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Abstract

We consider linear models for stochastic dynamics. To any such model can be as-
sociated a network (namely a directed graph) describing which degrees of freedom
interact under the dynamics. We tackle the problem of learning such a network
from observation of the system trajectory over a time interval T .
We analyze theℓ1-regularized least squares algorithm and, in the setting inwhich
the underlying network is sparse, we prove performance guarantees that areuni-
form in the sampling rateas long as this is sufficiently high. This result substan-
tiates the notion of a well defined ‘time complexity’ for the network inference
problem.

keywords: Gaussian processes, model selection and structure learning, graphical models, sparsity
and feature selection.

1 Introduction and main results

LetG = (V,E) be a directed graph with weightA0
ij ∈ R associated to the directed edge(j, i) from

j ∈ V to i ∈ V . To each nodei ∈ V in this network is associated an independent standard Brownian
motionbi and a variablexi taking values inR and evolving according to

dxi(t) =
∑

j∈∂+i

A0
ijxj(t) dt+ dbi(t) ,

where∂+i = {j ∈ V : (j, i) ∈ E} is the set of ‘parents’ ofi. Without loss of generality we shall
takeV = [p] ≡ {1, . . . , p}. In words, the rate of change ofxi is given by a weighted sum of the
current values of its neighbors, corrupted by white noise. In matrix notation, the same system is then
represented by

dx(t) = A0x(t) dt+ db(t) , (1)

with x(t) ∈ R
p, b(t) a p-dimensional standard Brownian motion andA0 ∈ R

p×p a matrix with
entries{A0

ij}i,j∈[p] whose sparsity pattern is given by the graphG. We assume that the linear system
ẋ(t) = A0x(t) is stable (i.e. that the spectrum ofA0 is contained in{z ∈ C : Re(z) < 0}). Further,
we assume thatx(t = 0) is in its stationary state. More precisely,x(0) is a Gaussian random variable
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independent ofb(t), distributed according to the invariant measure. Under thestability assumption,
this a mild restriction, since the system converges exponentially to stationarity.

A portion of time lengthT of the system trajectory{x(t)}t∈[0,T ] is observed and we ask under which
conditions these data are sufficient to reconstruct the graph G (i.e., the sparsity pattern ofA0). We
are particularly interested in computationally efficient procedures, and in characterizing the scaling
of the learning time for large networks. Can the network structure be learnt in a time scaling linearly
with the number of its degrees of freedom?

As an example application, chemical reactions can be conveniently modeled by systems of non-
linear stochastic differential equations, whose variables encode the densities of various chemical
species [1, 2]. Complex biological networks might involve hundreds of such species [3], and learn-
ing stochastic models from data is an important (and challenging) computational task [4]. Consider-
ing one such chemical reaction network in proximity of an equilibrium point, the model (1) can be
used to trace fluctuations of the species counts with respectto the equilibrium values. The network
G would represent in this case the interactions between different chemical factors. Work in this area
focused so-far on low-dimensional networks, i.e. on methods that are guaranteed to be correct for
fixedp, asT → ∞, while we will tackle here the regime in which bothp andT diverge.

Before stating our results, it is useful to stress a few important differences with respect to classical
graphical model learning problems:

(i) Samples are not independent. This can (and does) increase the sample complexity.

(ii) On the other hand, infinitely many samples are given as data (in fact a collection indexed
by the continuous parametert ∈ [0, T ]). Of course one can select a finite subsample, for
instance at regularly spaced times{x(i η)}i=0,1,.... This raises the question as to whether
the learning performances depend on the choice of the spacing η.

(iii) In particular, one expects that choosingη sufficiently large as to make the configurations in
the subsample approximately independent can be harmful. Indeed, the matrixA0 contains
more information than the stationary distribution of the above process (1), and only the
latter can be learned from independent samples.

(iv) On the other hand, lettingη → 0, one can produce an arbitrarily large number of distinct
samples. However, samples become more dependent, and intuitively one expects that there
is limited information to be harnessed from a given time interval T .

Our results confirm in a detailed and quantitative way these intuitions.

1.1 Results: Regularized least squares

Regularized least squares is an efficient and well-studied method for support recovery. We will
discuss relations with existing literature in Section 1.3.

