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Abstract

We establish an excess risk bound of Õ
(
HR2

n +
√
HL∗Rn

)
for ERM with an H-smooth loss

function and a hypothesis class with Rademacher complexity Rn, where L∗ is the best risk achiev-
able by the hypothesis class. For typical hypothesis classes where Rn =

√
R/n, this translates to

a learning rate of Õ (RH/n) in the separable (L∗ = 0) case and Õ
(
RH/n+

√
L∗RH/n

)
more

generally. We also provide similar guarantees for online and stochastic convex optimization of a
smooth non-negative objective.

1 Introduction

Consider empirical risk minimization for a hypothesis classH = {h : X → R} w.r.t. some non-negative loss function
φ(t, y). That is, we would like to learn a predictor h with small risk

L (h) = E [φ(h(X), Y )]

by minimizing the empirical risk

L̂(h) =
1

n

n∑
i=1

φ(h(xi), yi)

of an i.i.d. sample (x1, y1), . . . , (xn, yn).

Statistical guarantees on the excess risk are well understood for parametric (i.e. finite dimensional) hypothesis classes.
More formally, these are hypothesis classes with finite VC-subgraph dimension [24] (aka pseudo-dimension). For
such classes learning guarantees can be obtained for any bounded loss function (i.e. s.t. |φ| ≤ b <∞) and the relevant
measure of complexity is the VC-subgraph dimension.

Alternatively, even for some non-parametric hypothesis classes (i.e. those with infinite VC-subgraph dimension),
e.g. the class of low-norm linear predictors

HB = {hw : x 7→ 〈w,x〉|‖w‖ ≤ B} ,
guarantees can be obtained in terms of scale-sensitive measures of complexity such as fat-shattering dimensions [1],
covering numbers [24] or Rademacher complexity [2]. The classical statistical learning theory approach for obtaining
learning guarantees for such scale-sensitive classes is to rely on the Lipschitz constant D of φ(t, y) w.r.t. t (i.e. bound
on its derivative w.r.t. t). The excess risk can then be bounded as (in expectation over the sample):

L
(
ĥ
)
≤ L∗ + 2DRn(H) = L∗ + 2

√
D2

R

n
(1)

where ĥ = arg min L̂(h) is the empirical risk minimizer (ERM), L∗ = infh L (h) is the approximation error, and
Rn(H) is the Rademacher complexity of the class, which typically scales as Rn(H) =

√
R/n. E.g. for `2-bounded
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linear predictors,R = B2 sup ‖X‖22. The Rademacher complexity can be bounded by other scale-sensitive complexity
measures, such as the fat-shattering dimensions and covering numbers, yielding similar guarantees in terms of these
measures.

In this paper we address two deficiencies of the guarantee (1). First, the bound applies only to loss functions with
bounded derivative, like the hinge loss and logistic loss popular for classification, or the absolute-value (`1) loss for
regression. It is not directly applicable to the squared loss φ(t, y) = 1

2 (t − y)2, for which the second derivative is
bounded, but not the first. We could try to simply bound the derivative of the squared loss in terms of a bound on
the magnitude of h(x), but e.g. for norm-bounded linear predictorsHB this results in a very disappointing excess risk
bound of the form O(

√
B4(max ‖X‖)4/n). One aim of this paper is to provide clean bounds on the excess risk for

smooth loss functions such as the squared loss with a bounded second, rather then first, derivative.

The second deficiency of (1) is the dependence on 1/
√
n. The dependence on 1/

√
n might be unavoidable in general.

But at least for finite dimensional (parametric) classes, we know it can be improved to a 1/n rate when the distribution
is separable, i.e. when there exists h ∈ H with L (h) = 0 and so L∗ = 0. In particular, if H is a class of bounded
functions with VC-subgraph-dimension d (e.g. d-dimensional linear predictors), then (in expectation over the sample)
[23]:

L
(
ĥ
)
≤ L∗ +O

(
dD log n

n
+

√
dDL∗ log n

n

)
(2)

The 1/
√
n term disappears in the separable case, and we get a graceful degredation between the 1/

√
n non-separable

rate and the 1/n separable rate. Could we get a 1/n separable rate, and such a graceful degradation, also in the
non-parametric case?

