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Abstract

This document comprises two sections. The first section is a brief introduction
of the mathematical background. The second section gives the proof of main
theorems presented in the paper.

1 Mathematical Background

In this section, we review mathematical concepts and important results that are closely related to
the paper. In particular, the emphasis is placed onto Poisson processes, Gamma processes, Dirichlet
processes, as well as completely random measures. We assume that the readers are familiarized with
the basic knowledge in measure theory, probability theory, and stochastic processes.

1.1 Random Point Processes and Random Measures

Definition 1 (Random point process). Let (Ω,F) be a measurable space, a random point process
(or simply point process) on Ω is a random variable, whose value is a countable subset of Ω.

Given a point process Π, each sample π of Π is a set of points in Ω, which induces a σ-finite counting
measure over Ω, denoted by Nπ . The measure Nπ is defined to be

Nπ(A) = #{Ω ∩ π}.

Intuitively, Nπ counts the number of points in π that are also inA. Then, we can introduce a random
variable NΠ that depends on Π, such that when Π = π, NΠ = Nπ . It means that the value of NΠ

is a counting measure over Ω. This kind of random variable is called a random measure, which is
defined formally, as follows

Definition 2 (Random measure). Let (Ω,F) be a measurable space, a random measure on Ω is a
random variable, whose value is a measure over Ω.

According to the analysis above, we can see that each point process Π corresponds uniquely to a
random counting measure NΠ.

Definition 3 (Completely random measure). Let M be a random measure over (Ω,F), then M
is called a completely random measure, if for any collection of disjoint measurable subsets
A1, A2, . . . ∈ F , the random variables M(A1),M(A2), . . . are independent.

Definition 4 (Completely random point process). Let Π be a point process on Ω, then Π is called a
completely random point process if NΠ is a completely random measure.
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1.2 Poisson Distributions and Poisson Processes

Definition 5 (Poisson distribution). A discrete random variable X whose values are non-negative
integers has a Poisson distribution, denoted by X ∼ P(λ), if

P(X = k) =
λke−λ

k!
, k = 0, 1, . . .

Here, λ is called the mean parameter of the distribution.

Let X ∼ P(λ), then
E(X) = λ, and Var(X) = λ. (1)

For Poisson distribution, we have the following important results.
Proposition 1 (Countable Additivity). Let X1, X2, . . . be a countable collection of independent
poisson distributed variables as Xk ∼ P(λk). Then

∞∑
k=1

Xk ∼ P

( ∞∑
k=1

λk

)
. (2)

We note that as a special case, poisson distribution also satisfies finite additivity.
Proposition 2. Let X ∼ P(λ), and (Y1, . . . , YK) ∼ Mult(p1, . . . , pK ;X), then Y1, . . . , YK are
independent, and each k has Yk ∼ P(pkλ).

Next, we extend Poisson distributions to Poisson processes.
Definition 6 (Poisson Process). A point process Π on Ω is called a Poisson process with mean
measure µ, denoted by Π ∼ PoissonP(µ), if it satisfies

1. for each measurable subset A ∈ FΩ, NΠ(A) has a Poisson distribution as NΠ(A) ∼
P(µ(A)); and

2. Π is completely random, i.e. for any collection of disjoint measurable subsetsA1, A2, . . . ∈
F , NΠ(A1), NΠ(A2), . . . are independent.

Theorem 1. A point process Π on a regular measure space is a Poisson process if and only if NΠ is
completely random. If this is true, the base measure is given by µ(A) = E(NΠ(A)).

Note: For the convenience of the reader, all theorems presented in the paper are re-stated in this
supplemental document with the same indices.

1.3 Gamma Distributions and Gamma Processes

Definition 7 (Gamma Distribution). A non-negative real-valued random variable X is said to
have a Gamma distribution with shape parameter u and scale parameter λ, denoted by X ∼
Gamma(u, λ), if its probability density function is given by

f(x;u, λ) =
xu−1e−x/λ

λuΓ(u)
.

For X ∼ Gamma(u, λ), we have

E(X) = uλ, and Var(X) = uλ2.

In particular when λ = 1, E(X) = Var(X) = u.

