Learning Convolutional Feature Hierarchies for
Visual Recognition

Koray Kavukcuoglu', Pierre Sermanet, Y-Lan Boureau®",
Karol Gregor!, Michaél Mathieu!, Yann LeCun!
I Courant Institute of Mathematical Sciences, New York Ursitg
2 INRIA - Willow project-teant
{kor ay, ser manet, yl an, kgr egor, yann}@s. nyu. edu, nmat hi eu@l i pper.ens.fr

Abstract

We propose an unsupervised method for learning multi-diagyarchies of sparse
convolutional features. While sparse coding has becomecaaadsingly popular
method for learning visual features, it is most often trdira the patch level.
Applying the resulting filters convolutionally results imghly redundant codes
because overlapping patches are encoded in isolationaByrtg convolutionally
over large image windows, our method reduces the redudagioyekn feature
vectors at neighboring locations and improves the effigiexiche overall repre-
sentation. In addition to a linear decoder that reconsrtiet image from sparse
features, our method trains an efficient feed-forward eactitht predicts quasi-
sparse features from the input. While patch-based trairangly produces any-
thing but oriented edge detectors, we show that convolatitraining produces
highly diverse filters, including center-surround filtezsrner detectors, cross de-
tectors, and oriented grating detectors. We show that ubiege filters in multi-
stage convolutional network architecture improves pemnforce on a number of
visual recognition and detection tasks.

1 Introduction

Over the last few years, a growing amount of research on Misaagnition has focused on learning
low-level and mid-level features using unsupervised liegyrsupervised learning, or a combination
of the two. The ability to learn multiple levels of good femuepresentations in a hierarchical
structure would enable the automatic construction of sijglaited recognition systems operating,
not just on natural images, but on a wide variety of modalitiehis would be particularly useful for
sensor modalities where our lack of intuition makes it diffico engineer good feature extractors.

The present paper introduces a new class of techniquesaiaing features extracted thougan-
volutional filter banks The techniques are applicable to Convolutional Networdtheir variants,
which use multiple stages of trainable convolutional fiianks, interspersed with non-linear oper-
ations, and spatial feature pooling operations [1, 2]. W@ba@vNets have traditionally been trained
in supervised mode, a number of recent systems have profmasd unsupervised learning to pre-
train the filters, followed by supervised fine-tuning. Sorathars have used convolutional forms of
Restricted Boltzmann Machines (RBM) trained with conixastlivergence [3], but many of them
have relied on sparse coding and sparse modeling [4, 5, 6pdrse coding, a sparse feature vegtor
is computed so as to best reconstruct the inpiirough a linear operation withlearned dictionary
matrix D. The inference procedure produces a cotiby minimizing an energy function:

1
L(z,2,D) = §||$ —Dz||3+ |21, 2" =argminL(z,z, D) 1)

*Laboratoire d’'Informatique de I'Ecole Normale Sreure (INRIA/ENS/CNRS UMR 8548)



Figure 1: Left: A dictionary with 128 elements, learned with patch basedsgpaoding model.
Right: A dictionary with 128 elements, learned with convolutiospharse coding model. The dic-
tionary learned with the convolutional model spans thentaon space much more uniformly. In
addition it can be seen that the diversity of filters obtaibgatonvolutional sparse model is much
richer compared to patch based one.

The dictionary is obtained by minimizing the energy 1 ®t min, p £(x, z, D) averaged over a
training set of input samples. There are two problems wighttaditional sparse modeling method
when training convolutional filter banks: 1: the represgotes of whole images are highly redun-
dant because the training and the inference are performtbe @iatch level; 2: the inference for a
whole image is computationally expensive.