As we will show, the two deficiencies are actually related. For non-parametric classes, and non-smooth Lipschitz loss,
such as the hinge-loss, the excess risk might scale as 1/

√
n and not 1/n, even in the separable case. However, for

H-smooth non-negative loss functions, where the second derivative of φ(t, y) w.r.t. t is bounded byH , a 1/n separable
rate is possible. In Section 2 we obtain the following bound on the excess risk (up to logarithmic factors):

L
(
ĥ
)
≤ L∗ + Õ

(
HR2

n(H) +
√
HL∗Rn(H)

)
= L∗ + Õ

(
HR

n
+

√
HRL∗

n

)
≤ 2L∗ + Õ

(
HR

n

)
. (3)

In particular, for `2-norm-bounded linear predictors HB with sup ‖X‖22 ≤ 1, the excess risk is bounded by
Õ(HB2/n +

√
HB2L∗/n). Another interesting distinction between parametric and non-parametric classes, is that

even for the squared-loss, the bound (3) is tight and the non-separable rate of 1/
√
n is unavoidable. This is in contrast

to the parametric (fine dimensional) case, where a rate of 1/n is always possible for the squared loss, regardless of
the approximation error L∗ [16]. The differences between parametric and scale-sensitive classes, and between non-
smooth, smooth and strongly convex (e.g. squared) loss functions are discussed in Section 4 and summarized in Table
1.

The guarantees discussed thus far are general learning guarantees for the stochastic setting that rely only on the
Rademacher complexity of the hypothesis class, and are phrased in terms of minimizing some scalar loss function. In
Section 3 we consider also the online setting, in addition to the stochastic setting, and present similar guarantees for
online and stochastic convex optimization [34, 25]. The guarantees of Section 3 match equation (3) for the special
case of a convex loss function and norm-bounded linear predictors, but Section 3 capture a more general setting of
optimizing an arbitrary non-negative convex objective, which we require to be smooth (there is no separate discussion
of a “predictor” and a scalar loss function in Section 3). Results in Section 3 are expressed in terms of properties of
the norm, rather then a measure of concentration like the Radamacher complexity as in (3) and Section 2. However,
the online and stochastic convex optimization setting of Section 3 is also more restrictive, as we require the objective
be convex (in Section 2 and for the bound (3) we make no assumption about the convexity of the hypothesis class H
nor the loss function φ).

Specifically, for a non-negative H-smooth convex objective (see exact definition in Section 3), over a domain bounded
by B, we prove that the average online regret (and so also the excess risk of stochastic optimization) is bounded by
O(HB2/n +

√
HB2L∗/n). Comparing with the bound of O(

√
D2B2/n) when the loss is D-Lipschitz rather then

H-smooth [34, 22], we see the same relationship discussed above for ERM. Unlike the bound (3) for the ERM, the
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convex optimization bound avoids polylogarithmic factors. The results in Section 3 also generalize to smoothness and
boundedness with respect to non-Euclidean norms.

Studying the online and stochastic convex optimization setting (Section 3), in addition to ERM (Section 2), has several
advantages. First, it allows us to obtain a learning guarantee for an efficient single-pass learning methods, namely
stochastic gradient descent (or mirror descent), as well as for the non-stochastic regret. Second, the bound we obtain
in the convex optimization setting (Section 3) is actually better then the bound for the ERM (Section 2) as it avoids all
polylogarithmic and large constant factors. Third, the bound is applicable to other non-negative online or stochastic
optimization problems beyond classification, including problems for which ERM is not applicable (see, e.g., [25]).

2 Empirical Risk Minimization with Smooth Loss

Recall that the Rademacher complexity ofH for any n ∈ N given by [2]:

Rn(H) = sup
x1,...,xn∈X

Eσ∼Unif({±1}n)

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

h(xi)σi

∣∣∣∣∣
]
. (4)

Throughout we shall consider the “worst case” Rademacher complexity.