Like Poisson distribution, Gamma distribution also satisfies countable additivity.
Proposition 3. Let X1, X2, . . . be a countable collection of independent Gamma distributed vari-
ables as Xk ∼ Gamma(uk, λ). Then

∞∑
k=1

Xk ∼ Gamma

( ∞∑
k=1

uk, λ

)
. (3)
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Definition 8 (Gamma Process). A random measure G on Ω is called a Gamma process with base
measure µ and scale parameter λ, denoted by G ∼ ΓP(µ, λ), if it satisfies

1. for each measurable subset A ∈ FΩ, G(A) has a Gamma distribution as G(A) ∼
Gamma(µ(A), λ); and

2. G is completely random.

For the purpose of studying Dirichlet processes, the scale parameter λ does not affect the results,
and we therefore assume λ = 1 in both the paper and this document. For conciseness, we write
ΓP(µ) in place of ΓP(µ, 1), and Gamma(µ(A)) in place of Gamma(µ(A), 1), without making the
scale parameter explicit.

1.4 Dirichlet Distributions and Dirichlet Processes

Let Sd denote the probability simplex in the d-dimensional real vector space Rd, as

Sd = {(x1, . . . , xd) ∈ Rd : xi ≥ 0, i = 1, . . . , d, and x1 + · · ·+ xd = 1}. (4)

Definition 9 (Dirichlet Distribution). An Sd-valued random variable X is said to have a Dirichlet
distribution, denoted by X ∼ Dir(α1, . . . , αd) with α1, . . . , αd > 0, if it has a probability density
function with respect to the Lebesgue measure over Sd given by

f(x1, . . . , xd;α1, . . . , αd) =
Γ
(∑d

i=1 αi

)
∏d
i=1 Γ(αi)

d∏
i=1

xαi−1
i . (5)

For X = (X1, . . . , Xd) ∼ Dir(α1, . . . , αd), we have

E(Xi) =
αi
α∗
, Var(Xi) =

E(Xi)(1− E(Xi))

α∗ + 1
, and Cov(Xi, Xj) = −E(Xi)E(Xj)

α∗ + 1
. (6)

Here, α∗ =
∑d
i=1 αi.

Definition 10 (Dirichlet Process). A random measure D on Ω is called a Dirichlet process with
base measure µ, denoted by D ∼ DP(µ), if for any finite measurable partition {A1, . . . , An} of Ω,

(D(A1), . . . , D(An)) ∼ Dir(µ(A1), . . . , µ(An)). (7)

2 Proofs of Theorems

There are seven theorems in the paper. Theorem 1 is a deep result established based on Lévy-
Khinchin representation. Interested readers can refer to [1](see chapter 1.4 and chapter 8) for details.
Theorem 2 is an immediate corollary of the superposition theorem (page 16 of [1]). We derived the
remaining theorems (theorem 3, 4, 5, 6, and 7) in developing our approach. In this section, we prove
all theorems except theorem 1, as well as the formulas for computing expectation and covariance
(those below theorem 3 and theorem 5 in the paper).

Section 2 in the paper briefly characterizes the relations between Poisson processes, compound Pois-
son processes, Gamma processes, and Dirichlet processes. These relations are crucial for deriving
the theorems. In particular, we will repeatedly use the following two facts in our proofs:

1. Let γ denote a measure over R+ given by γ(dw) = w−1e−wdw. If G is a compound
Poisson process whose underlying Poisson process has a mean measure µ× γ, then G is a
Gamma process with base measure µ, i.e. G ∼ ΓP(µ).

2. Let G ∼ ΓP(µ), then D := G/G(Ω) ∼ Dir(µ), G(Ω) ∼ Gamma(µ(Ω)), and D is
independent of G(Ω).

2.1 The Proofs for Theorem 2 and Theorem 3

Lemma 1 (Disjointness Lemma [1]). Let Π1, . . . ,Πm be independent Poisson processes on Ω, and
Πk ∼ PoissonP(µk). Suppose each µk is a σ-finite non-atomic measure, then Π1, . . . ,Πn are
disjoint almost surely.
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The proof of this lemma can be found in pages 15 to 16 in [1]. The implication of this lemma is that
for any A ∈ FΩ, we have

