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Appendix A

In this section we provide detailed proofs for Theorems 1-3.

Recall that our kernel matrix learning problem is given by

min  f(K™Y2Kw K™% st gi(Kw) <b;, 1 <i<m, 1)
Kw >0

while our linear transformation kernel learning problem is given by

i (T <b,1<i<m.
in fW) st g (W) <b;, 1 <i<m (2)

First we introduce and analyze an auxiliary optimization problem that will help in proving the main
theorems. Consider the following problem:

yin (W)
st. gi(®TW®) <b;, 1 <i<m, 3)

W=al*+ULU",

where L € R¥*k 7 € R?** is an orthogonal matrix, and I¢ is the d x d identity matrix. In general,
k can be significantly smaller than min(n, d). Note that the above problem is identical to (2) except
for an added constraint W = a% + ULUT. We now show that (3) is equivalent to a problem over
k x k matrices. In particular, (3) is equivalent to (4) defined below.

Lemma 1. Let f be a spectral function (see Defintion 3.1) and let « be the global minima for the
corresponding scalar function fs. Then, (3) is equivalent to:

mLin flal® 4+ L),

st gi(a®T® + TULUT®) < by, 1 <i <m,
L > —al”. )

Proof. The last constraint in (3) asserts that W = o’ 44 ULUT, which implies that there is a one-
to-one mapping between W and L: given W, L can be computed and vice-versa. As a result, we



can eliminate the variable W from (3) by substituting % + ULUT for W (via the last constraint
in (3)). The resulting optimization problem is:

min  f(al + ULU"),
st. gi(a®T® + dTULUT®) < b;, 1 <i<m,
L= —al*. (5)

Note that (4) and (5) are the same except for their objective functions. Below, we show that both
the objective functions are equal up to a constant, so they are interchangable in the optimization
problem. Let U’ € R4*“ be an orthonormal matrix obtained by completing the basis represented by

U,ie., U =[UU,]forsome U, € R¥>*=F) gt UTU; =0and UTU, = I4"*. Now,

W =al + ULUT = U (a[ + [ﬁ 8]) U'T ©)

It is straightforward to see that for a spectral function f,
FVWVT) = f(W), (7)
where V' is an orthogonal matrix. Also, VA, B € R4¥9,
A 0
(6 B) = s, ®)

Using (6), (7), and (8), we get:

fW) = flal +ULUT) = (aU’TIU' + [ﬁ SD ,

(5 2)

= flal + L))+ (d—n)f(a), ©)
Therefore, the objective functions of (4) and (5) differ by only a constant, i.e., they are equivalent
w.r.t. the optimization problem. The lemma follows. O

We now show that for the convex spectral functions (see Definition 3.1) the optimal solution W*
to (2) is of the form W* = I + ®S®7, for some S.
Lemma 2. Suppose f satisfies the conditions given in Theorem 1. Furthermore, denote the global

minima of the corresponding scalar function fs as a. Then, the optimal solution to (2) is of the form
W* = al + ®SDT, where S is an x n matrix.

Proof. Let W = UAU" = 37, \ju;u] be the eigenvalue decomposition of W. Consider a

constraint gi(<I>TW<I>) < b; as specified in (2). Note that if the j-th eigenvector u; of W is or-
thogonal to the range space of &, i.e. <I>Tuj = 0, then the corresponding eigenvalue \; is not
constrained (except for the non-negativity constraint imposed by the positive semi-definiteness con-
straint). Since the range space of ® is at most n-dimensional, without loss of generality we can
assume that \; > 0, Vj > n are not constrained by the linear inequality constraints in (2).

Since f satisfies the conditions of Theorem 1, f( ) = 22; [s(Aj). Also, fs(a) = min, f(z).
Hence, to minimize f(W), we can select AT = a > 0, Vj > n (note that the non-negativity

constraint is satisfied for this choice of ;). Furthermore the eigenvectors u;, Vj < n, lie in the

range space of X,i.e.,Vj <n, u; = Xz] for some z; € R"™. Therefore,
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where 5* =377 (\F — a)z5z;T. O



Now we use Lemmas 1 and 2 to prove Theorem 1.