Our starting point is the learning bound (1) that applies to D-Lipschitz loss functions, i.e. such that |φ′(t, y)| ≤ D
(we always take derivatives w.r.t. the first argument). What type of bound can we obtain if we instead bound the
second derivative φ′′(t, y)? We will actually avoid talking about the second derivative explicitly, and instead say that
a function is H-smooth iff its derivative is H-Lipschitz. For twice differentiable φ, this just means that |φ′′| ≤ H .
The central observation, which allows us to obtain guarantees for smooth loss functions, is that for a smooth loss, the
derivative can be bounded in terms of the function value:
Lemma 2.1. For an H-smooth non-negative function f : R 7→ R, we have: |f ′(t)| ≤

√
4Hf(t)

Proof. For any t, r, we have t < s < r for which f(r) = f(t) + f ′(s)(r − t). Now:

0 ≤ f(r) = f(t) + f ′(t)(r − t) + (f ′(s)− f ′(t))(r − t)
≤ f(t) + f ′(t)(r − t) +H |s− t| |r − t| ≤ f(t) + f ′(t)(r − t) +H(r − t)2

Setting r = t− f ′(t)
2H yields the desired bounds.

This Lemma allows us to argue that close to the optimum value, where the value of the loss is small, then so is its
derivative. Looking at the dependence of (1) on the derivative bound D, we are guided by the following heuristic
intuition: Since we should be concerned only with the behavior around the ERM, perhaps it is enough to bound

φ′(ŵ, x) at the ERM ŵ. Applying Lemma 2.1 to L(ĥ), we can bound |E [φ′(ŵ, X)]| ≤
√

4HL(ĥ). What we would
actually want is to bound each |φ′(ŵ, x)| separately, or at least have the absolute value inside the expectation—this
is where the non-negativity of the loss plays an important role. Ignoring this important issue for the moment and

plugging this instead of D into (1) yields L(ĥ) ≤ L∗+ 4

√
HL(ĥ)Rn(H). Solving for L(ĥ) yields the desired bound

(3).

This rough intuition is captured by the following Theorem:
Theorem 1. For an H-smooth non-negative loss φ s.t.∀x,y,h |φ(h(x), y)| ≤ b, for any δ > 0 we have that with
probability at least 1− δ over a random sample of size n, for any h ∈ H,

L (h) ≤ L̂(h) +K

(√
L̂(h)

(
√
H log1.5nRn(H) +

√
b log(1/δ)

n

)
+H log3nR2

n(H) +
b log(1/δ)

n

)
and so:

L
(
ĥ
)
≤ L∗ +K

(
√
L∗

(
√
H log1.5nRn(H) +

√
b log(1/δ)

n

)
+H log3nR2

n(H) +
b log(1/δ)

n

)
where K < 105 is a numeric constant derived from [21] and [6].
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Note that only the “confidence” terms depended on b = sup |φ|, and this is typically not the dominant term—we
believe it is possible to also obtain a bound that holds in expectation over the sample (rather than with high probability)
and that avoids a direct dependence on sup |φ|.
To prove Theorem 1 we use the notion of Local Rademacher Complexity [3], which allows us to focus on the behavior
close to the ERM. To this end, consider the following empirically restricted loss class

Lφ(r) :=
{

(x, y) 7→ φ(h(x), y) : h ∈ H, L̂(h) ≤ r
}

Lemma 2.2, presented below, solidifies the heuristic intuition discussed above, by showing that the Rademacher com-
plexity of Lφ(r) scales with

√
Hr. The Lemma can be seen as a higher-order version of the Lipschitz Composition

Lemma [2], which states that the Rademacher complexity of the unrestricted loss class is bounded byDRn(H). Here,
we use the second, rather then first, derivative, and obtain a bound that depends on the empirical restriction:

Lemma 2.2. For a non-negative H-smooth loss φ bounded by b and any function classH bounded by B:

Rn(Lφ(r)) ≤
√

12Hr Rn(H)

(
16 log3/2

(
nB

Rn(H)

)
− 14 log3/2

(
n
√

12HB√
b

))

Proof. In order to prove Lemma 2.2, we actually move from Rademacher complexity to covering numbers, use
smoothness and Lemma 2.1 to obtain an r-dependent cover of the empirically restricted class, and then return to
the Rademacher complexity. More specifically:

• We use a modified version of Dudley’s integral to bound the Rademacher complexity of the empirically
restricted class in terms of its L2-covering numbers.