NΠ1∪···∪Πm(A) = Π1(A) + · · ·+ Πm(A), a.s. (8)

In addition, σ-finiteness and being non-atomic are two properties that we assume implicitly for all
the Poisson processes discussed in this document, such that the disjointness lemma can apply.
Theorem 2 (Superposition Theorem for Poisson Process). Let Π1, . . . ,Πm be independent Poisson
processes on Ω with Πk ∼ PoissonP(µk), then

m⋃
k=1

Πk ∼ PoissonP

(
m∑
k=1

µk

)
. (9)

Proof. Let Π′ := Π1 ∪ · · · ∪ Πm. Then according to the disjointness lemma and the additivity of
Poisson distribution, for each A ∈ FΩ, we have

NΠ(A) =

n∑
i=1

NΠk
(A) ∼ P

(
m∑
k=1

µk(A)

)
. (10)

Moreover, NΠ is completely random due to the complete randomness of NΠk
. Hence, Π ∼

PoissonP (
∑m
k=1 µk).

Note that [1] gives a more general version of this theorem (in page 16) that considers the sum
of a countable collection of Poisson processes. Nonetheless, the finite sum is sufficient for the
development of our approach.
Lemma 2. Let G1, . . . , Gm be independent Gamma processes on Ω with Gk ∼ ΓP(µk), then

m∑
k=1

Gk ∼ ΓP

(
m∑
k=1

µk

)
. (11)

Proof. Let Π∗k be the Poisson processes on the product space Ω× R+ that underlies Gk, which has
Π∗k ∼ PoissonP(µk × γ). According to the disjointness lemma, Π′ :=

⋃m
k=1 Π∗k is the Poisson

process that underlies G′ :=
∑m
k=1Gk. By theorem 2, we have

Π′ ∼ PoissonP

(
m∑
k=1

(µk × γ)

)
= PoissonP

((
m∑
k=1

µk

)
× γ

)
. (12)

Based on the relation between Gamma processes and Poisson processes, we can conclude that G′ ∼
ΓP (

∑m
k=1 µk).

Theorem 3. Let D1, . . . , Dm be independent Dirichlet processes on Ω with Dk ∼ DP(µk), and
(c1, . . . , cm) ∼ Dir(µ1(Ω), . . . , µm(Ω)) be independent of D1, . . . , Dk, then

m∑
k=1

ckDk ∼ DP

(
m∑
k=1

µk

)
. (13)

Proof. For each k, we draw gk ∼ Gamma(µk(Ω)) independently, and let Gk = gkDk. Then
from the relation between Dirichlet process and Gamma process, we know that G1, . . . , Gm are
independent Gamma processes with Gk ∼ ΓP(µk). Let G′ :=

∑m
k=1Gk =

∑m
k=1 gkDk, then by

the lemma above, we have G′ ∼ ΓP (
∑m
k=1 µk). Let g′ =

∑m
k=1 gk, then by normalizing G′, we

get

D′ := G′/G′(Ω) = G′/g′ =

m∑
k=1

ckDk. (14)

Here, ck = gk/g
′ = gk/

∑m
l=1 gl. Hence, (c1, . . . , cm) ∼ Dir(µ1(Ω), . . . , µm(Ω)), and c1, . . . , cm

are independent of D1, . . . , Dm due to the fact that g1, . . . , gm are independent of D1, . . . , Dm. In
addition, since D′ is obtained by normalizing G′, we have D′ ∼ DP (

∑m
k=1 µk). Combining this

with Eq.(14) completes the proof.
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Next, we prove the formulas of the expectation of D′ and the covariance between D′ and Dk.
Lemma 3. Let X,Y be independent real-valued random variables, then

Cov(XY, Y ) = E(X)Var(Y ). (15)

Proof. We can see this by

Cov(XY, Y ) = E(XY 2)− E(XY )E(Y ) = E(X)E(Y 2)− E(X)E(Y )2

= E(X)(E(Y 2)− E(Y )2) = E(X)Var(Y ). (16)

Proposition 4. Let D1, . . . , Dm be independent Dirichlet processes on Ω with Dk ∼ DP(µk),
(c1, . . . , cm) ∼ Dir(µ1(Ω), . . . , µm(Ω)) be independent of D1, . . . , Dk, and D′ =

∑m
k=1 ckDk.

