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Abstract

We consider linear models for stochastic dynamics. To ank sundel can be as-
sociated a network (namely a directed graph) describinghuiegrees of freedom
interact under the dynamics. We tackle the problem of legrsuch a network
from observation of the system trajectory over a time irdEfv

We analyze thé, -regularized least squares algorithm and, in the settinghich

the underlying network is sparse, we prove performanceagui@es that areni-
form in the sampling ratas long as this is sufficiently high. This result substan-
tiates the notion of a well defined ‘time complexity’ for thetwork inference
problem.

keywords: Gaussian processes, model selection and structure Igagragphical models, sparsity
and feature selection.

1 Introduction and main results

LetG = (V, E) be a directed graph with weight?. € R associated to the directed edgei) from
jeVtoie V. Toeachnode € V in this network is associated an independent standard Baown
motionb,; and a variabler; taking values inR and evolving according to

dai(t) = Y A%a;(t)dt + dbs(t),
jedyi
whered i = {j € V : (j,i) € E} is the set of ‘parents’ of. Without loss of generality we shall
takeV = [p] = {1,...,p}. In words, the rate of change of is given by a weighted sum of the
current values of its neighbors, corrupted by white noisenatrix notation, the same system is then
represented by

dz(t) = A%2(t) dt + db(t), (1)
with () € RP, b(t) a p-dimensional standard Brownian motion adl € RP*? a matrix with

entries{A?j}iyje[p] whose sparsity pattern is given by the gra&phWwe assume that the linear system

#(t) = A% (t) is stable (i.e. that the spectrum4f is contained iz € C : Re(z) < 0}). Further,
we assume that(t = 0) is in its stationary state. More precisely0) is a Gaussian random variable



independent 0b(t), distributed according to the invariant measure. Undestability assumption,
this a mild restriction, since the system converges expialnto stationarity.

A portion of time lengthl” of the system trajectorfiz(t) }+<(o,7] is observed and we ask under which
conditions these data are sufficient to reconstruct thehgfafi.e., the sparsity pattern of®). We
are particularly interested in computationally efficientgedures, and in characterizing the scaling
of the learning time for large networks. Can the networketrce be learnt in a time scaling linearly
with the number of its degrees of freedom?

As an example application, chemical reactions can be caenty modeled by systems of non-
linear stochastic differential equations, whose varial@decode the densities of various chemical
species [1, 2]. Complex biological networks might involwendreds of such species [3], and learn-
ing stochastic models from data is an important (and chgitey) computational task [4]. Consider-
ing one such chemical reaction network in proximity of anilguum point, the model (1) can be
used to trace fluctuations of the species counts with respélae equilibrium values. The network
G would represent in this case the interactions betweenrdiffechemical factors. Work in this area
focused so-far on low-dimensional networks, i.e. on methbdt are guaranteed to be correct for
fixed p, asT — oo, while we will tackle here the regime in which batrandT diverge.

Before stating our results, it is useful to stress a few irtgrdrdifferences with respect to classical
graphical model learning problems:

(i) Samples are not independent. This can (and does) incremsartple complexity.

(#¢) On the other hand, infinitely many samples are given as datadt a collection indexed
by the continuous parametere [0,77]). Of course one can select a finite subsample, for
instance at regularly spaced timgs(in)};=o.1,.... This raises the question as to whether
the learning performances depend on the choice of the gpacin

(731) In particular, one expects that choosipgufficiently large as to make the configurations in
the subsample approximately independent can be harmfigebh the matrixd® contains
more information than the stationary distribution of thevad process (1), and only the
latter can be learned from independent samples.

(iv) On the other hand, letting — 0, one can produce an arbitrarily large number of distinct
samples. However, samples become more dependent, arttv@iyuone expects that there
is limited information to be harnessed from a given timernva&T".

Our results confirm in a detailed and quantitative way thegetions.

1.1 Results: Regularized least squares

Regularized least squares is an efficient and well-studiethod for support recovery. We will
discuss relations with existing literature in Section 1.3.