• We use smoothness to get an r-dependent bound on the L2-covering numbers of the empirically restricted
loss class in terms of L∞-covering numbers of the unrestricted hypothesis class.

• We bound the L∞-covering numbers of the unrestricted class in terms of its fat-shattering dimension, which
in turn can be bounded in terms of its Rademacher complexity.

Before we proceed, recall the following definitions of covering numbers and fat shattering dimension. For any ε > 0
and function class F ⊂ RZ :

The L2 covering number N2 (F , ε, n) is the supremum over samples z1, . . . , zn of the size of a minimal cover Cε
such that ∀f ∈ F , ∃fε ∈ Cε s.t.

√
1
n

∑n
i=1(f(zi)− fε(zi))2 ≤ ε.

The L∞ covering number N∞ (F , ε, n) is the supremum over samples z1, . . . , zn of the size of a minimal cover Cε
such that ∀f ∈ F , ∃fε ∈ Cε s.t. maxi∈[n] |f(zi)− fε(zi)| ≤ ε.

The fat-shattering dimension fatε(F) at scale ε is the maximum number of points ε-shattered by F (see e.g. [21]).

Bounding Rn(Lφ(r)) in terms of N2(Lφ(r)) Dudley’s integral bound lets us bound the Rademacher complexity
of a class in terms of its empirical L2 covering number. Here we use a more refined version of Dudley’s integral
bound due to Mendelson [21] and more explicitly stated in [27] and included for completeness as Lemma A.3 in the
Appendix:

Rn(Lφ(r)) ≤ inf
α>0

{
4α+ 10

∫ √br
α

√
N2 (Lφ(r), ε, n)

n
dε

}
(5)

Bounding N2(Lφ(r)) in terms of N∞(H) In the Appendix we show that a corollary of Lemma 2.1 is that for a
non-negativeH-smooth f(·) we have (f(t)− f(r))

2 ≤ 6H(f(t)+f(r))(t−r)2 (Lemma A.1). Using this inequality,
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for any sample (x1, y1), . . . , (xn, yn):√√√√ 1

n

n∑
i=1

(φ(h(zi), zi)− φ(hε(zi), zi))2 ≤

√√√√6H

n

n∑
i=1

(φ(h(zi), zi) + φ(hε(zi), zi)) (h(zi)− hε(zi))2

≤

√√√√6H

n

n∑
i=1

(φ(h(zi), zi) + φ(hε(zi), zi))
√

max
i∈[n]

(h(zi)− hε(zi))2

≤
√

12Hr max
i∈[n]
|h(zi)− hε(zi)|

That is, an empirical L∞ cover of
{
h ∈ H : L̂(h) ≤ r

}
at radius ε/

√
12Hr is also an empirical L2 cover of Lφ(r) at

radius ε, and we can conclude that:

N2 (Lφ(r), ε, n) ≤ N∞
({

h ∈ H : L̂(h) ≤ r
}
,

ε√
12Hr

, n

)
≤ N∞

(
H, ε√

12Hr
, n

)
(6)

BoundingN∞(H) in terms ofRn(H) The L∞ covering number at scale ε/
√

12Hr can be bounded in terms of the
fat shattering dimension at that scale as [21]:

N∞
(
H, ε√

12Hr
, n

)
≤

(
n
√

12HrB

ε

)fat ε√
12Hr

(H)

. (7)

Hence by Equation (5) we have:

Rn(Lφ(r)) ≤ inf
α≥0

4α+ 10

∫ √br
α

√√√√ fat ε√
12Hr

(H) log
(
n
√
12HrB
ε

)
n

dε

 (8)

choosing α =
√

12HrRn(H):

≤ 4
√

12Hr Rn(H) + 10

∫ √br
√
12HrRn(H)

√√√√ fat ε√
12Hr

(H) log
(
n
√
12HrB
ε

)
n

dε (9)

after a change of integration variable:

≤ 4
√

12Hr Rn(H) + 10
√

12Hr

∫ √ b
12H

Rn(H)

√
fatε(H) log

(
nB
ε

)
n

dε (10)

bounding the fat-shattering dimension in terms of the Rademacher complexity (Lemma A.2):

≤ 4
√

12Hr Rn(H) + 20
√

12Hr Rn(H)