Then for each A ∈ FΩ,

E(D′(A)) =

m∑
k=1

αk
α′

E(Dk(A)), and Cov(D′(A), Dk(A)) =
αk
α′

Var(Dk(A)), (17)

where αk = µk(Ω) and α′ =
∑m
k=1 αk.

Proof. Let µ′ =
∑m
k=1 µk, then D′ ∼ DP(µ′). It follows that

E(D′(A)) =
µ′(A)

µ′(Ω)
=

1

α′

m∑
k=1

µk(A) =
1

α′

m∑
k=1

αk
µk(A)

µk(Ω)
=

m∑
k=1

αk
α′

E(Dk(A)). (18)

For the covariance, we have

Cov

(
m∑
i=1

ciDi(A), Dk(A)

)
=

m∑
i=1

Cov(ciDi(A), Dk(A)),

= Cov(ckDk(A), Dk(A)),

= E(ck)Var(Dk(A)) =
αk
α′

Var(Dk(A)).

The proof is completed.

2.2 The Proofs for Theorem 4 and Theorem 5

Consider a marking process described as follows. Let Π be a Poisson process on Ω with Π ∼
PoissonP(µ); and for each point θ ∈ Π, we randomly draw a mark mθ ∼ p(θ, ·) inM . Here, p(θ, ·)
is a probability measure over the mark space M , which may or may not depend on θ. Collecting
all the pairs (θ,mθ) leads to a point process on the product space Ω ×M . The following theorem
shows that such a point process is also a Poisson process.
Lemma 4 (Marking Theorem [1]). Suppose (M,FM ) is a measurable space, and for each θ ∈ Ω,
there exists a probability measure p(θ, ·) overM , such that for eachB ∈ FM , p(θ,B), as a function
of θ, is measurable with respect to FΩ. Let Π ∼ PoissonP(µ) be a Poisson process on Ω, and for
each θ ∈ Π, we independently draw mθ ∼ p(θ, ·), then the point process given by Π∗ = {(θ,mθ) :
θ ∈ Π} is a Poisson process on Ω×M as Π∗ ∼ PoissonP(µ∗), where

µ∗(C) =

∫
C

µ(θ)p(θ, dm). (19)

Based on the marking theorem, we derive the coloring theorem as below.
Lemma 5 (Generalized Coloring Theorem). Let Π ∼ PoissonP(µ) be a Poisson process on Ω, and
qk : Ω→ [0, 1] be a non-negative measurable function for k = 1, . . . ,m, such that

∑m
k=1 qk(θ) = 1

for all θ ∈ Ω. For each θ ∈ Π, we independently draw cθ ∈ {1, . . . , n} with P(cθ = k) = qk(θ).
Let Πk = {θ ∈ Π : cθ = k} for each k, then Πk is a Poisson process on Ω, as

Πk ∼ PoissonP(qkµ). (20)
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Here, qkµ is defined by

(qkµ)(A) :=

∫
A

qkdµ, for A ∈ FΩ. (21)

This can also be written as (qkµ)(dθ) = qk(θ)µ(dθ). Moreover, Π1, . . . ,Πn are independent.

Proof. Let Π∗ = {(θ, cθ) : θ ∈ Π} be the marked point process on the product space Ω×{1, . . . , n}.
By the marking theorem, Π∗ is a Poisson process as Π∗ ∼ PoissonP(µ∗). In particular, for any
A ∈ FΩ and k ∈ {1, . . . , n}, we have

µ∗(A× {k}) =

∫
A

qk(θ)µ(dθ) = (qkµ)(A). (22)

According to the construction of Πk, we note that for any A ∈ FΩ,

NΠk
(A) = NΠ∗(A× {k}) ∼ P((qkµ)(A)). (23)

Moreover, NΠk
inherits the completely randomness from Π∗. Hence, Πk ∼ PoissonP(qkµ). Fur-

thermore, we note that Π1, . . . ,Πn are respectively based on Ω × {1}, . . . ,Ω × {n} in the product
space, which are disjoint, implying that Π1, . . . ,Πn are independent. The proof is completed.