In the present case, the algorithm reconstructs indepégdeach row of the matrixA°. Thert®
row, A?, is estimated by solving the following convex optimizatjmoblem forA4, € R?

minimize L(A,; {I(t)}te[o,T]) + A A, (2)
where the likelihood functiolf is defined by
1 r * 2 1 r *
LAz iep,) = o [ (Ana(t)” dt = | (Ara(t)) dz.(2). ®3)
0 0

(Here and belowl/* denotes the transpose of matrix/vectdr) To see that this likelihood function
is indeed related to least squares, onefoamally write &,.(¢) = dx,.(t)/dt and complete the square
for the right hand side of Eq. (3), thus getting the integf@l x(t) — @, (¢))*dt — [ @, (t)* dt.
The first term is a sum of square residuals, and the secondiépémdent ofd. Finally the ¢,
regularization term in Eq. (2) has the role of shrinking @msubset of the entries;; thus effectively
selecting the structure.

Let S be the support of rowl?, and assumes®| < k. We will refer to the vectorign(A%) as to
thesigned supporof A% (wheresign(0) = 0 by convention). Lef,,.x (M) and i, (M) stand for



the maximum and minimum eigenvalue of a square maditfikespectively. Further, denote by, ;,,
the smallest absolute value among the non-zero entriesvofifo

When stable, the diffusion process (1) has a unique statiom@asure which is Gaussian with
covariancel® € RP*? given by the solution of Lyapunov’s equation [5]

A%Q + QA% + T =0. (4)
Our guarantee for regularized least squares is statednstef two properties of the covarian¥

and one assumption gn,;, (AY) (given a matrix)/, we denote byM 1 r its submatrixM r =
(Mij)icL,jer):

(a) We denote byCl,i, = )\min(ng’So) the minimum eigenvalue of the restriction @f to
the supportS® and assumeé’,,,;,, > 0.

(b) We define the incoherence parametday letting [|Q° so)c g0 (Q°s0.50) " [loo = 1 — @,
and assume > 0. (Here|| - ||« is the operator sup norm.)

(¢) We definepmin(A%) = —Amax((A° + A7) /2) and assume,,i, (A°) > 0. Note this is a
stronger form of stability assumption.

Our main result is to show that there exists a well defitiee® complexityi.e. a minimum time
interval T' such that, observing the system for tifieenables us to reconstruct the network with
high probability. This result is stated in the following trem.

Theorem 1.1. Consider the problem of learning the suppsft of row A of the matrixA° from a

sample trajectory{z(t) }+c(o,7] distributed according to the model (1). If

104K2(k prin (A%) 72 + A2 4pk
(2/) ( O) ! )log(—),
@ pmin(A )C 1)

T > (5)

then there exists. such that¢;-regularized least squares recovers the signed support’oivith
probability larger thanl — 4. This is achieved by taking = /36 log(4p/3) /(T2 puin(A?)) .

The time complexity is logarithmic in the number of variabknd polynomial in the support size.
Further, it is roughly inversely proportional {@,;,(A"), which is quite satisfying conceptually,
sincepmin (A°)~1 controls the relaxation time of the mixes.

1.2 Overview of other results

So far we focused on continuous-time dynamics. While, thiséful in order to obtain elegant state-
ments, much of the paper is in fact devoted to the analysiseofdllowing discrete-time dynamics,
with parameter) > 0:

z(t) =2t —1)+nA(t — 1)+ w(t), teNy. (6)
Herex(t) € R? is the vector collecting the dynamical variablel$, € RP*? specifies the dynamics
as above, andw(t)};>¢ is a sequence of i.i.d. normal vectors with covariandg,, (i.e. with

independent components of variange We assume that consecutive samplest)}o<i<,, are
given and will ask under which conditions regularized lesagtares reconstructs the support6t

The parameten has the meaning of a time-step size. The continuous-timesh{@jlis recovered,

in a sense made precise below, by letting> 0. Indeed we will prove reconstruction guarantees
that are uniform in this limit as long as the produet (which corresponds to the time intervalin

the previous section) is kept constant. For a formal statéme refer to Theorem 3.1. Theorem 1.1
is indeed proved by carefully controlling this limit. The theamatical challenge in this problem is
related to the fundamental fact that the samptes) }o<:<,, are dependent (and strongly dependent
asn — 0).