∫ √ b
12H

Rn(H)

√
log
(
nB
ε

)
ε

dε (11)

≤
√

12Hr Rn(H)

4 + 20

[
−2

3
log3/2(nB/ε)

]√b/12H
Rn(H)


≤
√

12Hr Rn(H)

(
4 + 14

(
log3/2

(
nB

Rn(H)

)
− log3/2

(
nB
√

12H√
b

)))

≤
√

12Hr Rn(H)

(
18 log3/2

(
nB

Rn(H)

)
− 14 log3/2

(
n
√

12HB√
b

))

5



Proof of Theorem 1. Equipped with Lemma 2.2, the proof follows standard Local Rademacher arguments. Applying
Theorem 6.1 of [6] to ψn(r) = 56

√
Hr log1.5 nR̂n(H) we can show that:

L (h) ≤ L̂(h) + 106r∗n +
48b

n

(
log 1

δ + log log n
)

+

√
L̂(h)

(
8r∗n +

4b

n

(
log 1

δ + log log n
))

where r∗n = 562H log3nRn(H) is the solution to ψn(r) = r. Further details can be found in the Appendix.

2.1 Related Results

Rates faster than 1/
√
n have been previously explored under various conditions, including when L∗ is small.

The Finite Dimensional Case Lee et al [16] showed faster rates for squared loss, exploiting the strong convexity
of this loss function, even when L∗ > 0, but only with finite VC-subgraph-dimension. Panchenko [23] provides fast
rate results for general Lipschitz bounded loss functions, still in the finite VC-subgraph-dimension case. Bousquet [6]
provided similar guarantees for linear predictors in Hilbert spaces when the spectrum of the kernel matrix (covariance
of X) is exponentially decaying, making the situation almost finite dimensional. All these methods rely on finiteness
of effective dimension to provide fast rates. In this case, smoothness is not necessary. Our method, on the other hand,
establishes fast rates, when L∗ = 0, for function classes that do not have finite VC-subgraph-dimension. We show
how in this non-parametric case, smoothness is necessary and plays an important role (see also Table 1).

Aggregation Tsybakov [31] studied learning rates for aggregation, where a predictor is chosen from the convex
hull of a finite set of base predictors. This is equivalent to an `1 constraint where each base predictor is viewed as a
“feature”. As with `1-based analysis, since the bounds depend only logarithmically on the number of base predictors
(i.e. dimensionality), and rely on the scale of change of the loss function, they are of “scale sensitive” nature. For
such an aggregate classifier, Tsybakov obtained a rate of 1/n when zero (or small) risk is achieve by one of the
base classifiers. Using Tsybakov’s result, it is not enough for zero risk to be achieved by an aggregate (i.e. bounded
ell1) classifier in order to obtain the faster rate. Tsybakov’s core result is thus in a sense more similar to the finite
dimensional results, since it allows for a rate of 1/n when zero error is achieved by a finite cardinality (and hence
finite dimension) class.

Tsybakov then used the approximation error of a small class of base predictors w.r.t. a large hypothesis class (i.e. a
covering) to obtain learning rates for the large hypothesis class by considering aggregation within the small class.
However these results only imply fast learning rates for hypothesis classes with very low complexity. Specifically to
get learning rates better than 1/

√
n using these results, the covering number of the hypothesis class at scale ε needs to

behave as 1/εp for some p < 2. But typical classes, including the class of linear predictors with bounded norm, have
covering numbers that scale as 1/ε2 and so these methods do not imply fast rates for such function classes. In fact, to
get rates of 1/n with these techniques, even when L∗ = 0, requires covering numbers that do not increase with ε at
all, and so actually finite VC-subgraph-dimension.

Chesneau et al [10] extend Tsybakov’s work also to general losses, deriving similar results for Lipschitz loss function.
The same caveats hold: even when L∗ = 0, rates faster when 1/

√
n require covering numbers that grow slower than

1/ε2, and rates of 1/n essentially require finite VC-subgraph-dimension. Our work, on the other hand, is applicable
whenever the Rademacher complexity (equivalently covering numbers) can be controlled. Although it uses some
similar techniques, it is also rather different from the work of Tsybakov and Chesneau et al, in that it points out
the importance of smoothness for obtaining fast rates in the non-parametric case: Chesneau et al relied only on the
Lipschitz constant, which we show, in Section 4, is not enough for obtaining fast rates in the non-parametric case, even
when L∗ = 0.

