
Learning Convolutional Feature Hierarchies for
Visual Recognition

Koray Kavukcuoglu1, Pierre Sermanet1, Y-Lan Boureau2,1,
Karol Gregor 1, Michaël Mathieu1, Yann LeCun1

1 Courant Institute of Mathematical Sciences, New York University
2 INRIA - Willow project-team∗

{koray,sermanet,ylan,kgregor,yann}@cs.nyu.edu, mmathieu@clipper.ens.fr

Abstract

We propose an unsupervised method for learning multi-stagehierarchies of sparse
convolutional features. While sparse coding has become an increasingly popular
method for learning visual features, it is most often trained at the patch level.
Applying the resulting filters convolutionally results in highly redundant codes
because overlapping patches are encoded in isolation. By training convolutionally
over large image windows, our method reduces the redudancy between feature
vectors at neighboring locations and improves the efficiency of the overall repre-
sentation. In addition to a linear decoder that reconstructs the image from sparse
features, our method trains an efficient feed-forward encoder that predicts quasi-
sparse features from the input. While patch-based training rarely produces any-
thing but oriented edge detectors, we show that convolutional training produces
highly diverse filters, including center-surround filters,corner detectors, cross de-
tectors, and oriented grating detectors. We show that usingthese filters in multi-
stage convolutional network architecture improves performance on a number of
visual recognition and detection tasks.

1 Introduction

Over the last few years, a growing amount of research on visual recognition has focused on learning
low-level and mid-level features using unsupervised learning, supervised learning, or a combination
of the two. The ability to learn multiple levels of good feature representations in a hierarchical
structure would enable the automatic construction of sophisticated recognition systems operating,
not just on natural images, but on a wide variety of modalities. This would be particularly useful for
sensor modalities where our lack of intuition makes it difficult to engineer good feature extractors.

The present paper introduces a new class of techniques for learning features extracted thoughcon-
volutional filter banks. The techniques are applicable to Convolutional Networks and their variants,
which use multiple stages of trainable convolutional filterbanks, interspersed with non-linear oper-
ations, and spatial feature pooling operations [1, 2]. WhileConvNets have traditionally been trained
in supervised mode, a number of recent systems have proposedto use unsupervised learning to pre-
train the filters, followed by supervised fine-tuning. Some authors have used convolutional forms of
Restricted Boltzmann Machines (RBM) trained with contrastive divergence [3], but many of them
have relied on sparse coding and sparse modeling [4, 5, 6]. Insparse coding, a sparse feature vectorz
is computed so as to best reconstruct the inputx through a linear operation with alearned dictionary
matrixD. The inference procedure produces a codez∗ by minimizing an energy function:

L(x, z,D) =
1

2
||x−Dz||22 + |z|1, z∗ = argmin

z
L(x, z,D) (1)

∗Laboratoire d’Informatique de l’Ecole Normale Supérieure (INRIA/ENS/CNRS UMR 8548)

1

Figure 1: Left: A dictionary with 128 elements, learned with patch based sparse coding model.
Right: A dictionary with 128 elements, learned with convolutionalsparse coding model. The dic-
tionary learned with the convolutional model spans the orientation space much more uniformly. In
addition it can be seen that the diversity of filters obtainedby convolutional sparse model is much
richer compared to patch based one.

The dictionary is obtained by minimizing the energy 1 wrtD: minz,D L(x, z,D) averaged over a
training set of input samples. There are two problems with the traditional sparse modeling method
when training convolutional filter banks: 1: the representations of whole images are highly redun-
dant because the training and the inference are performed atthe patch level; 2: the inference for a
whole image is computationally expensive.

