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Abstract

We tackle the problem of simultaneously detecting occlusions and estimating op-
tical flow. We show that, under standard assumptions of Lambertian reflection
and static illumination, the task can be posed as a convex minimization problem.
Therefore, the solution, computed using efficient algorithms, is guaranteed to be
globally optimal, for any number of independently moving objects, and any num-
ber of occlusion layers. We test the proposed algorithm on benchmark datasets,
expanded to enable evaluation of occlusion detection performance.

1 Introduction

Optical flow refers to the deformation of the domain of an image that results from ego- or scene
motion. It is, in general, different from the motion field, that is the projection onto the image plane
of the spatial velocity of the scene [28], unless three conditions are satisfied: (a) Lambertian re-
flection, (b) constant illumination, and (c) constant visibility properties of the scene. Most surfaces
with benign reflectance properties (diffuse/specular) can be approximated as Lambertian almost ev-
erywhere under sparse illuminants (e.g., the sun). In any case, widespread violation of Lambertian
reflection does not enable correspondence [23], so we will embrace (a) as customary. Similarly, (b)
constant illumination is a reasonable assumption for ego-motion (the scene is not moving relative to
the light source), and even for objects moving (slowly) relative to the light source.1 Assumption (c)
is the most critical, as it is needed for the motion field to be defined.2 It is often taken for granted in
the optical flow literature, because in the limit where two images are sampled infinitesimally close in
time, there are no occluded regions, and one can focus solely on motion discontinuities. Thus, most
variational motion estimation approaches provide an estimate of a dense flow field at each location
on the image domain, including occluded regions. Alas, in occluded regions, the problem is not that
optical flow is discontinuous, or forward-backward inconsistent; it is simply not defined. Motion in
occluded regions can be hallucinated; However, whatever motion is assigned to an occluded region
cannot be validated from the data. In defense of these methods, it can be argued that, even without
taking the limit, for small parallax (slow-enough motion, or far-enough objects, or fast-enough tem-
poral sampling) occluded areas are small. However, small does not mean unimportant, as occlusions
are critical to perception [8] and a key for developing representations for recognition [22].

For this reason, we focus on issues of visibility in optical flow computation. We show that forgoing
assumption (c) and explicitly representing occlusions is not only conceptually correct, but also al-
gorithmically advantageous, for the resulting optimization problem can be shown to become convex
once occlusions are explicitly modeled. Therefore, one can guarantee convergence to a globally

1Assumption (b) is also made for convenience, as modeling illumination changes would require modeling
reflectance, which significantly complicates the picture.

2If the domain of an image portrays a portion of the scene that is not visible in another image, the two cannot
be put into correspondence.

1



optimal solution regardless of initial conditions (sect. 2). We adapt Nesterov’s efficient optimization
scheme to our problem (sect. 3), and test the resulting algorithm on benchmark datasets (sect. 4),
including evaluation of occlusion detection (sect. 1.2).

1.1 Related Work

The most common approach to handling occlusions in the optical flow literature is to define them as
regions where forward and backwards motion estimates are inconsistent [19, 1]. Most approaches
return estimates of motion in the occluded regions, where they cannot be invalidated: As we have
already pointed out, in an occluded region one cannot determine a motion field that maps one image
onto another, because the scene is not visible in one of the two. Some approaches [11, 4], while also
exploiting motion symmetry, discount occlusions by weighting the data fidelity with a monotonically
decreasing function. The resulting problem is non-convex, and therefore the proposed alternating
minimization techniques can be prone to local minima. An alternate approach [15, 14, 25] is to
formulate joint motion estimation and occlusion detection in a discrete setting, where it is NP-
hard. Various approximate solutions using combinatorial optimization require fine quantization and,
therefore, suffer from a large number of labels which results in loose approximation bounds. Another
class of methods uses the motion estimation residual to classify a location as occluded or visible
wither with a direct threshold on the residual [30] or with a more elaborate probabilistic model [24].
In each case, the resulting optimization is non-convex.