Local Rademacher Complexities Bartlett et al [3] developed a general machinery for proving possible fast rates
based on local Rademacher complexities. However, it is important to note that the localized complexity term typically
dominates the rate and still needs to be controlled. For example, Steinwart [29] used Local Rademacher Complexity to
provide fast rate on the 0/1 loss of Support Vector Machines (SVMs) (`2-regularized hinge-loss minimization) based on
the so called “geometric margin condition” and Tsybakov’s margin condition. Steinwart’s analysis is specific to SVMs.
We also use Local Rademacher Complexities in order to obtain fast rates, but do so for general hypothesis classes,
based only on the standard Rademacher complexityRn(H) of the hypothesis classes, as well as the smoothness of the
loss function and the magnitude of L∗, but without any further assumptions on the hypothesis classes itself.
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Non-Lipschitz Loss Beyond the strong connections between smoothness and fast rates which we highlight, we are
also not aware of prior work providing an explicit and easy-to-use result for controlling a generic non-Lipschitz loss
(such as the squared loss) solely in terms of the Rademacher complexity.

3 Online and Stochastic Optimization of Smooth Convex Objectives

We now turn to online and stochastic convex optimization. In these settings a learner chooses w ∈W, where W is
a closed convex set in a normed vector space, attempting to minimize an objective (loss) `(w, z) on instances z ∈ Z ,
where ` : W ×Z → R is an objective function which is convex in w. This captures learning linear predictors w.r.t. a
convex loss function φ(t, z), where Z = X ×Y and `(w, (x, y)) = φ(〈w, x〉, y), and extends well beyond supervised
learning.

We consider the case where the objective `(w, z) is H-smooth w.r.t. some norm ‖w‖ (the reader may choose to think
of W as a subset of a Euclidean or Hilbert space, and ‖w‖ as the `2-norm): By this we mean that for any z ∈ Z , and
all w,w′ ∈W

‖∇`(w, z)−∇`(w′, z)‖∗ ≤ H ‖w −w′‖
where ‖ · ‖∗ is the dual norm. The key here is to generalize Lemma 2.1 to smoothness w.r.t. a vector w, rather then
scalar smoothness:

Lemma 3.1. For an H-smooth non-negative f : W→ R, for all w ∈W: ‖∇f(w)‖∗ ≤
√

4Hf(w)

Proof. For any w0 such that ‖w −w0‖ ≤ 1, let g(t) = g(w0 + t(w −w0)). For any t, s ∈ R,

|g′(t)− g′(s)| = |〈∇f(w0 + t(w −w0))−∇f(w0 + s(w −w0)),w −w0〉|
≤ ‖∇f(w0 + t(w −w0))−∇f(w0 + s(w −w0))‖∗ ‖w −w0‖
≤ H|t− s|‖w −w0‖2

≤ H|t− s|

Hence g is H-smooth and so by Lemma 2.1 |g′(t)| ≤
√

4Hg(t). Setting t = 1 we have, 〈∇f(w),w −w0〉 ≤√
4Hf(w). Taking supremum over w0 such that ‖w0 −w‖ ≤ 1 we conclude that

‖∇f(w)‖∗ = sup
w0:‖w−w0‖≤1

〈∇f(w),w −w0〉 ≤
√

4Hf(w)

In order to consider general norms, we will also need to rely on a non-negative regularizer F : W 7→ R that is a
1-strongly convex (see Definition in e.g. [33]) w.r.t. to the norm ‖w‖ for all w ∈W. For the Euclidean norm we can
use the squared Euclidean norm regularizer: F (w) = 1

2 ‖w‖
2.

3.1 Online Optimization Setting

In the online convex optimization setting we consider an n round game played between a learner and an adversary
(Nature) where at each round i, the player chooses a wi ∈ W and then the adversary picks a zi ∈ Z . The player’s
choice wi may only depend on the adversary’s choices in previous rounds. The goal of the player is to have low
average objective value 1

n

∑n
i=1 `(wi, zi) compared to the best single choice in hind sight [9].

