5 0 5 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

x

p(
X

)

bel(x
1
)

p(x
1
)

bel(x
2
)

p(x
2
)

(f) Step 4: output of EP
(Cauchy prior)

-10 -5 0 5 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x

p(
X

)

p(x
2
)

bel(x
2
)

bel(x
1
)

p(x
1
)

(g) Step 4: output of EP
(Lévy) prior

Figure 4: Approximated inference using previous techniques: non-parametric BP and Expectation
Propagation. In contrast, Stable-Exact computes inference directly in this model by inverting 3
matrices.

15