First problem. In most applications of sparse coding to image analysis [7, 8], the system is trained
on single image patcheswhose dimensions match those of the filters. After training,patches in
the image are processed separately. This procedure completely ignores the fact that the filters are
eventually going to be used in a convolutional fashion. Learning will produce a dictionary of filters
that are essentially shifted versions of each other over thepatch, so as to reconstruct each patch
in isolation. Inference is performed on all (overlapping) patches independently, which produces a
very highly redundant representation for the whole image. To address this problem, we apply sparse
coding to the entire image at once, and we view the dictionaryas a convolutional filter bank:

L(x, z,D) =
1

2
||x−

K∑

k=1

Dk ∗ zk||
2
2 + |z|1, (2)

whereDk is ans × s 2D filter kernel,x is aw × h image (instead of ans × s patch),zk is a 2D
feature map of dimension(w + s − 1) × (h + s − 1), and “∗” denotes the discrete convolution
operator. Convolutional Sparse Coding has been used by several authors, notably [6].

To address thesecond problem, we follow the idea of [4, 5], and use a trainable, feed-forward, non-
linearencodermodule to produce a fast approximation of the sparse code. The new energy function
includes a code prediction error term:

L(x, z,D,W) =
1

2
||x−

K∑

k=1

Dk ∗ zk||
2
2 +

K∑

k=1

||zk − f(W k ∗ x)||22 + |z|1, (3)

wherez∗ = argminz L(x, z,D,W) andW k is an encoding convolution kernel of sizes× s, andf
is a point-wise non-linear function. Two crucially important questions are the form of the non-linear
functionf , and the optimization method to findz∗. Both questions will be discussed at length below.

The contribution of this paper is to address both issues simultaneously, thus allowing convolutional
approaches to sparse coding to scale up, and opening the roadto real-time applications.

2 Algorithms and Method
In this section, we analyze the benefits of convolutional sparse coding for object recognition systems,
and propose convolutional extensions to the coordinate descent sparse coding (CoD) [9] algorithm
and the dictionary learning procedure.

2.1 Learning Convolutional Dictionaries

The key observation for modeling convolutional filter banksis that the convolution of a signal with
a given kernel can be represented as a matrix-vector productby constructing a special Toeplitz-
structured matrix for each dictionary element and concatenating all such matrices to form a new

2

dictionary. Any existing sparse coding algorithm can then be used. Unfortunately, this method
incurs a cost, since the size of the dictionary then depends on the size of the input signal. Therefore,
it is advantageous to use a formulation based on convolutions rather than following the naive method
outlined above. In this work, we use the coordinate descent sparse coding algorithm [9] as a starting
point and generalize it using convolution operations. Two important issues arise when learning
convolutional dictionaries: 1. The boundary effects due toconvolutions need to be properly handled.
2. The derivative of equation 2 should be computed efficiently. Since the loss is not jointly convex
in D andz, but is convex in each variable when the other one is kept fixed, sparse dictionaries are
usually learned by an approach similar to block coordinate descent, which alternatively minimizes
overz andD (e.g., see [10, 8, 4]). One can use either batch [7] (by accumulating derivatives over
many samples) or online updates [8, 6, 5] (updating the dictionary after each sample). In this work,
we use a stochastic online procedure for updating the dictionary elements.

The updates to the dictionary elements, calculated from equation 2, are sensitive to the boundary
effects introduced by the convolution operator. The code units that are at the boundary might grow
much larger compared to the middle elements, since the outermost boundaries of the reconstruction
take contributions from only a single code unit, compared tothe middle ones that combines×s units.
Therefore the reconstruction error, and correspondingly the derivatives, grow proportionally larger.
One way to properly handle this situation is to apply a mask onthe derivatives of the reconstruction
error wrtz: DT ∗(x−D∗z) is replaced byDT ∗(mask(x)−D∗z), wheremask is a term-by-term
multiplier that either puts zeros or gradually scales down the boundaries.

Algorithm 1 Convolutional extension to coordinate descent sparse coding[9]. A subscript index
(set) of a matrix represent a particular element. For slicing the4D tensorS we adopt the MATLAB
notation for simplicity of notation.

function ConvCoD(x,D, α)
Set: S = DT ∗ D
Initialize: z = 0; β = DT ∗mask(x)
Require: hα : smooth thresholding function.
repeat
z̄ = hα(β)
(k, p, q) = argmaxi,m,n |zimn − z̄imn| (k : dictionary index,(p.q) : location index)
bi = βkpq