First problem. In most applications of sparse coding to image analysis][th8 system is trained
on single image patchewhose dimensions match those of the filters. After trainjpgtches in
the image are processed separately. This procedure catyplptores the fact that the filters are
eventually going to be used in a convolutional fashion. hawy will produce a dictionary of filters
that are essentially shifted versions of each other ovepéteh, so as to reconstruct each patch
in isolation. Inference is performed on all (overlappingtghes independently, which produces a
very highly redundant representation for the whole imageaddress this problem, we apply sparse
coding to the entire image at once, and we view the dictioaarg convolutional filter bank:

K
1
L(z,2,D) = gllx — > " Dx 2[5 + |21, @
k=1

whereDy, is ans x s 2D filter kernel,z is aw x h image (instead of ar x s patch),z; is a 2D
feature map of dimensiofw + s — 1) x (h + s — 1), and *%” denotes the discrete convolution
operator. Convolutional Sparse Coding has been used byasewghors, notably [6].

To address theecond problem we follow the idea of [4, 5], and use a trainable, feed-fadyaon-
linearencodemodule to produce a fast approximation of the sparse coden&w energy function
includes a code prediction error term:

K K
1
L(z,2,D,W) = glle ~ Y Dixzlls+ Y [z — FVF )5 + |2, ®)
k=1 k=1

wherez* = arg min, £(z, z, D, W) andW* is an encoding convolution kernel of sizex s, and f
is a point-wise non-linear function. Two crucially impantajuestions are the form of the non-linear
function f, and the optimization method to find. Both questions will be discussed at length below.

The contribution of this paper is to address both issueslsamenously, thus allowing convolutional
approaches to sparse coding to scale up, and opening th&roeal-time applications.

2 Algorithms and Method

In this section, we analyze the benefits of convolutionatsgeoding for object recognition systems,
and propose convolutional extensions to the coordinateetiésparse coding (CoD) [9] algorithm
and the dictionary learning procedure.

2.1 Learning Convolutional Dictionaries

The key observation for modeling convolutional filter bargthat the convolution of a signal with
a given kernel can be represented as a matrix-vector prdmucobnstructing a special Toeplitz-
structured matrix for each dictionary element and conedieg all such matrices to form a new



dictionary. Any existing sparse coding algorithm can thenulsed. Unfortunately, this method
incurs a cost, since the size of the dictionary then dependseosize of the input signal. Therefore,
it is advantageous to use a formulation based on convohitather than following the naive method
outlined above. In this work, we use the coordinate desgmrss coding algorithm [9] as a starting
point and generalize it using convolution operations. Twpadrtant issues arise when learning
convolutional dictionaries: 1. The boundary effects duediovolutions need to be properly handled.
2. The derivative of equation 2 should be computed effigjeiBInce the loss is not jointly convex
in D andz, but is convex in each variable when the other one is kept figpdrse dictionaries are
usually learned by an approach similar to block coordinatdnt, which alternatively minimizes
overz andD (e.g., see [10, 8, 4]). One can use either batch [7] (by actating derivatives over
many samples) or online updates [8, 6, 5] (updating thedtiety after each sample). In this work,
we use a stochastic online procedure for updating the diatioelements.

The updates to the dictionary elements, calculated fronatému 2, are sensitive to the boundary
effects introduced by the convolution operator. The codtsuhat are at the boundary might grow
much larger compared to the middle elements, since thernattboundaries of the reconstruction
take contributions from only a single code unit, comparatiéamiddle ones that combire s units.
Therefore the reconstruction error, and correspondirggyderivatives, grow proportionally larger.
One way to properly handle this situation is to apply a mastherderivatives of the reconstruction
error wrtz: DT x (x —Dxz2) is replaced byD” x (mask(x) — D z), wheremask is a term-by-term
multiplier that either puts zeros or gradually scales ddwenldoundaries.

Algorithm 1 Convolutional extension to coordinate descent sparsengf®]i A subscript index
(set) of a matrix represent a particular element. For gitive4 D tensorS we adopt the MATLAB
notation for simplicity of notation.

function ConvCoD(z, D, «)
Set: S =D xD
Initialize: 2 = 0; 8 = DT x mask(x)
Require: h,, : smooth thresholding function.
repeat
z = ha(B)
(k,p,q) = argmax; m.n |Zimn — Zimn| (k : dictionary index(p.q) : location index)
bi = Brpq
ﬂ = ﬂ + (Zk’pq - zkpq) X alzgn(S(, kv 5 :)7 (pa Q))
Zkpg = Zkpqs Pkpg = bi
until change irz is below a threshold
end function