Note that the coloring theorem that we show here is more general than the coloring theorem in page
53 of [1], which assumes that the “color distribution” for all θ is the same. While in this generalized
coloring theorem, we allow different color distribution for different θ.

Theorem 4 (Subsampling Theorem). Let Π ∼ PoissonP(µ) be a Poisson process on the space Ω,
and q : Ω→ [0, 1] be a non-negative measurable function. If we independently draw zθ ∈ {0, 1} for
each θ ∈ Π0 with P(zθ = 1) = q(θ), and let Πk = {θ ∈ Π : zθ = k} for k = 0, 1, then Π0 and Π1

are independent Poisson processes on Ω, with Π0 ∼ PoissonP((1− q)µ) and Π1 ∼ PoissonP(qµ).

Proof. This is just a special case of the generalized coloring theorem, where there are only two
colors 0 and 1.

Lemma 6. LetG ∼ ΓP(µ) be a Gamma process on Ω given byG =
∑n
i=1 wiδθi , and q : Ω→ [0, 1]

be a non-negative measurable function. If for each i, we independently draw zi ∈ {0, 1} with
P(zi = 1) = q(θi), and let

G0 =
∑
i:zi=0

wiδθi ,

G1 =
∑
i:zi=1

wiδθi .

Then G0 ∼ ΓP((1− q)µ), G1 ∼ ΓP(qµ), and G0 is independent of G1.

Proof. Let Π∗ ∼ PoissonP(µ × γ) be the Poisson process that underlies G. We randomly colors
Π∗ with the probability function q to get Π∗0 and Π∗1 respectively for color 0 and color 1. By
the subsampling theorem for Poisson process, we have Π∗0 ∼ PoissonP((1 − q)µ × γ), Π∗1 ∼
PoissonP(qµ× γ), and Π∗0 is independent of Π∗1. By the construction of G0 and G1, we can easily
see that Π∗0 and Π∗1 are the Poisson processes that underlie G0 and G1 respectively. Hence, we can
conclude that G0 ∼ ΓP((1− q)µ), G1 ∼ ΓP(qµ), and G0 is independent of G1.

Theorem 5. Let D ∼ DP(µ) be represented by D =
∑n
i=1 riδθi and q : Ω → [0, 1] be a non-

negative measurable function. For each i we independently draw zi with P(zi = 1) = q(θi), then∑
i:zi=1

r′iδθi ∼ DP(qµ), (24)

where r′i := ri/
∑
j:zj=1 rj is the re-normalized coefficients.
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Proof. We independently draw g ∈ Gamma(µ(Ω)), and let G := gD, then

G = gD =

n∑
i=1

griδθi ∼ ΓP(µ). (25)

Let Gk =
∑
i:zi=k

griδθi for k = 0, 1. Then by lemma 6, we have G1 ∼ ΓP(qµ). Normalizing G1,
we get

D1 := G1/G1(Ω) =

∑
i:zi=1 griδθi∑
j:zj=1 grj

=
∑
i:zi=1

ri∑
j:zj=1 rj

δθi =
∑
i:zi=1

r′iδθi . (26)

By the relation between Gamma process and Dirichlet process, we have D1 ∼ DP(qµ), completing
the proof.

Proposition 5. With the setting in the proof of theorem 5, we have for each A ∼ FΩ,

E(D1(A)) =
(qµ)(A)

(qµ)(Ω)
, (27)

and

Cov(D1(A), D(A)) =
(qµ)(Ω)

µ(Ω)
Var(D1(A)). (28)

Proof. The formula for E(D1(A)) is an immediate consequence of the result D1(A) ∼ DP(qµ). In
addition, we let D0 = G0/G0(Ω). Note that D0 and D1 are independent due to the independence
between G0 and G1, and D is the superposition of D0 and D1. Hence, the covariance formula
immediately follows from proposition 4.