β = β + (zkpq − z̄kpq)× align(S(:, k, :, :), (p, q))
zkpq = z̄kpq, βkpq = bi

until change inz is below a threshold
end function

The second important point in training convolutional dictionaries is the computation of theS =
DT ∗ D operator. For most algorithms like coordinate descent [9],FISTA [11] and matching pur-
suit [12], it is advantageous to store the similarity matrix(S) explicitly and use a single column at
a time for updating the corresponding component of codez. For convolutional modeling, the same
approach can be followed with some additional care. In patchbased sparse coding, each element
(i, j) of S equals the dot product of dictionary elementsi andj. Since the similarity of a pair of
dictionary elements has to be also considered in spatial dimensions, each term is expanded as“full”
convolution of two dictionary elements(i, j), producing2s−1×2s−1 matrix. It is more convenient
to think about the resulting matrix as a4D tensor of sizeK ×K × 2s − 1 × 2s − 1. One should
note that, depending on the input image size, proper alignment of corresponding column of this
tensor has to be applied in thez space. One can also use the steepest descent algorithm for finding
the solution to convolutional sparse coding given in equation 2, however using this method would
be orders of magnitude slower compared to specialized algorithms like CoD [9] and the solution
would never contain exact zeros. In algorithm 1 we explain the extension of the coordinate descent
algorithm [9] for convolutional inputs. Having formulatedconvolutional sparse coding, the overall
learning procedure is simple stochastic (online) gradientdescent over dictionaryD:

∀xi ∈ X training set: z∗ = argmin
z
L(xi, z,D), D ← D − η

∂L(xi, z∗,D)

∂D
(4)

The columns ofD are normalized after each iteration. A convolutional dictionary with 128 elements
which was trained on images from Berkeley dataset [13] is shown in figure 1.

3

Figure 2:Left: Smooth shrinkage function. Parametersβ andb control the smoothness and location
of the kink of the function. Asβ → ∞ it converges more closely to soft thresholding operator.
Center: Total loss as a function of number of iterations. The vertical dotted line marks the iteration
number when diagonal hessian approximation was updated. Itis clear that for both encoder func-
tions, hessian update improves the convergence significantly. Right: 128 convolutional filters(W)
learned in the encoder using smooth shrinkage function. Thedecoder of this system is shown in
image 1.

2.2 Learning an Efficient Encoder

In [4], [14] and [15] a feedforward regressor was trained forfast approximate inference. In this
work, we extend their encoder module training to convolutional domain and also propose a new
encoder function that approximates sparse codes more closely. The encoder used in [14] is a simple
feedforward function which can also be seen as a small convolutional neural network:̃z = gk ×
tanh(x ∗ W k) (k = 1..K). This function has been shown to produce good features for object
recognition [14], however it does not include a shrinkage operator, thus its ability to produce sparse
representations is very limited. Therefore, we propose a different encoding function with a shrinkage
operator. The standard soft thresholding operator has the nice property of producing exact zeros
around the origin, however for a very wide region, the derivatives are also zero. In order to be able
to train a filter bank that is applied to the input before the shrinkage operator, we propose to use an
encoder with a smooth shrinkage operatorz̃ = shβk,bk(x ∗W

k) wherek = 1..K and :

shβk,bk(s) = sign(s)× 1/βk log(exp(βk × bk) + exp(βk × |s|)− 1)− bk (5)

Note that eachβk andbk is a singleton per each feature mapk. The shape of the smooth shrinkage
operator is given in figure 2 for several different values ofβ andb. It can be seen thatβ controls the
smoothness of the kink of shrinkage operator andb controls the location of the kink. The function
is guaranteed to pass through the origin and is antisymmetric. The partial derivatives∂sh

∂β
and ∂sh

∂b

can be easily written and these parameters can be learned from data.