The second important point in training convolutional dictries is the computation of the =
DT « D operator. For most algorithms like coordinate descentf8,TA [11] and matching pur-
suit [12], it is advantageous to store the similarity mafi$§ explicitly and use a single column at
a time for updating the corresponding component of cadeor convolutional modeling, the same
approach can be followed with some additional care. In phtded sparse coding, each element
(i,4) of S equals the dot product of dictionary elemehtnd ;. Since the similarity of a pair of
dictionary elements has to be also considered in spatiamiions, each term is expandedfad”
convolution of two dictionary elements, j), producing2s —1 x 2s—1 matrix. Itis more convenient
to think about the resulting matrix asid tensor of sizek’ x K x 2s — 1 x 2s — 1. One should
note that, depending on the input image size, proper alighmiecorresponding column of this
tensor has to be applied in thespace. One can also use the steepest descent algorithmdiagfin
the solution to convolutional sparse coding given in equefl, however using this method would
be orders of magnitude slower compared to specialized itigus like CoD [9] and the solution
would never contain exact zeros. In algorithm 1 we explagnektension of the coordinate descent
algorithm [9] for convolutional inputs. Having formulatednvolutional sparse coding, the overall
learning procedure is simple stochastic (online) gradiestent over dictionar®:

OL(xt, 2%, D)

Va' € X training set z* = argmin L(z*,2,D), D+ D — 7 9D

(4)

The columns o> are normalized after each iteration. A convolutional dictiry with 128 elements
which was trained on images from Berkeley dataset [13] isvehia figure 1.



3 H 3
—p=10,b=1 \ : e
p=3,b=1 \ : "
—p=1,b=1 ;
| B=10b=2

Shﬁb
o
Loss

| P\
S o o 1 2 3 o aeo oo wm o woeor e v teeoo oo NI I
K

s Iteration

Figure 2:Left: Smooth shrinkage function. Parametgrandb control the smoothness and location
of the kink of the function. As3 — oo it converges more closely to soft thresholding operator.
Center: Total loss as a function of number of iterations. The vetticdted line marks the iteration
number when diagonal hessian approximation was updatesl cléar that for both encoder func-
tions, hessian update improves the convergence signific&ight: 128 convolutional filterg11)
learned in the encoder using smooth shrinkage function. dBeeder of this system is shown in
image 1.

2.2 Learning an Efficient Encoder

In [4], [14] and [15] a feedforward regressor was trainedfémst approximate inference. In this
work, we extend their encoder module training to convohdaiodomain and also propose a new
encoder function that approximates sparse codes mordycld$e encoder used in [14] is a simple
feedforward function which can also be seen as a small cativokl neural networkz = ¢F x
tanh(z * W*) (k = 1..K). This function has been shown to produce good features fiecbb
recognition [14], however it does not include a shrinkagerator, thus its ability to produce sparse
representations is very limited. Therefore, we proposé&erdint encoding function with a shrinkage
operator. The standard soft thresholding operator hasitieepmnoperty of producing exact zeros
around the origin, however for a very wide region, the derres are also zero. In order to be able
to train a filter bank that is applied to the input before therétage operator, we propose to use an
encoder with a smooth shrinkage operatet shsx x (z * W*) wherek = 1..K and :

shgk ik (s) = sign(s) x 1/8% log(exp(BF x b*) + exp(B* x [s]) — 1) — b* 5)

Note that eaclt” andb” is a singleton per each feature miapThe shape of the smooth shrinkage
operator is given in figure 2 for several different valueg @ndb. It can be seen that controls the
smoothness of the kink of shrinkage operator amodntrols the location of the kink. The function
is guaranteed to pass through the origin and is antisymenefttie partial derivative&; and %7
can be easily written and these parameters can be learmadiata.

Updating the parameters of the encoding function is peréarisy minimizing equation 3. The ad-
ditional cost term penalizes the squared distance betwptmal codez and predictionz. In a
sense, training the encoder module is similar to trainingpavBlet. To aid faster convergence, we
use stochastic diagonal Levenberg-Marquardt method fl6alculate a positive diagonal approx-
imation to the hessian. We update the hessian approximatiery 10000 samples and the effect
of hessian updates on the total loss is shown in figure 2. Ibeaseen that especially for thenh
encoder function, the effect of using second order infoiomadn the convergence is significant.