Discrete time models of the form (6) can arise either bec#useystem under study evolves by
discrete steps, or because we are subsampling a continme&isystem modeled as in Eq. (1).

Notice that in the latter case the matricésappearing in Eq. (6) and (1) coincide only to the zeroth
order inn. Neglecting this technical complication, the uniformitiyour reconstruction guarantees

asn — 0 has an appealing interpretation already mentioned aboven®er the samples spacing

is not too large, the time complexity (i.e. the produef) is roughly independent of the spacing

itself.



1.3 Related work

A substantial amount of work has been devoted to the anadydisregularized least squares, and
its variants [6, 7, 8, 9, 10]. The most closely related resaite the one concerning high-dimensional
consistency for support recovery [11, 12]. Our proof fokoimdeed the line of work developed in

these papers, with two important challenges. First, thégde®matrix is in our case produced by

a stochastic diffusion, and it does not necessarily satidfie irrepresentability conditions used by
these works. Second, the observations are not corrupteddynoise (since successive configura-
tions are correlated) and therefore elementary conc@ntratequalities are not sufficient.

Learning sparse graphical models ¥iaregularization is also a topic with significant literatute.
the Gaussian case, tgeaphical LASSO was proposed to reconstruct the model from i.i.d. $asnp
[13]. In the context of binary pairwise graphical modelsf.R&1] proves high-dimensional con-
sistency of regularized logistic regression for strudtlearning, under a suitable irrepresentability
conditions on a modified covariance. Also this paper focoses.d. samples.

Most of these proofs builds on the technique of [12]. A naiglafation to the present case allows
to prove some performance guarantee for the discrete-tttiag. However the resulting bounds
are not uniform ag — 0 for np = T fixed. In particular, they do not allow to prove an analogous
of our continuous time result, Theorem 1.1. A large part ofeftort is devoted to producing more
accurate probability estimates that capture the corredingcfor smally.

Similar issues were explored in the study of stochastiersfftial equations, whereby one is often
interested in tracking some slow degrees of freedom whiler&ging out’ the fast ones [14]. The
relevance of this time-scale separation for learning wases$ed in [15]. Let us however emphasize
that these works focus once more on system with a fixed (smaiter of dimensiong.

Finally, the related topic of learning graphical modelsdotoregressive processes was studied re-
cently in [16, 17]. The convex relaxation proposed in thesgeps is different from the one devel-
oped here. Further, no model selection guarantee was pioy&6, 17].

2 lllustration of the main results

It might be difficult to get a clear intuition of Theorem 1.1amly because of conditior{s) and(b),
which introduce parameters,;, anda. The same difficulty arises with analogous results on the
high-dimensional consistency of the LASSO [11, 12]. In #@stion we provide concrete illustration
both via numerical simulations, and by checking the coaditin specific classes of graphs.

2.1 Learning the laplacian of graphs with bounded degree

Given a simple graply = (V, &) on vertex sel = [p], its laplacianAY is the symmetrigp x p
matrix which is equal to the adjacency matrix @foutside the diagonal, and with entrié&ﬁ =
—deg(i) on the diagonal [18]. (Heréeg(i) denotes the degree of vertex

It is well known thatAY is negative semidefinite, with one eigenvalue equél twhose multiplicity

is equal to the number of connected component§.ofThe matrixA° = —m I + AY fits into

the setting of Theorem 1.1 fon > 0. The corresponding model (1.1) describes the over-damped
dynamics of a network of masses connected by springs of wiaiigth, and connected by a spring
of strengthm to the origin. We obtain the following result.