Updating the parameters of the encoding function is performed by minimizing equation 3. The ad-
ditional cost term penalizes the squared distance between optimal codez and predictioñz. In a
sense, training the encoder module is similar to training a ConvNet. To aid faster convergence, we
use stochastic diagonal Levenberg-Marquardt method [16] to calculate a positive diagonal approx-
imation to the hessian. We update the hessian approximationevery 10000 samples and the effect
of hessian updates on the total loss is shown in figure 2. It canbe seen that especially for thetanh
encoder function, the effect of using second order information on the convergence is significant.
2.3 Patch Based vs Convolutional Sparse Modeling

Natural images, sounds, and more generally, signals that display translation invariance in any di-
mension, are better represented using convolutional dictionaries. The convolution operator enables
the system to model local structures that appear anywhere inthe signal. For example, ifk×k image
patches are sampled from a set of natural images, an edge at a given orientation may appear at any
location, forcing local models to allocate multiple dictionary elements to represent a single underly-
ing orientation. By contrast, a convolutional model only needs to record the oriented structure once,
since dictionary elements can be used at all locations. Figure 1 shows atoms from patch-based and
convolutional dictionaries comprising the same number of elements. The convolutional dictionary
does not waste resources modeling similar filter structure at multiple locations. Instead, it mod-
els more orientations, frequencies, and different structures including center-surround filters, double
center-surround filters, and corner structures at various angles.

In this work, we present two encoder architectures, 1. steepest descent sparse coding withtanh
encoding function usinggk × tanh(x ∗ W k), 2. convolutional CoD sparse coding withshrink

4

encoding function usingshβ,b(x ∗ W
k). The time required for training the first system is much

higher than for the second system due to steepest descent sparse coding. However, the performance
of the encoding functions are almost identical.

2.4 Multi-stage architecture

Our convolutional encoder can be used to replace patch-based sparse coding modules used in multi-
stage object recognition architectures such as the one proposed in our previous work [14]. Building
on our previous findings, for each stage, the encoder is followed by and absolute value rectifica-
tion, contrast normalization and average subsampling.Absolute Value Rectification is a simple
pointwise absolute value function applied on the output of the encoder.Contrast Normalization
is the same operation used for pre-processing the images. This type of operation has been shown
to reduce the dependencies between components [17, 18] (feature maps in our case). When used in
between layers, the mean and standard deviation is calculated across all feature maps with a9 × 9
neighborhood in spatial dimensions. The last operation,average poolingis simply a spatial pooling
operation that is applied on each feature map independently.

One or more additional stages can be stacked on top of the firstone. Each stage then takes the
output of its preceding stage as input and processes it usingthe same series of operations with
different architectural parameters like size and connections. When the input to a stage is a series of
feature maps, each output feature map is formed by the summation of multiple filters.

In the next sections, we present experiments showing that using convolutionally trained encoders in
this architecture lead to better object recognition performance.

3 Experiments
We closely follow the architecture proposed in [14] for object recognition experiments. As stated
above, in our experiments, we use two different systems:1. Steepest descent sparse coding with
tanh encoder:SDtanh. 2. Coordinate descent sparse coding withshrink encoder:CD

shrink. In
the following, we give details of the unsupervised trainingand supervised recognition experiments.

3.1 Object Recognition using Caltech 101 Dataset
The Caltech-101 dataset [19] contains up to 30 training images per class and each image contains
a single object. We process the images in the dataset as follows: 1. Each image is converted to
gray-scale and resized so that the largest edge is151. 2. Images are contrast normalized to obtain
locally zero mean and unit standard deviation input using a9 × 9 neighborhood.3. The short side
of each image is zero padded to143 pixels. We report the results in Table 1 and 2. All results in
these tables are obtained using 30 training samples per class and 5 different choices of the training
set. We use the background class during training and testing.

Architecture : We use the unsupervised trained encoders in a multi-stage system identical to the
one proposed in [14]. At first layer 64 features are extractedfrom the input image, followed by a
second layers that produces 256 features. Second layer features are connected to fist layer features
through a sparse connection table to break the symmetry and to decrease the number of parameters.

Unsupervised Training : The input to unsupervised training consists of contrast normalized gray-
scale images [20] obtained from the Berkeley segmentation dataset [13]. Contrast normalization
consists of processing each feature map value by removing the mean and dividing by the standard
deviation calculated around9× 9 region centered at that value over all feature maps.