2.3 Patch Based vs Convolutional Sparse Modeling

Natural images, sounds, and more generally, signals tptagi translation invariance in any di-
mension, are better represented using convolutionalbdiaties. The convolution operator enables
the system to model local structures that appear anywhdie isignal. For example, if x k& image
patches are sampled from a set of natural images, an edgevataogientation may appear at any
location, forcing local models to allocate multiple dictary elements to represent a single underly-
ing orientation. By contrast, a convolutional model onlgds to record the oriented structure once,
since dictionary elements can be used at all locations.r€igjishows atoms from patch-based and
convolutional dictionaries comprising the same number@fents. The convolutional dictionary
does not waste resources modeling similar filter structtmawtiple locations. Instead, it mod-
els more orientations, frequencies, and different strestincluding center-surround filters, double
center-surround filters, and corner structures at variogtes.

In this work, we present two encoder architectures, 1. st&egescent sparse coding witinh
encoding function using”* x tanh(x + W*), 2. convolutional CoD sparse coding withrink



encoding function usinghs ,(z * W*). The time required for training the first system is much
higher than for the second system due to steepest descese spaing. However, the performance
of the encoding functions are almost identical.

2.4 Multi-stage architecture

Our convolutional encoder can be used to replace patchdlspeese coding modules used in multi-
stage object recognition architectures such as the on@gedgdn our previous work [14]. Building
on our previous findings, for each stage, the encoder iswelibby and absolute value rectifica-
tion, contrast normalization and average subsamplifigsolute Value Rectificationis a simple
pointwise absolute value function applied on the outputheféncoderContrast Normalization

is the same operation used for pre-processing the imageas.tyfie of operation has been shown
to reduce the dependencies between components [17, 18]r@eaaps in our case). When used in
between layers, the mean and standard deviation is cadudatross all feature maps witl9ax< 9
neighborhood in spatial dimensions. The last operatwarage poolingis simply a spatial pooling
operation that is applied on each feature map independently

One or more additional stages can be stacked on top of theofiest Each stage then takes the
output of its preceding stage as input and processes it tkangame series of operations with

different architectural parameters like size and connasti When the input to a stage is a series of
feature maps, each output feature map is formed by the suomadtmultiple filters.

In the next sections, we present experiments showing tliag eenvolutionally trained encoders in
this architecture lead to better object recognition pentmce.

3 Experiments

We closely follow the architecture proposed in [14] for athjeecognition experiments. As stated

above, in our experiments, we use two different systeinsSteepest descent sparse coding with
tanh encoder:SD'""_ 2. Coordinate descent sparse coding wsthrink encoder:CD*"" " |n

the following, we give details of the unsupervised traindmgl supervised recognition experiments.

3.1 Object Recognition using Caltech 101 Dataset

The Caltech-101 dataset [19] contains up to 30 training eegger class and each image contains
a single object. We process the images in the dataset asvéoltb Each image is converted to
gray-scale and resized so that the largest ed@&lis2. Images are contrast normalized to obtain
locally zero mean and unit standard deviation input usifig<a9 neighborhood3. The short side

of each image is zero padded 143 pixels. We report the results in Table 1 and 2. All results in
these tables are obtained using 30 training samples per ahas5 different choices of the training
set. We use the background class during training and testing

Architecture : We use the unsupervised trained encoders in a multi-stagjemsyidentical to the
one proposed in [14]. At first layer 64 features are extrafteh the input image, followed by a
second layers that produces 256 features. Second layardeatre connected to fist layer features
through a sparse connection table to break the symmetryoashectease the number of parameters.

Unsupervised Training : The input to unsupervised training consists of contrastadized gray-
scale images [20] obtained from the Berkeley segmentatataseét [13]. Contrast normalization
consists of processing each feature map value by removenghéan and dividing by the standard
deviation calculated arourtdx 9 region centered at that value over all feature maps.