Theorem 2.1. Let G be a simple connected graph of maximum vertex degraed consider the
model (1.1) withA° = —m I + AY whereAY is the laplacian oG andm > 0. If

k+m\?3 4dpk
> 9.105k2 (2T 2 =pr
T>2 10k( - )(k+m)log(5), (")
then there exists. such that¢;-regularized least squares recovers the signed support’oivith
probability larger thanl — ¢. This is achieved by taking= /36(k + m)2 log(4p/d)/(Tm3).

In other words, forn bounded away frond and oo, regularized least squares regression correctly
reconstructs the grapf from a trajectory of time length which is polynomial in thegdee and
logarithmic in the system size. Notice that once the gragtnawvn, the laplaciam\9 is uniquely
determined. Also, the proof technique used for this exansgeneralizable to other graphs as well.
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Figure 1: (left) Probability of success vs. length of theaslation intervalnn. (right) Sample
complexity for 90% probability of success vs. p.

2.2 Numerical illustrations

In this section we present numerical validation of the psgsbmethod on synthetic data. The results
confirm our observations in Theorems 1.1 and 3.1, below, hathat the time complexity scales
logarithmically with the number of nodes in the netwgrkgiven a constant maximum degree.
Also, the time complexity is roughly independent of the shngprate. In Fig. 1 and 2 we consider
the discrete-time setting, generating data as follows. Veevdi® as a random sparse matrix in
{0,1}7*» with elements chosen independently at random WitH{;, = 1) = k/p, k = 5. The
processey = {z(t) }o<i<n IS then generated according to Eq. (6). We solve the regelduieast
square problem (the cost function is given explicitly in E).for the discrete-time case) for different
values ofn, the number of observations, and record if the correct sufigpoecovered for a random
row r using the optimum value of the paramefer An estimate of the probability of successful
recovery is obtained by repeating this experiment. Noté¢ Weare estimating here an average
probability of success over randomly generated matrices.

The left plot in Fig.1 depicts the probability of success xg.for n = 0.1 and different values of

p. Each curve is obtained usirid! instances, and each instance is generated using a new random
matrix A°. The right plot in Fig.1 is the corresponding curve of the pEntomplexity vsp where
sample complexity is defined as the minimum valuexgfwith probability of success of 90%. As
predicted by Theorem 2.1 the curve shows the logarithmilingcaf the sample complexity with.

In Fig. 2 we turn to the continuous-time model (1). Trajeig®rare generated by discretizing this
stochastic differential equation with stépnuch smaller than the sampling rateWe draw random
matricesA® as above and plot the probability of successfer 16, k = 4 and different values of,

as a function ofl". We use!! instances for each curve. As predicted by Theorem 1.1, fowed fi
observation interval’, the probability of success converges to some limitingealsy — 0.

3 Discrete-time model: Statement of the results

Consider a system evolving in discrete time according taribdel (6), and letj = {z(¢) }o<i<n
be the observed portion of the trajectory. TH&row AY is estimated by solving the following
convex optimization problem fad, € R?

minimize L(A,;x7) + M A1, (8)
where

n—1
L(Av:al) = 277#2” S {wn(t 1) = 2,(t) — 0 Aa(t)) ©)
t=0

Apart from an additive constant, the— 0 limit of this cost function can be shown to coincide
with the cost function in the continuous time case, cf. E}. f@deed the proof of Theorem 1.1 will
amount to a more precise version of this statement. Furtherm (A, ; zy) is easily seen to be the
log-likelihood of A,. within model (6).
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As before, we let5° be the support of rom?, and assumgs®| < k. Under the model (6)(t) has
a Gaussian stationary state distribution with covariafj€edetermined by the following modified
Lyapunov equation

A%QY + Q° (A% +nA°QY (A% +T=0. (10)
It will be clear from the context whethet®/Q" refers to the dynamics/stationary matrix from the
continuous or discrete time system. We assume conditigresnd(b) introduced in Section 1.1, and
adopt the notations already introduced there. We use asthahd notatiom ., = omax(I+1 A°)
whereo,ax(.) is the maximum singular value. Also defifie = (1 — Umax)/n. We will assume
D > 0. As in the previous section, we assume the model (6) is fadian the stationary state.