1.2 Evaluation

Optical flow estimation is a mature area of computer vision, and benchmark datasets have been de-
veloped, e.g., [2]. Unfortunately, no existing benchmark provides ground truth for occluded regions,
nor a scoring mechanism to evaluate occlusion detection performance. Motion estimates are scored
even in the occluded regions, where the data does not support them. Since our primary goal is to
detect occlusions, we have produced a new benchmark by taking a subset of the training data in the
Middlebury dataset, and hand-labeled occluded regions. We then use the same evaluation method
of the Middlebury for the (ground truth) regions that are co-visible in at least two images. This
provides a motion estimation score. Then, we provide a separate score for occlusion detection, in
terms of precision-recall curves.

2 Joint Occlusion Detection and Optical Flow Estimation

In this section, we show how the assumptions (a)-(b) can be used to formulate occlusion detection
and optical flow estimation as a joint optimization problem. Let I : D ⊂ R2×R+ → R+; (x, t) 7→
I(x, t) be a grayscale time-varying image defined on a domain D. Under the assumptions (a)-(b),
the relation between two consecutive frames in a video {I(x, t)}Tt=0 is given by

I(x, t) =

{
I(w(x, t), t+ dt) + n(x, t), x ∈ D\Ω(t; dt)

ρ(x, t), x ∈ Ω(t; dt)
(1)

where w : D × R+ → R2;x 7→ w(x, t)
.
= x + v(x, t) is the domain deformation mapping

I(x, t) onto I(x, t + dt) everywhere except at occluded regions. Usually optical flow denotes the
incremental displacement v(x, t)

.
= w(x, t) − x. The occluded region Ω can change over time

depending on the temporal sampling interval dt and is not necessarily simply-connected; so even if
we call Ω the occluded region (singular), it is understood that it can be made of several disconnected
portions. Inside Ω, the image can take any value ρ : Ω × R+ → R+ that is in general unrelated to
I(w(x), t+ dt)|x∈Ω

. In the limit dt→ 0, Ω(t; dt) = ∅. Because of (almost-everywhere) continuity
of the scene and its motion (i), and because the additive term n(x, t) compounds the effects of a
large number of independent phenomena3 and therefore we can invoke the Law of Large Numbers
(ii), in general we have that

(i) lim
dt→0

Ω(t; dt) = ∅, and (ii) n
IID∼ N (0, λ) (2)

3n(x, t) collects all unmodeled phenomena including deviations from Lambertian reflection, illumination
changes, quantization error, sensor noise, and later also linearization error. It does not capture occlusions, since
those are explicitly modeled.
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i.e., the additive uncertainty is normally distributed in space and time with an isotropic and small
variance λ > 0. We define the residual e : D → R on the entire image domain x ∈ D, via

e(x, t; dt)
.
= I(x, t)− I(w(x, t), t+ dt) =

{
n(x, t), x ∈ D\Ω
ρ(x, t)− I(w(x, t), t+ dt), x ∈ Ω

(3)

which we can write as the sum of two terms, e1 : D → R and e2 : D → R, also defined on the
entire domain D in such a way that{

e1(x, t; dt)
.
= ρ(x, t)− I(w(x, t), t+ dt), x ∈ Ω

e2(x, t; dt)
.
= n(x, t), x ∈ D\Ω. (4)

Note that e2 is undefined in Ω, and e1 is undefined in D\Ω, in the sense that they can take any value
there, including zero, which we will assume henceforth. We can then write, for any x ∈ D,

I(x, t) = I(w(x, t), t+ dt) + e1(x, t; dt) + e2(x, t; dt) (5)

and note that, because of (i) e1 is large but sparse,4 while because of (ii) e2 is small but dense4. We
will use this as an inference criterion for w, seeking to optimize a data fidelity term that minimizes
the number of nonzero elements of e1 (a proxy of the area of Ω), and the negative log-likelihood of
n.