First Layer: We have trained both systems usitwdictionary elements. Each dictionary item is
a9 x 9 convolution kernel. The resulting system to be solved (&l @imes overcomplete sparse
coding problem. Both systems are trained for 10 differearsiy values ranging betweénl and
3.0.

Second Layer: Using the64 feature maps output from the first layer encoder on Berket@ges,
we train a second layer convolutional sparse coding. At #dwid layer, the number of feature
maps is256 and each feature map is connected torandomly selected input features out6af
Thus, we aim to learn096 convolutional kernels at the second layer. To the best oknawledge,
none of the previous convolutional RBM [3] and sparse cod6jgnethods have learned such a
large number of dictionary elements. Our aim is motivatedheyfact that using such large number
of elements and using a linear classifier [14] reports reitiognresults similar to [3] and [6]. In
both of these studies a more powerful Pyramid Match KernéS\assifier [21] is used to match
the same level of performance. Figure 3 sha@&filters that connect 8 first layer features. Each



T 5 S R N N el e R T S i Rl e R

Figure 3: Second stage filter&eft: Encoder kernels that correspond to the dictionary elements
Right: 128 dictionary elements, each row shows 16 dictionary eisneonnecting to a single
second layer feature map. It can be seen that each grougtsximilar type of features from their
corresponding inputs.

row of filters connect a particular second layer feature nitap.seen that each row of filters extract
similar features since their output response is summedtteg® form one output feature map.

\ Logistic Regression Classifier |
SDtanh CDshmTLk PSD [14]

U 57.1+£0.6% | 57.3 +£0.5% 52.2%
U™ | 57.6 +0.4% | 56.4 + 0.5% 54.2%

Table 1: ComparingD**"*" encoder toaCD*"""* encoder on Caltech 101 dataset using a single
stage architecture. Each system is trained using 64 caiwodu filters. The recognition accuracy
results shown are very similar for both systems.

One Stage System:We train 64 convolutional unsupervised features using I&¥H*"" and
CD*"""* methods. We use the encoder function obtained from thisitgifollowed by abso-
lute value rectification, contrast normalization and agerpooling. The convolutional filters used
are9 x 9. The average pooling is applied ovet@x 10 area with 5 pixel stride. The output of first
layer is then64 x 26 x 26 and fed into a logistic regression classifier and Lazebrif#K-SVM
classifier [21] (that is, the spatial pyramid pipeline isdisesing our features to replace the SIFT
features).

Two Stage SystemWe train 4096 convolutional filters withD‘*"" method using 64 input feature
maps from first stage to produce 256 feature maps. The seagadfeatures are alsbx 9, pro-
ducing256 x 18 x 18 features. After applying absolute value rectification,tcast normalization
and average pooling (on@x 6 area with stridet), the output features a6 x 4 x 4 (4096)
dimensional. We only use multinomial logistic regressitassifier after the second layer feature
extraction stage.

We denote unsupervised trained one stage systemdyitivo stage unsupervised trained systems
with UU and “” represents supervised training is performed afterwaflstands for randomly
initialized systems with no unsupervised training.

PMK-SVM [21] Classifier:
Logistic Regression Classifier Hard quantization + multiscale pooling
PSD [14](UU) 63.7 + intersection kernel SVM
PSD [14](UTU™) 65.5 SIFT [21] 64.6 +0.7%
SD"" (UU) 65.3 + 0.9% RBM [3] 66.4 +0.5%
Spianh (UtUh) 66.3 £ 1.5% DN [6 66.9 +1.1%
sSD"" (U) 65.7 £ 0.7%

Table 2: Recognition accuracy on Caltech 101 dataset usiagiety of different feature represen-
tations using two stage systems and two different classifier

Comparing out/ system using botBD*"" andCD*"""* (57.1% and57.3%) with the52.2% re-
ported in [14], we see that convolutional training resuitsignificantimprovement. With two layers

of purely unsupervised featureS T/, 65.3%), we even achieve the same performance as the patch-
based model of Jarrett et al. [14] after supervised fineai3.7%). Moreover, with additional
supervised fine-tuning{T™U™) we match or perform very close t6¢.3%) similar models [3, 6]



miss rate
miss rate

— UU+-DI0 (23.6%)