Theorem 3.1. Consider the problem of learning the supp6ft of row A? from the discrete-time
trajectory {z(t) fo<t<n. If

nn > (12)

10°%62 (kD2 + A7) 4dpk
a?DCZ. log (T) ’

then there exists. such that¢;-regularized least squares recovers the signed support’oivith

probability larger thanl — 6. This is achieved by taking= /(36 log(4p/d))/(Da%nny).

In other words the discrete-time sample complexityis logarithmic in the model dimension, poly-
nomial in the maximum network degree and inversely propoéi to the time spacing between
samples. The last pointis particularly important. It eeshls to derive the bound on the continuous-
time sample complexity as the limjt— 0 of the discrete-time sample complexity. It also confirms
our intuition mentioned in the Introduction: although oren@roduce an arbitrary large number
of samples by sampling the continuous process with fineduisns, there is limited amount of
information that can be harnessed from a given time intéévar|.

4  Proofs

In the following we denote byX € R™*? the matrix whosét + 1)" column corresponds to the
configurationz(t), i.e. X = [z(0), z(1),...,xz(n—1)]. FurtherAX e R™*? is the matrix contain-
ing configuration changes, namelyX = [z(1) — z(0),...,xz(n) — z(n — 1)]. Finally we write
W =[w(1),...,w(n — 1)] for the matrix containing the Gaussian noise realizatiaquilently,

W=AX-nAX.
Therth row of IV is denoted by,

In order to lighten the notation, we will omit the referenoerf} in the likelihood function (9) and
simply write L(A,). We define its normalized gradient and Hessian by

G =—-VL(A% = ninxw,f . Q=V?L(A) = %XX* . (12)



4.1 Discrete time

In this Section we outline our prove for our main result fasatete-time dynamics, i.e., Theorem
3.1. We start by stating a set of sufficient conditions foutagzed least squares to work. Then we
present a series of concentration lemmas to be used to greweatidity of these conditions, and
finally we sketch the outline of the proof.

As mentioned, the proof strategy, and in particular theofeihg proposition which provides a com-
pact set of sufficient conditions for the support to be recedeorrectly is analogous to the one in
[12]. A proof of this proposition can be found in the supplettaey material.

Proposition 4.1. Leta, Cy,in, > 0 be be defined by

-1

)‘min(QOSU,SU) = Chin ; |||Q(()50)C,s0 (QOSU,SU) lc =1-c. (13)
If the following conditions hold then the regularized leagtiare solutior(8) correctly recover the
signed supportign(AY):

Ao Amin Cmin

IClle < 5 |Gsollo < = = X, (14)
A « Cvmin A a C'min
IQsoye.s0 = Qlsore,solloo < 15 ik [1@s0,50 — Q0 s0lloo < 5 i (15)

Further the same statement holds for the continuous modw:b&)jded@v and@ are the gradient
and the hessian of the likelihood (3).

The proof of Theorem 3.1 consists in checking that, undemhiipothesis (11) on the number of
consecutive configurations, conditions (14) to (15) willchwith high probability. Checking these
conditions can be regarded in turn as concentration-ofsmresstatements. Indeed, if expectation is

taken with respect to a stationary trajectory, we HBY&'} = 0, E{Q} = Q°.

4.1.1 Technical lemmas

In this section we will state the necessary concentrationmas for proving Theorem 3.1. These
are non-trivial becaus€, (Q are quadratic functions afependentandom variables{the samples

{z(t)}o<i<n). The proofs of Proposition 4.2, of Proposition 4.3, and @arg 4.4 can be found in
the supplementary material provided.

Our first Proposition implies concentration@faroundo.