ψdata(w, e1)
.
= ‖e1‖L0(D) +

1

λ
‖e2‖L2(D) subject to (5) (6)

=
1

λ
‖I(x, t)− I(w(x, t), t+ dt)− e1‖L2(D) + ‖e1‖L0(D)

where ‖f‖L0(D)
.
= |{x ∈ D|f(x) 6= 0}| and ‖f‖L2(D)

.
=
∫
D
|f(x)|2dx. Unfortunately, we do

not know anything about e1 other than the fact that it is sparse, and that what we are looking for is
χ(Ω) ∝ e1, where χ : D → R+ is the characteristic function that is non-zero when x ∈ Ω, i.e.,
where the occlusion residual is non-zero. So, the data fidelity term depends on w but also on the
characteristic function of the occlusion domain Ω.5 For a sufficiently small dt, we can approximate,
for any x ∈ D\Ω,

I(x, t+ dt) = I(x, t) +∇I(x, t)v(x, t) + n(x, t) (9)
where the linearization error has been incorporated into the uncertainty term n(x, t). Therefore,
following the same previous steps, we have

ψdata(v, e1) = ‖∇Iv + It − e1‖L2(D) + λ‖e1‖L0(D). (10)

Since we typically do not know the variance λ of the process n, we will treat it as a tuning param-
eter, and because ψdata or λψdata yield the same minimizer, we have attributed the multiplier λ to
the second term. In addition to the data term, because the unknown v is infinite-dimensional and
the problem is ill-posed, we need to impose regularization, for instance by requiring that the total
variation (TV) be small

ψreg(v) = µ‖v1‖TV + µ‖v2‖TV (11)
where v1 and v2 are the first and second components of the optical flow v, µ is a multiplier factor to
weight the strength of the regularizer and the weighted isotropic TV norm is defined by

‖f‖TV (D) =

∫
D

√
(g1(x)∇xf(x))2 + (g2(x)∇yf(x))2dx,

4Sparse stands for almost everywhere zero on D. Similarly, dense stands for almost everywhere non-zero.
5In a digital image, both domains D and Ω are discretized into a lattice, and dt is fixed. Therefore, spatial

and temporal derivative operators are approximated, typically, by first-order differences. We use the formal
notation

∇I(x, t)
.
=

 I

(
x+

[
1
0

]
, t

)
− I(x, t)

I

(
x+

[
0
1

]
, t

)
− I(x, t)


T

(7)

It(x, t)
.
= I(x, t+ dt)− I(x, t). (8)
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where g1(x) ≈ exp(−β|∇xI(x)|) and g2(x) ≈ exp(−β|∇yI(x)|); β is a normalizing factor. TV
is desirable in the context of occlusion detection because it does not penalize motion discontinuities
significantly. The overall problem can then be written as the minimization of the cost functional
ψ = ψdata + ψreg, which is

v̂1, v̂2, ê1 = arg min
v1,v2,e1

‖∇Iv + It − e1‖2L2(D) + λ‖e1‖L0(D) + µ‖v1‖TV (D) + µ‖v2‖TV (D)︸ ︷︷ ︸
ψ(v1,v2,e1)

(12)
In a digital image, the domain D is quantized into an M ×N lattice Λ, so we can write (12) in
matrix form as:

v̂1, v̂2, ê1 = arg min
v1,v2,e1

1

2
‖A[v1, v2, e1]T + b‖2`2 + λ‖e1‖`0 + µ‖v1‖TV + µ‖v2‖TV (13)

where e1 ∈ RMN is the vector obtained from stacking the values of e1(x, t) on the lattice Λ on
top of one another (column-wise), and similarly with the vector field components {v1(x, t)}x∈Λ

and {v2(x, t)}x∈Λ stacked into MN -dimensional vectors v1, v2 ∈ RMN . The spatial deriva-
tive matrix A is given by A = [diag(∇xI) diag(∇yI) − I], where I is the MN × MN
identity matrix, and the temporal derivative values {It(x, t)}x∈Λ are stacked into b. For finite-
dimensional vectors u ∈ RMN , ‖u‖`2 =

√
〈u, u〉, ‖u‖`0 = |{ui|ui 6= 0}| and ‖u‖TV =∑√

((g1)i(ui+1 − ui))2 + ((g2)i(ui+M − ui))2 where g1 and g2 are the stacked versions of
{g1(x)}x∈Λ and {g2(x)}x∈Λ.