First Layer: We have trained both systems using64 dictionary elements. Each dictionary item is
a 9 × 9 convolution kernel. The resulting system to be solved is a64 times overcomplete sparse
coding problem. Both systems are trained for 10 different sparsity values ranging between0.1 and
3.0.

Second Layer:Using the64 feature maps output from the first layer encoder on Berkeley images,
we train a second layer convolutional sparse coding. At the second layer, the number of feature
maps is256 and each feature map is connected to16 randomly selected input features out of64.
Thus, we aim to learn4096 convolutional kernels at the second layer. To the best of ourknowledge,
none of the previous convolutional RBM [3] and sparse coding[6] methods have learned such a
large number of dictionary elements. Our aim is motivated bythe fact that using such large number
of elements and using a linear classifier [14] reports recognition results similar to [3] and [6]. In
both of these studies a more powerful Pyramid Match Kernel SVM classifier [21] is used to match
the same level of performance. Figure 3 shows128 filters that connect to8 first layer features. Each

5

Figure 3: Second stage filters.Left: Encoder kernels that correspond to the dictionary elements.
Right: 128 dictionary elements, each row shows 16 dictionary elements, connecting to a single
second layer feature map. It can be seen that each group extracts similar type of features from their
corresponding inputs.

row of filters connect a particular second layer feature map.It is seen that each row of filters extract
similar features since their output response is summed together to form one output feature map.

Logistic Regression Classifier

SD
tanh

CD
shrink PSD [14]

U 57.1± 0.6% 57.3± 0.5% 52.2%
U

+ 57.6± 0.4% 56.4± 0.5% 54.2%

Table 1: ComparingSDtanh encoder toCD
shrink encoder on Caltech 101 dataset using a single

stage architecture. Each system is trained using 64 convolutional filters. The recognition accuracy
results shown are very similar for both systems.

One Stage System:We train 64 convolutional unsupervised features using bothSD
tanh and

CD
shrink methods. We use the encoder function obtained from this training followed by abso-

lute value rectification, contrast normalization and average pooling. The convolutional filters used
are9× 9. The average pooling is applied over a10× 10 area with 5 pixel stride. The output of first
layer is then64 × 26 × 26 and fed into a logistic regression classifier and Lazebnik’sPMK-SVM
classifier [21] (that is, the spatial pyramid pipeline is used, using our features to replace the SIFT
features).

Two Stage System:We train 4096 convolutional filters withSDtanh method using 64 input feature
maps from first stage to produce 256 feature maps. The second layer features are also9 × 9, pro-
ducing256 × 18 × 18 features. After applying absolute value rectification, contrast normalization
and average pooling (on a6 × 6 area with stride4), the output features are256 × 4 × 4 (4096)
dimensional. We only use multinomial logistic regression classifier after the second layer feature
extraction stage.

We denote unsupervised trained one stage systems withU , two stage unsupervised trained systems
with UU and “+” represents supervised training is performed afterwards.R stands for randomly
initialized systems with no unsupervised training.

Logistic Regression Classifier
PSD [14](UU) 63.7
PSD [14](U+

U
+) 65.5

SD
tanh (UU) 65.3± 0.9%

SD
tanh (U+

U
+) 66.3± 1.5%

PMK-SVM [21] Classifier:
Hard quantization + multiscale pooling

+ intersection kernel SVM
SIFT [21] 64.6± 0.7%
RBM [3] 66.4± 0.5%
DN [6] 66.9± 1.1%

SD
tanh (U) 65.7± 0.7%

Table 2: Recognition accuracy on Caltech 101 dataset using avariety of different feature represen-
tations using two stage systems and two different classifiers.
Comparing ourU system using bothSDtanh andCD

shrink (57.1% and57.3%) with the52.2% re-
ported in [14], we see that convolutional training results in significant improvement. With two layers
of purely unsupervised features (UU , 65.3%), we even achieve the same performance as the patch-
based model of Jarrett et al. [14] after supervised fine-tuning (63.7%). Moreover, with additional
supervised fine-tuning (U+U+) we match or perform very close to (66.3%) similar models [3, 6]