= = = UsUS-DIL (16.5%)

0.05 UsU-bi2 (13.8%) (e
UU+-Di6 (12.4%)

- UsUS-DI3 (1L9%)
——— ReR+ (14.8%) = = = UsU-bi5 (11.7%)|
= = = UsUs (115%) = = = UsUs-bta (11.5%)|

10° 10' 10°? 10" 10° 10*
false positives per image false positives per image

Figure 4: Results on the INRIA dataset with per-image metraft: Comparing two best systems
with unsupervised initializatior{U) vs random initialization R R). Right: Effect of bootstrapping
on final performance for unsupervised initialized system.

with two layers of convolutional feature extraction, eveaugh these models use the more complex
spatial pyramid classifier (PMK-SVM) instead of the logistegression we have used; the spatial
pyramid framework comprises a codeword extraction stepaar®VM, thus effectively adding one
layer to the system. We gé5.7% with a spatial pyramid on top of our single-layérsystem (with
256 codewords jointly encodirityx 2 neighborhoods of our features by hard quantization, then ma
pooling in each cell of the pyramid, with a linear SVM, as pyeged by authors in [22]).

Our experiments have shown that sparse features achieeei@upecognition performance com-
pared to features obtained using a dictionary trained bytehgaased procedure as shown in Ta-
ble 2. It is interesting to note that the improvement is langben using feature extractors trained
in a purely unsupervised way, than when unsupervised t@guisifollowed by a supervised training
phase §7.1 to 57.6). Recalling that the supervised tuning i£@nvolutionalprocedure, this last
training step might have the additional benefit of decreptire redundancy between patch-based
dictionary elements. On the other hand, this contributimul be minor for dictionaries which
have already been trained convolutionally in the unsuget/stage.

3.2 Pedestrian Detection

We train and evaluate our architecture on the INRIA Pedmsiiataset [23] which contair2d16
positive examples (after mirroring) and18 negative full images. For training, we also augment the
positive set with small translations and scale variatiengarn invariance to small transformations,
yielding 11370 and 1000 positive examples for training aaitation respectively. The negative set
is obtained by sampling patches from negative full imagearatom scales and locations. Addition-
ally, we include samples from the positive set with larged amaller scales to avoid false positives
from very different scales. With these additions, the nggatet is composed of 9001 training and
1000 validation samples.

Architecture and Training

A similar architecture as in the previous section was usetth, 32 filters, each7 x 7 for the first
layer and64 filters, also7 x 7 for the second layer. We us@dx 2 average pooling between each
layer. A fully connected linear layer with 2 output scorew ffedestrian and background) was used
as the classifier. We trained this system@nx 38 inputs where pedestrians are approximately
60 pixels high. We have trained our system with and without pesused initialization, followed
by fine-tuning of the entire architecture in supervised neanfigure 5 shows comparisons of our
system with other methods as well as the effect of unsupsnivistialization.

After one pass of unsupervised and/or supervised traisieggral bootstrapping passes were per-
formed to augment the negative set with the 10 most offenstimgples on each full negative image
and the bigger/smaller scaled positives. We select the offestding sample that has the biggest
opposite score. We limit the number of extracted false pesitto 3000 per bootstrapping pass.
As [24] showed, the number of bootstrapping passes matters than the initial training set. We
find that the best results were obtained after four passetoam in figure 5 improving frord3.6%

t0 11.5%.

Per-Image Evaluation
Performance on the INRIA set is usually reported with theysedow methodology to avoid post-
processing biases, assuming that better per-window peafoce yields better per-image perfor-



Shapelet-orig (90.5%)
Poselnvsvm (68.6%)
VI-OpenCv (53.0%)
Poselnv (51.4%)
Shapelet (50.4%)
— 1] (47.5%)
FirMine (34.0%)
= = Pis (28.4%)
= = HOG (23.1%)
Hiksvm (21.9%)
Latsvm-V1 (17.5%)
= = MultiFtr (15.6%)
ReR+ (14.8%)
=== UsUs (115%)
MultiFtr+CSS (10.9%)
e LatSYM-V2 (2.3%)
— FPDW (9.3%)
i | = = = chnFus @.7%)

miss rate

107 10° 10"