In the present case, the algorithm reconstructs independently each row of the matrixA0. Therth

row,A0
r, is estimated by solving the following convex optimizationproblem forAr ∈ R

p

minimize L(Ar; {x(t)}t∈[0,T ]) + λ‖Ar‖1 , (2)

where the likelihood functionL is defined by

L(Ar; {x(t)}t∈[0,T ]) =
1

2T

∫ T

0

(A∗
rx(t))

2 dt− 1

T

∫ T

0

(A∗
rx(t)) dxr(t) . (3)

(Here and belowM∗ denotes the transpose of matrix/vectorM .) To see that this likelihood function
is indeed related to least squares, one canformallywrite ẋr(t) = dxr(t)/dt and complete the square
for the right hand side of Eq. (3), thus getting the integral

∫
(A∗

rx(t) − ẋr(t))
2dt −

∫
ẋr(t)

2 dt.
The first term is a sum of square residuals, and the second is independent ofA. Finally theℓ1
regularization term in Eq. (2) has the role of shrinking to0 a subset of the entriesAij thus effectively
selecting the structure.

Let S0 be the support of rowA0
r, and assume|S0| ≤ k. We will refer to the vectorsign(A0

r) as to
thesigned supportof A0

r (wheresign(0) = 0 by convention). Letλmax(M) andλmin(M) stand for
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the maximum and minimum eigenvalue of a square matrixM respectively. Further, denote byAmin

the smallest absolute value among the non-zero entries of row A0
r.

When stable, the diffusion process (1) has a unique stationary measure which is Gaussian with
covarianceQ0 ∈ R

p×p given by the solution of Lyapunov’s equation [5]

A0Q0 +Q0(A0)∗ + I = 0. (4)

Our guarantee for regularized least squares is stated in terms of two properties of the covarianceQ0

and one assumption onρmin(A
0) (given a matrixM , we denote byML,R its submatrixML,R ≡

(Mij)i∈L,j∈R):

(a) We denote byCmin ≡ λmin(Q
0
S0,S0) the minimum eigenvalue of the restriction ofQ0 to

the supportS0 and assumeCmin > 0.

(b) We define the incoherence parameterα by letting |||Q0
(S0)C ,S0

(
Q0

S0,S0

)−1 |||∞ = 1− α,
and assumeα > 0. (Here||| · |||∞ is the operator sup norm.)

(c) We defineρmin(A
0) = −λmax((A

0 + A0∗)/2) and assumeρmin(A
0) > 0. Note this is a

stronger form of stability assumption.

Our main result is to show that there exists a well definedtime complexity, i.e. a minimum time
intervalT such that, observing the system for timeT enables us to reconstruct the network with
high probability. This result is stated in the following theorem.
Theorem 1.1. Consider the problem of learning the supportS0 of rowA0

r of the matrixA0 from a
sample trajectory{x(t)}t∈[0,T ] distributed according to the model (1). If

T >
104k2(k ρmin(A

0)−2 +A−2
min)

α2ρmin(A0)C2
min

log
(4pk

δ

)
, (5)

then there existsλ such thatℓ1-regularized least squares recovers the signed support ofA0
r with

probability larger than1− δ. This is achieved by takingλ =
√

36 log(4p/δ)/(Tα2ρmin(A0)) .

The time complexity is logarithmic in the number of variables and polynomial in the support size.
Further, it is roughly inversely proportional toρmin(A

0), which is quite satisfying conceptually,
sinceρmin(A

0)−1 controls the relaxation time of the mixes.

1.2 Overview of other results

So far we focused on continuous-time dynamics. While, this isuseful in order to obtain elegant state-
ments, much of the paper is in fact devoted to the analysis of the following discrete-time dynamics,
with parameterη > 0:

x(t) = x(t− 1) + ηA0x(t− 1) + w(t), t ∈ N0 . (6)

Herex(t) ∈ R
p is the vector collecting the dynamical variables,A0 ∈ R

p×p specifies the dynamics
as above, and{w(t)}t≥0 is a sequence of i.i.d. normal vectors with covarianceη Ip×p (i.e. with
independent components of varianceη). We assume that consecutive samples{x(t)}0≤t≤n are
given and will ask under which conditions regularized leastsquares reconstructs the support ofA0.

The parameterη has the meaning of a time-step size. The continuous-time model (1) is recovered,
in a sense made precise below, by lettingη → 0. Indeed we will prove reconstruction guarantees
that are uniform in this limit as long as the productnη (which corresponds to the time intervalT in
the previous section) is kept constant. For a formal statement we refer to Theorem 3.1. Theorem 1.1
is indeed proved by carefully controlling this limit. The mathematical challenge in this problem is
related to the fundamental fact that the samples{x(t)}0≤t≤n are dependent (and strongly dependent
asη → 0).