6

10
−2

10
−1

10
0

10
1

0.05

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

false positives per image

m
is

s
ra

te

R+R+ (14.8%)
U+U+ (11.5%)

10
−2

10
−1

10
0

10
1

0.05

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

false positives per image

m
is

s
ra

te

U+U+−bt0 (23.6%)
U+U+−bt1 (16.5%)
U+U+−bt2 (13.8%)
U+U+−bt6 (12.4%)
U+U+−bt3 (11.9%)
U+U+−bt5 (11.7%)
U+U+−bt4 (11.5%)

Figure 4: Results on the INRIA dataset with per-image metric. Left: Comparing two best systems
with unsupervised initialization (UU) vs random initialization (RR). Right: Effect of bootstrapping
on final performance for unsupervised initialized system.

with two layers of convolutional feature extraction, even though these models use the more complex
spatial pyramid classifier (PMK-SVM) instead of the logistic regression we have used; the spatial
pyramid framework comprises a codeword extraction step andan SVM, thus effectively adding one
layer to the system. We get65.7% with a spatial pyramid on top of our single-layerU system (with
256 codewords jointly encoding2×2 neighborhoods of our features by hard quantization, then max
pooling in each cell of the pyramid, with a linear SVM, as proposed by authors in [22]).

Our experiments have shown that sparse features achieve superior recognition performance com-
pared to features obtained using a dictionary trained by a patch-based procedure as shown in Ta-
ble 2. It is interesting to note that the improvement is larger when using feature extractors trained
in a purely unsupervised way, than when unsupervised training is followed by a supervised training
phase (57.1 to 57.6). Recalling that the supervised tuning is aconvolutionalprocedure, this last
training step might have the additional benefit of decreasing the redundancy between patch-based
dictionary elements. On the other hand, this contribution would be minor for dictionaries which
have already been trained convolutionally in the unsupervised stage.

3.2 Pedestrian Detection
We train and evaluate our architecture on the INRIA Pedestrian dataset [23] which contains2416
positive examples (after mirroring) and1218 negative full images. For training, we also augment the
positive set with small translations and scale variations to learn invariance to small transformations,
yielding 11370 and 1000 positive examples for training and validation respectively. The negative set
is obtained by sampling patches from negative full images atrandom scales and locations. Addition-
ally, we include samples from the positive set with larger and smaller scales to avoid false positives
from very different scales. With these additions, the negative set is composed of 9001 training and
1000 validation samples.

Architecture and Training
A similar architecture as in the previous section was used, with 32 filters, each7 × 7 for the first
layer and64 filters, also7 × 7 for the second layer. We used2 × 2 average pooling between each
layer. A fully connected linear layer with 2 output scores (for pedestrian and background) was used
as the classifier. We trained this system on78 × 38 inputs where pedestrians are approximately
60 pixels high. We have trained our system with and without unsupervised initialization, followed
by fine-tuning of the entire architecture in supervised manner. Figure 5 shows comparisons of our
system with other methods as well as the effect of unsupervised initialization.

After one pass of unsupervised and/or supervised training,several bootstrapping passes were per-
formed to augment the negative set with the 10 most offendingsamples on each full negative image
and the bigger/smaller scaled positives. We select the mostoffending sample that has the biggest
opposite score. We limit the number of extracted false positives to3000 per bootstrapping pass.
As [24] showed, the number of bootstrapping passes matters more than the initial training set. We
find that the best results were obtained after four passes, asshown in figure 5 improving from23.6%
to 11.5%.