In practice, (13) is NP-hard. Therefore, as customary, we relax it by minimizing the weighted-`1
norm of e1, instead of `0, such that

v̂1, v̂2, ê1 = arg min
v1,v2,e1

1

2
‖A[v1, v2, e1]T + b‖2`2 + λ‖We1‖`1 + µ‖v1‖TV + µ‖v2‖TV (14)

where W is a diagonal weight matrix and ‖u‖`1 =
∑
|ui|. When W is the identity, (14) becomes a

standard convex relaxation of (13) and its globally optimal solution can be reached efficiently [27].
However, the `0 norm can also be approximated by reweighting `1, as proposed by Candes et al. [5],
by setting the diagonal elements of W to wi ≈ 1/(|(e1)i|+ ε), ε small, after each iteration of (14).
The data term of the standard (unweighted) relaxation of (13) can be interpreted as a Huber norm
[10]. We favor the more general (14) as the resulting estimate of e1 is more stable and sparse.

The model (9) is valid to the extent in which dt is sufficiently small relative to v (or v sufficiently
slow relative to dt), so the linearization error does not alter the statistics of the residual n. When this
is not the case, remedies must be enacted to restore proper sampling conditions [22] and therefore
differentiate contributions to the residual coming from sampling artifacts (aliasing), rather than oc-
clusions. This can be done by solving (14) in scale-space, as customary, with coarser scales used to
initialize v̂1, v̂2 so the increment is properly sampled, and the occlusion term e1 added at the finest
scale.

The residual term e1 in (5) have been characterized in some literature as modeling illumination
changes [21, 16, 26, 13]. Note that, even if the model (5) appears similar, the priors on e1 are rather
different: Sparsity in our case, smoothness in theirs. While sparsity is clearly motivated by (i), for
illumination changes to be properly modeled, a reflectance function is necessary, which is absent in
all models of the form (5) (see [23].)

3 Optimization with Nesterov’s Algorithm

In this section, we describe an efficient algorithm to solve (14) based on Nesterov’s first order scheme
[17] which provides O(1/k2) convergence in k iterations, whereas for standard gradient descent, it
is O(1/k), a considerable advantage for a large scale problem such as (14). To simplify the notation
we let (e1)i

.
= wi(e1)i, so that A .

= [diag(∇xI) diag(∇yI) −W−1]. We then have

4



Initialize v01 , v02 , e01. For k ≥ 0

1. Compute∇ψ(vk1 , v
k
2 , e

k
1)

2. Compute αk = 1/2(k + 1), τk = 2/(k + 3)

3. Compute yk = [vk1 , v
k
2 , e

k
1 ]T − (1/L)∇ψ(vk1 , v

k
2 , e

k
1),

4. Compute zk = [v01 , v
0
2 , e

0
1]T − (1/L)

∑k
i=0 αi∇ψ(vi1, v

i
2, e

i
1),

5. Update [vk1 , v
k
2 , e

k
1 ]T = τkzk + (1− τk)yk.

Stop when the solution converges.

In order to implement this scheme, we need to address the nonsmooth nature of `1 in the computation
of∇ψ [18], a common problem in sparse optimization [3]. We write ψ(v1, v2, e1) as

ψ(v1, v2, e1) = ψ1(v1, v2, e1) + λψ2(e1) + µψ3(v1) + µψ4(v2),

and compute the gradient of each term separately. ∇v1,v2,e1ψ1(v1, v2, e1) is straightforward:
∇v1,v2,e1ψ1(v1, v2, e1) = ATA[v1, v2, e1]T +AT b.