Discrete time models of the form (6) can arise either becausethe system under study evolves by
discrete steps, or because we are subsampling a continuous time system modeled as in Eq. (1).
Notice that in the latter case the matricesA0 appearing in Eq. (6) and (1) coincide only to the zeroth
order inη. Neglecting this technical complication, the uniformity of our reconstruction guarantees
asη → 0 has an appealing interpretation already mentioned above. Whenever the samples spacing
is not too large, the time complexity (i.e. the productnη) is roughly independent of the spacing
itself.
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1.3 Related work

A substantial amount of work has been devoted to the analysisof ℓ1 regularized least squares, and
its variants [6, 7, 8, 9, 10]. The most closely related results are the one concerning high-dimensional
consistency for support recovery [11, 12]. Our proof follows indeed the line of work developed in
these papers, with two important challenges. First, the design matrix is in our case produced by
a stochastic diffusion, and it does not necessarily satisfies the irrepresentability conditions used by
these works. Second, the observations are not corrupted by i.i.d. noise (since successive configura-
tions are correlated) and therefore elementary concentration inequalities are not sufficient.

Learning sparse graphical models viaℓ1 regularization is also a topic with significant literature.In
the Gaussian case, thegraphicalLASSO was proposed to reconstruct the model from i.i.d. samples
[13]. In the context of binary pairwise graphical models, Ref. [11] proves high-dimensional con-
sistency of regularized logistic regression for structural learning, under a suitable irrepresentability
conditions on a modified covariance. Also this paper focuseson i.i.d. samples.

Most of these proofs builds on the technique of [12]. A naive adaptation to the present case allows
to prove some performance guarantee for the discrete-time setting. However the resulting bounds
are not uniform asη → 0 for nη = T fixed. In particular, they do not allow to prove an analogous
of our continuous time result, Theorem 1.1. A large part of our effort is devoted to producing more
accurate probability estimates that capture the correct scaling for smallη.

Similar issues were explored in the study of stochastic differential equations, whereby one is often
interested in tracking some slow degrees of freedom while ‘averaging out’ the fast ones [14]. The
relevance of this time-scale separation for learning was addressed in [15]. Let us however emphasize
that these works focus once more on system with a fixed (small)number of dimensionsp.

Finally, the related topic of learning graphical models forautoregressive processes was studied re-
cently in [16, 17]. The convex relaxation proposed in these papers is different from the one devel-
oped here. Further, no model selection guarantee was provedin [16, 17].

2 Illustration of the main results

It might be difficult to get a clear intuition of Theorem 1.1, mainly because of conditions(a) and(b),
which introduce parametersCmin andα. The same difficulty arises with analogous results on the
high-dimensional consistency of the LASSO [11, 12]. In thissection we provide concrete illustration
both via numerical simulations, and by checking the condition on specific classes of graphs.

2.1 Learning the laplacian of graphs with bounded degree

Given a simple graphG = (V, E) on vertex setV = [p], its laplacian∆G is the symmetricp × p
matrix which is equal to the adjacency matrix ofG outside the diagonal, and with entries∆G

ii =
−deg(i) on the diagonal [18]. (Heredeg(i) denotes the degree of vertexi.)

It is well known that∆G is negative semidefinite, with one eigenvalue equal to0, whose multiplicity
is equal to the number of connected components ofG. The matrixA0 = −mI + ∆G fits into
the setting of Theorem 1.1 form > 0. The corresponding model (1.1) describes the over-damped
dynamics of a network of masses connected by springs of unit strength, and connected by a spring
of strengthm to the origin. We obtain the following result.
Theorem 2.1. Let G be a simple connected graph of maximum vertex degreek and consider the
model (1.1) withA0 = −mI +∆G where∆G is the laplacian ofG andm > 0. If

T ≥ 2 · 105k2
(k +m

m

)5
(k +m2) log

(4pk
δ

)
, (7)

then there existsλ such thatℓ1-regularized least squares recovers the signed support ofA0
r with

probability larger than1− δ. This is achieved by takingλ =
√

36(k +m)2 log(4p/δ)/(Tm3).