Per-Image Evaluation
Performance on the INRIA set is usually reported with the per-window methodology to avoid post-
processing biases, assuming that better per-window performance yields better per-image perfor-

7

10
−2

10
−1

10
0

10
1

0.05

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

false positives per image
m

is
s

ra
te

Shapelet−orig (90.5%)

PoseInvSvm (68.6%)

VJ−OpenCv (53.0%)

PoseInv (51.4%)

Shapelet (50.4%)

VJ (47.5%)

FtrMine (34.0%)

Pls (23.4%)

HOG (23.1%)

HikSvm (21.9%)

LatSvm−V1 (17.5%)

MultiFtr (15.6%)

R+R+ (14.8%)

U+U+ (11.5%)

MultiFtr+CSS (10.9%)

LatSvm−V2 (9.3%)

FPDW (9.3%)

ChnFtrs (8.7%)

Figure 5: Results on the INRIA dataset with per-image metric. These curves are computed from the
bounding boxes and confidences made available by [25]. Comparing our two best systems labeled
(U+U+ andR+R+)with all the other methods.

mance. However [25] empirically showed that the per-windowmethodology fails to predict the
performance per-image and therefore is not adequate for real applications. Thus, we evaluate the
per-image accuracy using the source code available from [25], which matches bounding boxes with
the50% PASCAL matching measure (intersection

union
> 0.5).

In figure 5, we compare our best results (11.5%) to the latest state-of-the-art results (8.7%) gathered
and published on the Caltech Pedestrians website1. The results are ordered by miss rate (the lower
the better) at1 false positive per image on average (1 FPPI). The value of1 FPPI is meaningful for
pedestrian detection because in real world applications, it is desirable to limit the number of false
alarms.

It can be seen from figure 4 that unsupervised initializationsignificantly improves the performance
(14.8%vs11.5%). The number of labeled images in INRIA dataset is relatively small, which limits
the capability of supervised learning algorithms. However, an unsupervised method can model large
variations in pedestrian pose, scale and clutter with much better success.

Top performing methods [26], [27], [28], [24] also contain several components that our simplis-
tic model does not contain. Probably, the most important of all is color information, whereas we
have trained our systems only on gray-scale images. Anotherimportant aspect is training on multi-
resolution inputs [26], [27], [28]. Currently, we train oursystems on fixed scale inputs with very
small variation. Additionally, we have used much lower resolution images than top performing sys-
tems to train our models (78 × 38 vs 128 × 64 in [24]). Finally, some models [28] use deformable
body parts models to improve their performance, whereas we rely on a much simpler pipeline of
feature extraction and linear classification.

Our aim in this work was to show that an adaptable feature extraction system that learns its pa-
rameters from available data can perform comparably to bestsystems for pedestrian detection. We
believe by including color features and using multi-resolution input our system’s performance would
increase.

4 Summary and Future Work
In this work we have presented a method for learning hierarchical feature extractors. Two different
methods were presented for convolutional sparse coding, itwas shown that convolutional training of
feature extractors reduces the redundancy among filters compared with those obtained from patch
based models. Additionally, we have introduced two different convolutional encoder functions for
performing efficient feature extraction which is crucial for using sparse coding in real world ap-
plications. We have applied the proposed sparse modeling systems using a successful multi-stage
architecture on object recognition and pedestrian detection problems and performed comparably to
similar systems.

In the pedestrian detection task, we have presented the advantage of using unsupervised learning for
feature extraction. We believe unsupervised learning significantly helps to properly model extensive
variations in the dataset where a pure supervised learning algorithm fails. We aim to further improve
our system by better modeling the input by including color and multi-resolution information.

1http://www.vision.caltech.edu/ImageDatasets/CaltechPedestrians/files/data-INRIA

8

References
[1] LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradient-basedlearning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, November 1998.
[2] Serre, T, Wolf, L, and Poggio, T. Object recognition with features inspired by visual cortex. InCVPR’05

- Volume 2, pages 994–1000, Washington, DC, USA, 2005. IEEE Computer Society.
[3] Lee, H, Grosse, R, Ranganath, R, and Ng, A. Convolutional deepbelief networks for scalable unsuper-

vised learning of hierarchical representations. InICML’09, pages 609–616. ACM, 2009.
[4] Ranzato, M, Poultney, C, Chopra, S, and LeCun, Y. Efficient learning of sparse representations with an

energy-based model. InNIPS’07. MIT Press, 2007.
[5] Kavukcuoglu, K, Ranzato, M, Fergus, R, and LeCun, Y. Learning invariant features through topographic

filter maps. InCVPR’09. IEEE, 2009.
[6] Zeiler, M, Krishnan, D, Taylor, G, and Fergus, R. Deconvolutional Networks. InCVPR’10. IEEE, 2010.
[7] Aharon, M, Elad, M, and Bruckstein, A. M. K-SVD and its non-negative variant for dictionary design. In

Papadakis, M, Laine, A. F, and Unser, M. A, editors,Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, volume 5914, pages 327–339, August 2005.