A classic algorithm for this setting is Mirror Descent [4], which starts at some arbitrary w1 ∈W and updates wi+1

according to zi and a stepsize η (to be discussed later) as follows:

wi+1 ← arg min
w∈W

〈η∇`(wi, zi)−∇F (wi),w〉+ F (w) (12)

For the Euclidean norm with F (w) = 1
2‖w‖

2, the update (12) becomes projected online gradient descent [34]:

wi+1 ← ΠW(wi − η∇`(wi, zi)) (13)

where ΠW(w) = arg minw′∈W ‖w −w′‖ is the projection onto W.
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Theorem 2. For any B ∈ R and L∗ if we use stepsize η = 1

HB2+
√
H2B4+HB2nL∗

for the Mirror Descent algorithm

then for any instance sequence z1, . . . , zn ∈ Z , the average regret w.r.t. any w∗ ∈ W s.t. F (w∗) ≤ B2 and
1
n

∑n
j=1 `(w

∗, zi) ≤ L∗ is bounded by:

1

n

n∑
i=1

`(wi, zi)−
1

n

n∑
i=1

`(w∗, zi) ≤
4HB2

n
+ 2

√
HB2L∗

n

Note that the stepsize depends on the bound L∗ on the loss in hindsight.

Proof. The proof follows from Lemma 3.1 and Theorem 1 of [28], using U1 = B2 and U2 = nL∗ in the Theorem.

3.2 Stochastic Optimization I: Stochastic Mirror Descent

An online algorithm can also serve as an efficient one-pass learning algorithm in the stochastic setting. Here, we again
consider an i.i.d. sample z1, . . . , zn from some unknown distribution (as in Section 2), and we would like to find w
with low risk L(w) = E [`(w, Z)]. When z = (x, y) and `(w, z) = φ(〈w,x〉, y) this agrees with the supervised
learning risk discussed in the Introduction and analyzed in Section 2. But instead of focusing on the ERM, we run
Mirror Descent (or Projected Online Gradient Descent in case of a Euclidean norm) on the sample, and then take
w̃ = 1

n

∑n
i=1 wi. Standard arguments [8] allow us to convert the online regret bound of Theorem 2 to a bound on the

excess risk:

Corollary 3. For any B ∈ R and L∗ if we run Mirror Descent on a random sample with stepsize η =
1

HB2+
√
H2B4+HB2nL∗

, then for any w∗ ∈ W with F (w∗) ≤ B2 and L(w∗) ≤ L∗, with expectation over the

sample:

L (w̃n)− L (w?) ≤ 4HB2

n
+ 2

√
HB2L∗

n
.

Again, one must know a bound L∗ on the risk in order to choose the stepsize.

It is instructive to contrast this guarantee with similar looking guarantees derived recently in the stochastic convex
optimization literature [14]. There, the model is stochastic first-order optimization, i.e. the learner gets to see an
unbiased estimate ∇l(w, zi) of the gradient of L(w). The variance of the estimate is assumed to be bounded by σ2.
The expected accuracy after n gradient evaluations then has two terms: a “accelerated” term that is O(H/n2) and a
slow O(σ/

√
n) term. While this result is applicable more generally (since it doesn’t require non-negativity of `), it is

not immediately clear if our guarantees can be derived using it. The main difficulty is that σ depends on the norm of
the gradient estimates. Thus, it cannot be bounded in advance even if we know that L(w?) is small. That said, it is
intuitively clear that towards the end of the optimization process, the gradient norms will typically be small if L(w?)
is small because of the self bounding property (Lemma 3.1). Exploring this connection can be fruitful direction for
further research.

3.3 Stochastic Optimization II: Regularized Batch Optimization

It is interesting to note that using stability arguments, a guarantee very similar to Corollary 3, avoiding the polyloga-
rithmic factors of Theorem 1 as well as the dependence on the bound on the loss (b in Theorem 1), can be obtained also
for a “batch” learning rule similar to ERM, but incorporating penalty-type regularization. For a given regularization
parameter λ > 0 define the regularized empirical loss as

L̂λ(w) := L̂(w) + λF (w)

and consider the Regularized Empirical Risk Minimizer

ŵλ = arg min
w∈W

L̂λ(w) (14)

The following theorem provides a bound on excess risk similar to Corollary 3:

8



Theorem 4. For anyB ∈ R andL∗ if we set λ = 128H
n +

√
1282H2

n2 + 128HL∗

nB2 then for all w? ∈W with F (w?) ≤ B2

and L(w?) ≤ L∗, we have that in expectation over sample of size n:

L (ŵλ)− L (w?) ≤ 256HB2

n
+

√
2048HB2L∗

n
.