In other words, form bounded away from0 and∞, regularized least squares regression correctly
reconstructs the graphG from a trajectory of time length which is polynomial in the degree and
logarithmic in the system size. Notice that once the graph isknown, the laplacian∆G is uniquely
determined. Also, the proof technique used for this exampleis generalizable to other graphs as well.
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Figure 1: (left) Probability of success vs. length of the observation intervalnη. (right) Sample
complexity for 90% probability of success vs. p.

2.2 Numerical illustrations

In this section we present numerical validation of the proposed method on synthetic data. The results
confirm our observations in Theorems 1.1 and 3.1, below, namely that the time complexity scales
logarithmically with the number of nodes in the networkp, given a constant maximum degree.
Also, the time complexity is roughly independent of the sampling rate. In Fig. 1 and 2 we consider
the discrete-time setting, generating data as follows. We draw A0 as a random sparse matrix in
{0, 1}p×p with elements chosen independently at random withP(A0

ij = 1) = k/p, k = 5. The
processxn

0 ≡ {x(t)}0≤t≤n is then generated according to Eq. (6). We solve the regularized least
square problem (the cost function is given explicitly in Eq.(8) for the discrete-time case) for different
values ofn, the number of observations, and record if the correct support is recovered for a random
row r using the optimum value of the parameterλ. An estimate of the probability of successful
recovery is obtained by repeating this experiment. Note that we are estimating here an average
probability of success over randomly generated matrices.

The left plot in Fig.1 depicts the probability of success vs.nη for η = 0.1 and different values of
p. Each curve is obtained using211 instances, and each instance is generated using a new random
matrixA0. The right plot in Fig.1 is the corresponding curve of the sample complexity vs.p where
sample complexity is defined as the minimum value ofnη with probability of success of 90%. As
predicted by Theorem 2.1 the curve shows the logarithmic scaling of the sample complexity withp.

In Fig. 2 we turn to the continuous-time model (1). Trajectories are generated by discretizing this
stochastic differential equation with stepδ much smaller than the sampling rateη. We draw random
matricesA0 as above and plot the probability of success forp = 16, k = 4 and different values ofη,
as a function ofT . We used211 instances for each curve. As predicted by Theorem 1.1, for a fixed
observation intervalT , the probability of success converges to some limiting value asη → 0.

3 Discrete-time model: Statement of the results

Consider a system evolving in discrete time according to themodel (6), and letxn
0 ≡ {x(t)}0≤t≤n

be the observed portion of the trajectory. Therth row A0
r is estimated by solving the following

convex optimization problem forAr ∈ R
p

minimize L(Ar;x
n
0 ) + λ‖Ar‖1 , (8)

where

L(Ar;x
n
0 ) ≡

1

2η2n

n−1∑

t=0

{xr(t+ 1)− xr(t)− η A∗
rx(t)}2 . (9)

Apart from an additive constant, theη → 0 limit of this cost function can be shown to coincide
with the cost function in the continuous time case, cf. Eq. (3). Indeed the proof of Theorem 1.1 will
amount to a more precise version of this statement. Furthermore,L(Ar;x

n
0 ) is easily seen to be the

log-likelihood ofAr within model (6).
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Figure 2: (right)Probability of success vs. length of the observation intervalnη for different values
of η. (left) Probability of success vs.η for a fixed length of the observation interval, (nη = 150) .
The process is generated for a small value ofη and sampled at different rates.

As before, we letS0 be the support of rowA0
r, and assume|S0| ≤ k. Under the model (6)x(t) has

a Gaussian stationary state distribution with covarianceQ0 determined by the following modified
Lyapunov equation

A0Q0 +Q0(A0)∗ + ηA0Q0(A0)∗ + I = 0 . (10)

It will be clear from the context whetherA0/Q0 refers to the dynamics/stationary matrix from the
continuous or discrete time system. We assume conditions(a) and(b) introduced in Section 1.1, and
adopt the notations already introduced there. We use as a shorthand notationσmax ≡ σmax(I+η A0)
whereσmax(.) is the maximum singular value. Also defineD ≡

(
1 − σmax

)
/η . We will assume

D > 0. As in the previous section, we assume the model (6) is initiated in the stationary state.

Theorem 3.1. Consider the problem of learning the supportS0 of row A0
r from the discrete-time

trajectory{x(t)}0≤t≤n. If

nη >
104k2(kD−2 +A−2

min)

α2DC2
min

log
(4pk

δ

)
, (11)

then there existsλ such thatℓ1-regularized least squares recovers the signed support ofA0
r with

probability larger than1− δ. This is achieved by takingλ =
√

(36 log(4p/δ))/(Dα2nη).