The other three terms require smoothing. ψ2(e1) = ‖e1‖`1 can be rewritten as ψ2(e1) =
max‖u‖∞≤1 〈u, e1〉 in terms of its conjugate. [18] proposes a smooth approximation

ψσ2 (e1) = max
‖u‖∞≤1

〈u, e1〉 −
1

2
σ‖u‖2`2 , (15)

and shows that (15) is differentiable and∇e1ψσ2 (e1) = uσ , where uσ is the solution of (15):

uσi =

{
σ−1(e1)i, |(e1)i| < σ,

sgn((e1)i), otherwise.
(16)

Following [3], ∇v1ψ3 is given by ∇v1ψ
σ
3 (v1) = GTuσwhere G = [G1, G2]T , G1 and G2 are

weighted horizontal and vertical differentiation operators , and uσ has the form [u1, u2] where

u1,2
i =

{
σ−1(G1,2v1)i, ‖[(G1v1)i (G2v1)i]

T ‖`2 < σ,

‖[(G1v1)i (G2v1)i]
T ‖−1

`2
(G1,2v1)i, otherwise.

(17)

∇v2
ψ4 can be computed in the same way. Once we have computed each term,∇ψ(v1, v2, e1) is

∇ψ(v1, v2, e1) = ∇ψ1 + [λ∇e1ψ2, µ∇v1
ψ3, µ∇v2

ψ4]T . (18)

We also need the Lipschitz constant L to compute the auxiliary variables yk and zk to minimize ψ.
Since ‖GTG‖2 is bounded above [7] by 8, given the coefficients λ and µ, L is given by

L = max(λ, 8µ)/σ + ‖ATA‖2.
A crucial element of the scheme is the selection of σ. It trades off accuracy and speed of conver-
gence. A large σ yields a smooth solution, which is undesirable when minimizing the `1 norm. A
small σ causes slow convergence. We have chosen σ empirically, although the continuation algo-
rithm proposed in [3] could be employed to adapt σ during convergence.

4 Experiments

To evaluate occlusion detection (Sect. 1.2), we start from [2] and generate occlusion maps as fol-
lows: for each training sequence, the residual computed from the given ground truth motion is used
as a discriminant to determine ground truth occlusions, fixing obvious errors in the occlusion maps
by hand. We therefore restrict the evaluation of motion to the co-visible regions, and evaluate oc-
clusion detection as a standard binary classification task. We compare our algorithm to [29] and
[14], the former is an example of robust motion estimation and the latter is a representative of the
approaches described in Sect. 1.1.

In our implementation6, we first solve (14) with standard relaxation (W is the identity) and then
with reweighted-`1. To handle large motion, we use a pyramid with scale factor 0.5 and up to 4
levels; λ and µ are fixed at 0.002 and 0.001 (Flower Garden) and 0.0006 and 0.0003 (Middlebury)
respectively. To make comparison with [29] fair, we modify the code provided online7 to include

6The source code is available at http://vision.ucla.edu/~ayvaci/occlusion-detection/
7http://gpu4vision.icg.tugraz.at
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anisotropic regularization (Fig. 1). Note that no occlusion is present in the residual of the motion
field computed by TV-L1, and subsequently the motion estimates are less precise around occluding
boundaries (top-left corner of the Flower Garden, plane in the left in Venus).

Figure 1: Comparison with TV-L1 [29] on “Venus” from [2] and “Flower Garden.” The first column
shows the motion estimates by TV-L1, color-coded as in [29], the second its residual I(x, t) −
I(w(x), t+dt); the third shows our motion estimates, and the fourth our residual e1 defined in (14).