Proposition 4.2. Let S C [p] be any set of vertices ard< 1/2. If oax = omax (I + 7 A%) < 1,
then

P{||Gsloo > €} < 2|S] e omar) /4, (16)

We furthermore need to bound the matrix norms as per (15)dpqgsition4.1. First we relate
bounds on|Q s — Q° sl with bounds onQ;; — QY] (i € J,i € S) where.J andS are any
subsets of1, ..., p}. We have,

P(1Qus — @58l > €) < IJHS\,}I;ggP(I@j — Q| > ¢/IS)). an

Then, we bound;l@ij — ?j| using the following proposition

Proposition 4.3. Leti,j € {1,...,p}, Omax = Tmae(I +nA°) < 1,T =nn > 3/D and0 < € <
2/D whereD = (1 — oyax) /7 then,

—~ 0 o (1—omax)€?
P(|Qi; — Qi;)| > €) < 2e 52 . (18)

Finally, the next corollary follows from Proposition 4.3chRq. (17).

Corollary 4.4. LetJ, S (|S| < k) be any two subsets ¢t , ..., p} andoax = omax (I +1A4%) < 1,
€ < 2k/D andnn > 3/D (whereD = (1 — omax)/n) then,

n 3 .2

P(|Qs — QYslloe > €) < 2|J |k FarEyz (1 7omax) e, (19)



4.1.2 Outline of the proof of Theorem 3.1

With these concentration bounds we can now easily prove rene@.1. All we need to do is
to compute the probability that the conditions given by Bifion 4.1 hold. From the statement
of the theorem we have that the first two conditions,;, > 0) of Proposition 4.1 hold. In

order to make the first condition af imply the second condition o0& we assume thata/3 <
(AminCmin)/(4k) — X which is guaranteed to hold if

A S Amincmin/8k~ (20)
We also combine the two last conditions @nthus obtaining the following
g C(min
12 VE

since[p] = S° U (5°)C. We then impose that both the probability of the conditior(pfailing and

the probability of the condition o failing are upper bounded hy/2 using Proposition 4.2 and
Corollary 4.4. 1t is shown in the supplementary materiat thi is satisfied if condition (11) holds.

11,50 — @Dyps0lloe < 21)

4.2 Outline of the proof of Theorem 1.1

To prove Theorem 1.1 we recall that Proposition 4.1 holdsigeal the appropriate continuous time
expressions are used férand@, namely

T T

These are of course random variables. In order to distihghisse from the discrete time version,
we will adopt the notatiorG™, @” for the latter. We claim that these random variables can be
coupled (i.e. defined on the same probability space) in sushyathatG™ — G andQ™ — Q
almost surely aa — oo for fixed 7. Under assumption (5), it is easy to show that (11) holdslfor a
n > ng With ng a sufficiently large constant (for a proof see the providggpgementary material).
Therefore, by the proof of Theorem 3.1, the conditions inp@sition 4.1 hold for gradier@” and
hessiar@” for anyn > ng, with probability larger thari — 6. But by the claimed convergence
Gr = G and@" — @ they hold also fold and@ with probability at least — § which proves the
theorem.

G=-VL(AY) = 1 /Tx(t) db,(t), Q= V2L(A%) = 1 /Tx(t)x(t)* dt. (22)
0 0

We are left with the task of showing that the discrete andinants time processes can be coupled
in such a way thaG" — G and@” — @ With slight abuse of notation, the state of the discrete
time system (6) will be denoted hy(:) wherei € IN and the state of continuous time system (1) by
x(t) wheret € R. We denote by the solution of (4) and by)®(n) the solution of (10). It is easy
to check that)®(n) — Q° asn — 0 by the uniqueness of stationary state distribution.

The initial state of the continuous time systert = 0) is a N(0,Q°) random variable inde-
pendent ofb(¢) and the initial state of the discrete time system is definebea:(i = 0) =
(Q°(m)Y2(Q°)~1/2x(t = 0). At subsequent times;(i) andz(t) are assumed are generated by the
respective dynamical systems using the same madttinsing common randomness provided by the
standard Brownian motiofb(t) }o<.<7 in RP. In order to couple:(¢) andz (), we constructu(z),

the noise driving the discrete time system, by letting) = (b(T'i/n) — b(T'(i — 1)/n)).

The almost sure convergent® — G and@Q™ — (@ follows then from standard convergence of
random walk to Brownian motion.
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