In other words the discrete-time sample complexity,n, is logarithmic in the model dimension, poly-
nomial in the maximum network degree and inversely proportional to the time spacing between
samples. The last point is particularly important. It enables us to derive the bound on the continuous-
time sample complexity as the limitη → 0 of the discrete-time sample complexity. It also confirms
our intuition mentioned in the Introduction: although one can produce an arbitrary large number
of samples by sampling the continuous process with finer resolutions, there is limited amount of
information that can be harnessed from a given time interval[0, T ].

4 Proofs

In the following we denote byX ∈ R
n×p the matrix whose(t + 1)th column corresponds to the

configurationx(t), i.e.X = [x(0), x(1), . . . , x(n− 1)]. Further∆X ∈ R
n×p is the matrix contain-

ing configuration changes, namely∆X = [x(1) − x(0), . . . , x(n) − x(n − 1)]. Finally we write
W = [w(1), . . . , w(n− 1)] for the matrix containing the Gaussian noise realization. Equivalently,

W = ∆X − ηAX .

Therth row ofW is denoted byWr.

In order to lighten the notation, we will omit the reference to xn
0 in the likelihood function (9) and

simply writeL(Ar). We define its normalized gradient and Hessian by

Ĝ = −∇L(A0
r) =

1

nη
XW ∗

r , Q̂ = ∇2L(A0
r) =

1

n
XX∗ . (12)
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4.1 Discrete time

In this Section we outline our prove for our main result for discrete-time dynamics, i.e., Theorem
3.1. We start by stating a set of sufficient conditions for regularized least squares to work. Then we
present a series of concentration lemmas to be used to prove the validity of these conditions, and
finally we sketch the outline of the proof.

As mentioned, the proof strategy, and in particular the following proposition which provides a com-
pact set of sufficient conditions for the support to be recovered correctly is analogous to the one in
[12]. A proof of this proposition can be found in the supplementary material.
Proposition 4.1. Letα,Cmin > 0 be be defined by

λmin(Q
0
S0,S0) ≡ Cmin , |||Q0

(S0)C ,S0

(
Q0

S0,S0

)−1 |||∞ ≡ 1− α . (13)

If the following conditions hold then the regularized leastsquare solution(8) correctly recover the
signed supportsign(A0

r):

‖Ĝ‖∞ ≤ λα

3
, ‖ĜS0‖∞ ≤ AminCmin

4k
− λ, (14)

|||Q̂(S0)C ,S0 −Q0
(S0)C ,S0 |||∞ ≤ α

12

Cmin√
k

, |||Q̂S0,S0 −Q0
S0,S0 |||∞ ≤ α

12

Cmin√
k

. (15)

Further the same statement holds for the continuous model 3,providedĜ and Q̂ are the gradient
and the hessian of the likelihood (3).

The proof of Theorem 3.1 consists in checking that, under thehypothesis (11) on the number of
consecutive configurations, conditions (14) to (15) will hold with high probability. Checking these
conditions can be regarded in turn as concentration-of-measure statements. Indeed, if expectation is
taken with respect to a stationary trajectory, we haveE{Ĝ} = 0, E{Q̂} = Q0.

4.1.1 Technical lemmas

In this section we will state the necessary concentration lemmas for proving Theorem 3.1. These
are non-trivial becausêG, Q̂ are quadratic functions ofdependentrandom variables

(
the samples

{x(t)}0≤t≤n

)
. The proofs of Proposition 4.2, of Proposition 4.3, and Corollary 4.4 can be found in

the supplementary material provided.

Our first Proposition implies concentration ofĜ around0.
Proposition 4.2. LetS ⊆ [p] be any set of vertices andǫ < 1/2. If σmax ≡ σmax(I + η A0) < 1,
then

P
{
‖ĜS‖∞ > ǫ

}
≤ 2|S| e−n(1−σmax) ǫ

2/4. (16)

We furthermore need to bound the matrix norms as per (15) in proposition4.1. First we relate
bounds on|||Q̂JS − Q0

JS |||∞ with bounds on|Q̂ij − Q0
ij |, (i ∈ J, i ∈ S) whereJ andS are any

subsets of{1, ..., p}. We have,

P(|||Q̂JS −Q0
JS)|||∞ > ǫ) ≤ |J ||S|max

i,j∈J
P(|Q̂ij −Q0

ij | > ǫ/|S|). (17)