Other frames of the Flower Garden sequence are shown in Fig. 2, where we have regularized the
occluded region by minimizing a unilateral energy on e1 with graph-cuts. We have also compared

Figure 2: Motion estimates for more frames of the Flower Garden sequence (left), residual e (mid-
dle), and occluded region (right).

motion estimates obtained with our method and [29] in the co-visible regions for the Middlebury
dataset (Table 1). Since occlusions can only be determined at the finest scale absent proper sam-
pling conditions, in this experiment we minimize the same functional of [29] at coarse scales, and
switch to (14) at the finest scale. To evaluate occlusion detection performance, we again use the
Middlebury, and compare e1 to ground truth occlusions using precision/recall curves (Fig. 3) and
average precision values (Table 2). We also show the improvement in detection performance when
we use reweighted-`1, in Table 2. We have compared our occlusion detection results to [14], us-
ing the code provided online by the authors (Table 3). Comparing motion estimates gives an unfair
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Venus RubberWhale Hydrangea Grove2 Grove3 Urban2 Urban3
AAE (ours) 4.37 5.42 2.35 2.32 5.72 3.60 6.41
AAE (L1TV) 5.28 4.49 2.44 3.45 7.66 3.57 7.12
AEPE (ours) 0.30 0.18 0.19 0.16 0.59 0.39 0.84
AEPE (L1TV) 0.33 0.13 0.20 0.24 0.74 0.46 0.89

Table 1: Quantitative comparison of our algorithm with TV-L1 [29]. Average Angular Error (AAE)
and Average End Point Error (AEPE) of motion estimates in co-visible regions.
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Figure 3: Left to right: Representative samples of motion estimates from the Middlebury dataset,
labeled ground-truth occlusions, error term estimate e1, and precision-recall curves for our occlusion
detection.

advantage to our algorithm because their approach is based on quantized disparity values, yielding
lower accuracy.
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Venus Rubber Whale Hydrangea Grove2 Grove3 Urban2 Urban3
`1 0.67 0.48 0.55 0.70 0.60 0.72 0.80
reweighted-`1 0.69 0.49 0.57 0.70 0.61 0.73 0.80
Table 2: Average precision of our approach on Middlebury data with and without re-weighting.

It takes 186 seconds for a Matlab/C++ implementation of Nesterov’s algorithm to converge to a
solution on a 288 × 352 frame from Flower Garden sequence. We have also compared Nesterov’s
algorithm to split-Bregman’s method [9] for minimization of (14) in terms of convergence speed and
reported the results in [20].

Venus RubberWhale Hydrangea Grove2 Grove3 Urban2 Urban3
Precision [14] 0.61 0.46 0.68 0.72 0.79 0.26 0.56
Recall [14] 0.66 0.20 0.20 0.55 0.45 0.50 0.51
Precision(ours) 0.69 0.91 0.96 0.96 0.86 0.95 0.94

Table 3: Comparison with [14] on Middlebury. Since Kolmogorov et al. provide a binary output,
we display our precision at their same recall value.

5 Discussion

We have presented an algorithm to detect occlusions and establish correspondence between two im-
ages. It leverages on a formulation that, starting from standard assumptions (Lambertian reflection,
constant diffuse illumination), arrives at a convex optimization problem. Our approach does not as-
sume a rigid scene, nor a single moving object. It also does not assume that the occluded region
is simply connected: Occlusions in natural scenes can be very complex (see Fig. 3) and should
therefore, in general, not be spatially regularized. The fact that occlusion detection reduces to a
two-phase segmentation of the domain into either occluded (Ω) or visible (D\Ω) should not confuse
the reader familiar with the image segmentation literature whereby two-phase segmentation of one
object (foreground) from the background can be posed as a convex optimization problem [6], but
breaks down in the presence of multiple objects, or “phases.” Note that in [6] the problem can be
made convex only in e1, but not jointly in e1 and v. We focus on inter-frame occlusion detection;
temporal consistency of occlusion “layers” was addressed in [12].

The limitations of our approach stand mostly in its dependency from the regularization coefficients
λ and µ. In the absence of some estimate of the variance coefficient λ, one is left with tuning it by
trial-and-error. Similarly, µ is a parameter that, like in any classification problem, trades off missed
detections and false alarms, and therefore no single value is “optimal” in any meaningful sense.
These limitations are shared by most variational optical flow estimation algorithms.

Acknowledgement: This work was supported by AFOSR FA9550-09-1-0427, ARO 56765-CI, and
ONR N00014-08-1-0414.
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