2.3 The Proofs for Theorem 6 and Theorem 7

A probabilistic transition is defined to be a function T : Ω×FΩ → [0, 1] such that for each θ ∈ FΩ,
T (θ, ·) is a probability measure over Ω, and for each A ∈ FΩ, T (·, A) is integrable. T can be
considered as a transformation of measures over Ω, as

(Tµ)(A) :=

∫
Ω

T (θ,A)µ(dθ). (29)

Theorem 6 (Transition Theorem). Let Π ∼ PoissonP(µ) and T be a probabilistic transition, then

T (Π) := {T (θ) : θ ∈ Π} ∼ PoissonP(Tµ). (30)

Here, with abuse of notation, we use T (θ) to denote an independent sample from T (θ, ·).

Proof. Given a measurable partition {A1, . . . , An} of Ω. For each k = 1, . . . , n, we define qk :
Ω→ [0, 1] by qk(θ) = T (θ,Ak). By the definition of T , each qk is integrable. For each θ ∈ Π, we
let zθ = k when T (θ) ∈ Ak, and Πk = {θ ∈ Π : zθ = k}. With such construction, we note that for
each k,

NT (Π)(Ak) = NΠk
(Ω). (31)

Moreover, this is equivalent to drawing zθ independently for each θ with P(zθ = k) = qk(θ). By
the generalized coloring theorem, we have

NΠk
(Ω) ∼ P((qkµ)(Ω)) = P

(∫
Ω

qk(θ)µ(dθ)

)
= P

(∫
Ω

T (θ,Ak)µ(dθ)

)
= P((Tµ)(Ak)).

(32)
Therefore, NT (Π)(Ak) ∼ P((Tµ)(Ak)). Again, by the generalized coloring theorem, Π1, . . . ,Πn

are independent, which implies that NT (Π)(A1), . . . , NT (Π)(An) are independent. Since the parti-
tion {A1, . . . , An} was arbitrarily given, the theorem is proved.

Lemma 7. Let G =
∑∞
i=1 wiδθi ∼ ΓP(µ) be a Gamma process on Ω, then

T (G) :=

∞∑
i=1

wiδT (θi) ∼ ΓP(Tµ). (33)

7



Proof. Let Π∗ be the Poisson process on Ω×R+ that underliesG, which has Π∗ ∼ PoissonP(µ×γ).
Given a probabilistic transition T on Ω, let T ∗ be a probabilistic transition on Ω× R+ defined by

T ∗((θ, w), A×B) = T (θ,A)1{w∈B}. for A ∈ FΩ, B ∈ BR+ . (34)

Here, BR+ is the Borel σ-algebra for R+. Intuitively, we can think of T ∗ as a random transform that
sends (θ, wθ) to (T (θ), wθ). Note that a measure defined on a product space is uniquely determined
by the measure values for all sets in form of A×B. Hence, by the equation above, T ∗ is completely
defined.

According to the construction of T (G), we can see that its underlying Poisson process is T ∗(Π∗).
By the transition theorem, T ∗(Π∗) is Poisson process on Ω× R+ whose base measure is given by

(T ∗(µ× γ))(A×B) =

∫
Ω×R+

T ∗((θ, w), A×B)(µ× γ)(dθdw) (35)

=

∫
Ω×R+

T (θ,A)1{w∈B}µ(dθ)γ(dw) (36)

=

∫
Ω

T (θ,A)µ(dθ)

∫
R+

1{w∈B}γ(dw) (37)

= (Tµ)(A)γ(B), for A ∈ FΩ, B ∈ B(R+). (38)

Since a measure over a product space is uniquely determined by the values of all the sets in form of
A × B, we can conclude that T ∗(µ × γ) = (Tµ) × γ. Therefore, T (G) is a Gamma process on Ω
with T (G) ∼ ΓP(Tµ).

Theorem 7. Let D =
∑∞
i=1 riδθi ∼ DP(µ) be a Dirichlet process on Ω, then

T (D) :=

∞∑
i=1

riδT (θi) ∼ DP(Tµ). (39)

Proof. Let g ∼ Gamma(µ(Ω)), then G := gD ∼ ΓP(µ). By lemma 7, we have T (G) ∼ ΓP(Tµ).
It follows that

T (D) = T (G)/g = T (G)/(T (G)(Ω)) ∼ DP(Tµ). (40)
Here, we use the fact g = G(Ω) = T (G)(Ω).
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