107
false positives per image

Figure 5: Results on the INRIA dataset with per-image mefrfeese curves are computed from the
bounding boxes and confidences made available by [25]. Cangpaur two best systems labeled
(UTU* andRT R™)with all the other methods.

mance. However [25] empirically showed that the per-windoethodology fails to predict the

performance per-image and therefore is not adequate foepgdications. Thus, we evaluate the
per-image accuracy using the source code available froipy2iich matches bounding boxes with
the50% PASCAL matching measuréifersection () g).

In figure 5, we compare our best result$.6%) to the latest state-of-the-art resulgsi’) gathered
and published on the Caltech Pedestrians websiiee results are ordered by miss rate (the lower
the better) at false positive per image on average (1 FPPI). The valueFi?PI is meaningful for
pedestrian detection because in real world applicatidrs,desirable to limit the number of false
alarms.

It can be seen from figure 4 that unsupervised initializasigmificantly improves the performance
(14.8%ws11.5%). The number of labeled images in INRIA dataset is relagigehall, which limits
the capability of supervised learning algorithms. Howggarunsupervised method can model large
variations in pedestrian pose, scale and clutter with mettebsuccess.

Top performing methods [26], [27], [28], [24] also contaiveral components that our simplis-
tic model does not contain. Probably, the most importantllasaolor information, whereas we
have trained our systems only on gray-scale images. Anotipartant aspect is training on multi-
resolution inputs [26], [27], [28]. Currently, we train osystems on fixed scale inputs with very
small variation. Additionally, we have used much lower te8on images than top performing sys-
tems to train our model§§ x 38 vs 128 x 64 in [24]). Finally, some models [28] use deformable
body parts models to improve their performance, whereaselyeon a much simpler pipeline of
feature extraction and linear classification.

Our aim in this work was to show that an adaptable featureaetitm system that learns its pa-
rameters from available data can perform comparably todyestems for pedestrian detection. We
believe by including color features and using multi-refioluinput our system’s performance would
increase.

4 Summary and Future Work

In this work we have presented a method for learning hiefeatfeature extractors. Two different

methods were presented for convolutional sparse codingdtshown that convolutional training of

feature extractors reduces the redundancy among filterpa@u with those obtained from patch
based models. Additionally, we have introduced two différeonvolutional encoder functions for

performing efficient feature extraction which is cruciat fesing sparse coding in real world ap-
plications. We have applied the proposed sparse modelistgrsg using a successful multi-stage
architecture on object recognition and pedestrian detegioblems and performed comparably to
similar systems.

In the pedestrian detection task, we have presented thetdpeof using unsupervised learning for
feature extraction. We believe unsupervised learningfsogmtly helps to properly model extensive
variations in the dataset where a pure supervised learfgogithm fails. We aim to further improve
our system by better modeling the input by including colat arulti-resolution information.

hitp://www.vision.caltech.edu/ImagRatasets/CaltechPedestrians/files/data-INRIA



References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]
[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

[20]
[21]
[22]
(23]
[24]
[25]

[26]
[27]

(28]

LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradient-balssdning applied to document recognition.
Proceedings of the IEEB6(11):2278-2324, November 1998.

Serre, T, Wolf, L, and Poggio, T. Object recognition with featurespired by visual cortex. IEVPR’05

- Volume 2 pages 994-1000, Washington, DC, USA, 2005. IEEE Computergocie

Lee, H, Grosse, R, Ranganath, R, and Ng, A. Convolutional teéipf networks for scalable unsuper-
vised learning of hierarchical representationsIGML’09, pages 609-616. ACM, 2009.

Ranzato, M, Poultney, C, Chopra, S, and LeCun, Y. Efficientliegy of sparse representations with an
energy-based model. MIPS’07. MIT Press, 2007.

Kavukcuoglu, K, Ranzato, M, Fergus, R, and LeCun, Y. Leagninvariant features through topographic
filter maps. INCVPR’09 IEEE, 2009.