Then, we bound|Q̂ij −Q0
ij | using the following proposition

Proposition 4.3. Let i, j ∈ {1, ..., p}, σmax ≡ σmax(I + ηA0) < 1, T = ηn > 3/D and0 < ǫ <
2/D whereD = (1− σmax)/η then,

P(|Q̂ij −Q0
ij)| > ǫ) ≤ 2e

− n

32η2 (1−σmax)
3ǫ2

. (18)

Finally, the next corollary follows from Proposition 4.3 and Eq. (17).
Corollary 4.4. LetJ, S (|S| ≤ k) be any two subsets of{1, ..., p} andσmax ≡ σmax(I+ηA0) < 1,
ǫ < 2k/D andnη > 3/D (whereD = (1− σmax)/η) then,

P(|||Q̂JS −Q0
JS |||∞ > ǫ) ≤ 2|J |ke−

n

32k2η2 (1−σmax)
3ǫ2

. (19)
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4.1.2 Outline of the proof of Theorem 3.1

With these concentration bounds we can now easily prove Theorem 3.1. All we need to do is
to compute the probability that the conditions given by Proposition 4.1 hold. From the statement
of the theorem we have that the first two conditions (α,Cmin > 0) of Proposition 4.1 hold. In
order to make the first condition on̂G imply the second condition on̂G we assume thatλα/3 ≤
(AminCmin)/(4k)− λ which is guaranteed to hold if

λ ≤ AminCmin/8k. (20)

We also combine the two last conditions onQ̂, thus obtaining the following

|||Q̂[p],S0 −Q0
[p],S0 |||∞ ≤ α

12

Cmin√
k

, (21)

since[p] = S0 ∪ (S0)C . We then impose that both the probability of the condition onQ̂ failing and
the probability of the condition on̂G failing are upper bounded byδ/2 using Proposition 4.2 and
Corollary 4.4. It is shown in the supplementary material that this is satisfied if condition (11) holds.

4.2 Outline of the proof of Theorem 1.1

To prove Theorem 1.1 we recall that Proposition 4.1 holds provided the appropriate continuous time
expressions are used for̂G andQ̂, namely

Ĝ = −∇L(A0
r) =

1

T

∫ T

0

x(t) dbr(t) , Q̂ = ∇2L(A0
r) =

1

T

∫ T

0

x(t)x(t)∗ dt . (22)

These are of course random variables. In order to distinguish these from the discrete time version,
we will adopt the notation̂Gn, Q̂n for the latter. We claim that these random variables can be
coupled (i.e. defined on the same probability space) in such away thatĜn → Ĝ andQ̂n → Q̂
almost surely asn → ∞ for fixedT . Under assumption (5), it is easy to show that (11) holds for all
n > n0 with n0 a sufficiently large constant (for a proof see the provided supplementary material).
Therefore, by the proof of Theorem 3.1, the conditions in Proposition 4.1 hold for gradient̂Gn and
hessianQ̂n for anyn ≥ n0, with probability larger than1 − δ. But by the claimed convergence
Ĝn → Ĝ andQ̂n → Q̂, they hold also for̂G andQ̂ with probability at least1− δ which proves the
theorem.

We are left with the task of showing that the discrete and continuous time processes can be coupled
in such a way that̂Gn → Ĝ andQ̂n → Q̂. With slight abuse of notation, the state of the discrete
time system (6) will be denoted byx(i) wherei ∈ N and the state of continuous time system (1) by
x(t) wheret ∈ R. We denote byQ0 the solution of (4) and byQ0(η) the solution of (10). It is easy
to check thatQ0(η) → Q0 asη → 0 by the uniqueness of stationary state distribution.

The initial state of the continuous time systemx(t = 0) is a N(0, Q0) random variable inde-
pendent ofb(t) and the initial state of the discrete time system is defined tobe x(i = 0) =
(Q0(η))1/2(Q0)−1/2x(t = 0). At subsequent times,x(i) andx(t) are assumed are generated by the
respective dynamical systems using the same matrixA0 using common randomness provided by the
standard Brownian motion{b(t)}0≤t≤T in R

p. In order to couplex(t) andx(i), we constructw(i),
the noise driving the discrete time system, by lettingw(i) ≡ (b(T i/n)− b(T (i− 1)/n)).

The almost sure convergencêGn → Ĝ andQ̂n → Q̂ follows then from standard convergence of
random walk to Brownian motion.
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