Proof of Theorem 1. Let ® = Uy EVq)T be the singular value decomposition (SVD) of . Note that
K =0Td = Va2V,
Also, assuming ¢ € R*™ to be full-rank and d > n, Vq>Vq>T =1.

Using Lemma 2, the optimal solution to (2) is restricted to be of the form W = ol + o507 =
ol + UsSVISVaSUL = al + UgVEKY2SKV2VaUL = al + UV LVaUL, where L =
K'/28K1'/2. Hence, for spectral functions f, (2) is equivalent to (3), so using Lemma 1, (2) is
equivalent to (4) with U = Us V| and L = K'/2SK'/2. Also, note that the constraints in (4) can
be simplified to:

9i(a®T® + TULUT®) < b; = gi(aK + KY2LKY?) <b,.
Now, let Ky = aK + KY?LKY? = aK+ KSK,ie.,L = K~'/?(Ky —aK)K /2. Theorem
1 now follows by substituting for L in (4). O

Next, we prove Theorem 2.

Proof of Theorem 2. Let U = K2 J(JTK.J)~'/? and let .J be a full rank matrix, then U is an
orthgonal matrix. Using (9) we get,

flal + U(JTKJ)1/2L(JTKJ)1/2UT) = f(ol + (JTKJ>1/2L(JTKJ)1/2).

Now consider a linear constraint specified in (6) (from main text), Tt(C;(aK + KJLJTK)) < b;.
This can be easily simplified to:

Tr(LJTKC;KJ) < by — Tr(aKCy).

Similar simple algebraic manipulations to the PSD constraint completes the proof. O
Finally, we prove Theorem 3.

Proof of Theorem 3. Consider the last constraint in (7) (from main text):
W =oal +®JLJDT.

Let ® = USXVT be the SVD of ®. Hence, W = ol + UVIVEVTJLIVEVIVUT = ol +
UVTKY2JLJKY?VUT. For disambiguity, rename L as L’ and U as U’. Now, clearly (7) (from
main text) is same as (3) with U = U'VT and L = K'/2JL' JK'/2. Theorem 3 now follows by
using Lemma 1 with L = K'Y/2JL' JK'/2. O

Appendix B: Trace-SSIKDR

To recap, the updates for solving (11) (from main text) using Uzawa’s algorithm are given by:

UsUT « KY2CKY/?, (10)
K' + Umax(X —71,0)U7, (11)
2t 2t — S max(Tr(C; K2 KU KY?) — b;,0), Vi, (12)

where C' = 3, 271 C;. We first prove a technical lemma to relate eigenvectors vectors U of matrix
K'2CK'Y? and V of the matrix CK.
Lemma 3. Let K'/2CK'Y/? = U, %, U,?, where Uy, contains the top-k eigenvectors of K'/2CK'/?
and Xy, contains the top-k eigenvalues of KY/2CK'/2. Similarly, let CK = Vi, Ay, kal, where Vj,
contains the top-k right eigenvectors of C K and Ay contains the top-k eigenvalues of CK. Then,
Ux = K2V, Dy,
Y = Ak.
Note that eigenvalue decomposition is unique up to sign, so we assume that the sign has been set
correctly.



Proof. Let v; be i-th eigenvector of C K. Then, CKwv; = \;v;. Multiplying both sides with K1/,
we get K'/2CK'/2K1/?v; = K'/?v;. After normalization we get:
K1/2’Ui K1/2’UZ‘

K1/2 K1/2 _ >\7,
( ¢ )’UZ-TK’UZ' vl Kv;

Hence, £ 2vi — K'/?v;/D(i,i) is the i-th eigenvector u; of K'/2CK'/2. Also, 0; = \;. O

vl Kv;

Using the above lemma and (11), we get
K = K2V DgADLV, K12,
Therefore, the update for the z variables (see (12)) reduces to:
2b e 271 — dmax(Tr(C; K Vi D AD, V' K) — b;,0), Vi.

This proves that step 6 of Algorithm 1 is correct, so we do not need to compute the full eigenvalue
decompsotion or square-root of the kernel matrix K.