Zeiler, M, Krishnan, D, Taylor, G, and Fergus, R. Deconvolutiddetworks. INCVPR’1Q IEEE, 2010.
Aharon, M, Elad, M, and Bruckstein, A. M. K-SVD and its non-negavariant for dictionary design. In
Papadakis, M, Laine, A. F, and Unser, M. A, edit@sciety of Photo-Optical Instrumentation Engineers
(SPIE) Conference Seriegolume 5914, pages 327-339, August 2005.

Mairal, J, Bach, F, Ponce, J, and Sapiro, G. Online dictionary iegrior sparse coding. HCML'09,
pages 689-696. ACM, 2009.

Li, Y and Osher, S. Coordinate Descent Optimization for |1 MinimizatiathwApplication to Com-
pressed Sensing; a Greedy Algorith@AM Reportpages 09-17.

Olshausen, B. A and Field, D. J. Sparse coding with an overcaenpéesis set: a strategy employed by
v1? Vision Researgt37(23):3311-3325, 1997.

Beck, A and Teboulle, M. A fast iterative shrinkage-thresholdifgprithm for linear inverse problems.
SIAM J. Img. Scj.2(1):183-202, 2009.

Mallat, S and Zhang, Z. Matching pursuits with time-frequency dicti@sal EEE Transactions on Signal
Processing41(12):3397:3415, 1993.

Martin, D, Fowlkes, C, Tal, D, and Malik, J. A database of humameented natural images and its appli-
cation to evaluating segmentation algorithms and measuring ecological satisti€CV'01, volume 2,
pages 416-423, July 2001.

Jarrett, K, Kavukcuoglu, K, Ranzato, M, and LeCun, Y. What & tlest multi-stage architecture for
object recognition? IWCCV'09. IEEE, 2009.

Gregor, K and LeCun, Y. Learning fast approximations of spaoding. IrProc. International Confer-
ence on Machine learning (ICML'102010.

LeCun, Y, Bottou, L, Orr, G, and Muller, K. Efficient backprom Orr, G and K., M, editorsNeural
Networks: Tricks of the tradé&pringer, 1998.

Schwartz, O and Simoncelli, E. P. Natural signal statistics and segam control.Nature Neuroscienge
4(8):819-825, August 2001.

Lyu, S and Simoncelli, E. P. Nonlinear image representation usiigivé normalization. IlCVPR’08
IEEE Computer Society, Jun 23-28 2008.

Fei-Fei, L, Fergus, R, and Perona, P. Learning generativehMmodels from few training examples: an
incremental Bayesian approach tested on 101 object categorl&®rkshop on Generative-Model Based
Vision, 2004.

Pinto, N, Cox, D. D, and DiCarlo, J. J. Why is real-world visual @bjecognition hardPPLoS Comput
Biol, 4(1):e27, 01 2008.

Lazebnik, S, Schmid, C, and Ponce, J. Beyond bags of featS8patial pyramid matching for recognizing
natural scene categorieGVPR’06 2:2169—-2178, 2006.

Boureau, Y, Bach, F, LeCun, Y, and Ponce, J. Learning midteatures for recognition. 16VPR’10
IEEE, 2010.

Dalal, N and Triggs, B. Histograms of oriented gradients for hudetection. In Schmid, C, Soatto, S,
and Tomasi, C, editor&VPR’05 volume 2, pages 886—893, June 2005.

Walk, S, Majer, N, Schindler, K, and Schiele, B. New featuresiasifjhts for pedestrian detection. In
CVPR 2010, San Francisco, California.

Dollar, P, Wojek, C, Schiele, B, and Perona, P. Pedestrian detection:ohmerk. InCVPR’09 IEEE,
June 2009.

Dollar, P, Tu, Z, Perona, P, and Belongie, S. Integral channel featimrBMVC 2009, London, England.
Dollar, P, Belongie, S, and Perona, P. The fastest pedestrian detecter we#h. InBMVC 2010,
Aberystwyth, UK.

Felzenszwalb, P, Girshick, R, McAllester, D, and Ramanan, Dje@Mletection with discriminatively
trained part based models. RAMI 2010