[8] Mairal, J, Bach, F, Ponce, J, and Sapiro, G. Online dictionary learning for sparse coding. InICML’09,
pages 689–696. ACM, 2009.

[9] Li, Y and Osher, S. Coordinate Descent Optimization for l1 Minimization with Application to Com-
pressed Sensing; a Greedy Algorithm.CAM Report, pages 09–17.

[10] Olshausen, B. A and Field, D. J. Sparse coding with an overcomplete basis set: a strategy employed by
v1? Vision Research, 37(23):3311–3325, 1997.

[11] Beck, A and Teboulle, M. A fast iterative shrinkage-thresholdingalgorithm for linear inverse problems.
SIAM J. Img. Sci., 2(1):183–202, 2009.

[12] Mallat, S and Zhang, Z. Matching pursuits with time-frequency dictionaries.IEEE Transactions on Signal
Processing, 41(12):3397:3415, 1993.

[13] Martin, D, Fowlkes, C, Tal, D, and Malik, J. A database of human segmented natural images and its appli-
cation to evaluating segmentation algorithms and measuring ecological statistics. In ICCV’01, volume 2,
pages 416–423, July 2001.

[14] Jarrett, K, Kavukcuoglu, K, Ranzato, M, and LeCun, Y. What is the best multi-stage architecture for
object recognition? InICCV’09. IEEE, 2009.

[15] Gregor, K and LeCun, Y. Learning fast approximations of sparse coding. InProc. International Confer-
ence on Machine learning (ICML’10), 2010.

[16] LeCun, Y, Bottou, L, Orr, G, and Muller, K. Efficient backprop.In Orr, G and K., M, editors,Neural
Networks: Tricks of the trade. Springer, 1998.

[17] Schwartz, O and Simoncelli, E. P. Natural signal statistics and sensory gain control.Nature Neuroscience,
4(8):819–825, August 2001.

[18] Lyu, S and Simoncelli, E. P. Nonlinear image representation using divisive normalization. InCVPR’08.
IEEE Computer Society, Jun 23-28 2008.

[19] Fei-Fei, L, Fergus, R, and Perona, P. Learning generative visual models from few training examples: an
incremental Bayesian approach tested on 101 object categories. InWorkshop on Generative-Model Based
Vision, 2004.

[20] Pinto, N, Cox, D. D, and DiCarlo, J. J. Why is real-world visual object recognition hard?PLoS Comput
Biol, 4(1):e27, 01 2008.

[21] Lazebnik, S, Schmid, C, and Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing
natural scene categories.CVPR’06, 2:2169–2178, 2006.

[22] Boureau, Y, Bach, F, LeCun, Y, and Ponce, J. Learning mid-level features for recognition. InCVPR’10.
IEEE, 2010.

[23] Dalal, N and Triggs, B. Histograms of oriented gradients for humandetection. In Schmid, C, Soatto, S,
and Tomasi, C, editors,CVPR’05, volume 2, pages 886–893, June 2005.

[24] Walk, S, Majer, N, Schindler, K, and Schiele, B. New features andinsights for pedestrian detection. In
CVPR 2010, San Francisco, California.

[25] Dollár, P, Wojek, C, Schiele, B, and Perona, P. Pedestrian detection: A benchmark. InCVPR’09. IEEE,
June 2009.

[26] Dollár, P, Tu, Z, Perona, P, and Belongie, S. Integral channel features. InBMVC 2009, London, England.
[27] Dollár, P, Belongie, S, and Perona, P. The fastest pedestrian detector in the west. InBMVC 2010,

Aberystwyth, UK.
[28] Felzenszwalb, P, Girshick, R, McAllester, D, and Ramanan, D. Object detection with discriminatively

trained part based models. InPAMI 2010.

9