To prove Theorem 4 we use stability arguments similar to the ones used by Shalev-Shwartz et al [25], which are in turn
based on Bousquet and Elisseeff [7]. However, while Shalev-Shwartz et al [25] use the notion of uniform stability,
here it is necessary to look at stability in expectation to get the faster rates (uniform stability does not hold with the
desired rate).

To use stability based arguments, for each i ∈ [n] we consider a perturbed sample where instance zi is replaced
by instance z′i drawn independently from same distribution as zi. Let L̂(i)(w) = 1

n (
∑
j 6=i `(w, zj) + `(w, z′i)) be

the empirical risk over the perturbed sample, and consider the corresponding regularized empirical risk minimizer
ŵ

(i)
λ = arg minw L̂

(i)
λ (w), where L̂(i)

λ (w) = L̂(i)(w) +λF (w). We first prove the following Lemma on the expected
stability of the regularized minimizer:
Lemma 3.2. For any i ∈ [n] we have that

Ez1,...,zn,z′i
[
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

]
≤ 32H

λn
Ez1,...,zn [L(ŵλ)]

Proof.

L̂λ(ŵ
(i)
λ )− L̂λ(ŵλ) =

`(ŵ
(i)
λ , zi)− `(ŵλ, zi)

n
+
`(ŵλ, z

′
i)− `(ŵ

(i)
λ , z′i)

n
+ L̂

(i)
λ (ŵ

(i)
λ )− L̂(i)

λ (ŵλ)

≤
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

n
+
`(ŵλ, z

′
i)− `(ŵ

(i)
λ , z′i)

n

≤ 1

n
‖ŵ(i)

λ − ŵλ‖
(
‖∇`(ŵ(i)

λ , zi)‖∗ + ‖∇`(ŵλ, z
′
i)‖∗

)
≤ 2
√
H

n
‖ŵ(i)

λ − ŵλ‖
(√

`(ŵ
(i)
λ , zi) +

√
`(ŵλ, z′i)

)
where the last inequality follows from Lemma 3.1. By λ-strong convexity of L̂λ we have that

L̂λ(ŵ
(i)
λ )− L̂λ(ŵλ) ≥ λ

2
‖ŵ(i)

λ − ŵλ‖2.

We can conclude that

‖ŵ(i)
λ − ŵλ‖ ≤

4
√
H

λn

(√
`(ŵ

(i)
λ , zi) +

√
`(ŵλ, z′i)

)
This gives us:

`(ŵ
(i)
λ , zi)− `(ŵλ, zi) ≤ ‖∇`(ŵ(i)

λ , zi)‖∗‖ŵ(i)
λ − ŵλ‖

≤
√

4H`(ŵ
(i)
λ , zi)

(
4
√
H

λ

(√
`(ŵ

(i)
λ , zi) +

√
`(ŵλ, z′i)

))

≤ 16H

λn

(
`(ŵ

(i)
λ , zi) + `(ŵλ, z

′
i)
)

Taking expectation:

Ez1,...,zn,z′i
[
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

]
≤ 16H

λn
Ez1,...,zn,z′i

[
`(ŵ

(i)
λ , zi) + `(ŵλ, z

′
i)
]

=
16H

λn
Ez1,...,zn,z′i

[
L
(
ŵ

(i)
λ

)
+ L (ŵλ)

]
=

32H

λn
Ez1,...,zn [L (ŵλ)]
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Proof of Theorem 4. By Lemma 3.2 we have :

Ez1,...,zn [Lλ(ŵλ)− Lλ(w?
λ)] ≤ Ez1,...,zn

[
Lλ(ŵλ)− L̂λ(ŵλ)

]
= Ez1,...,zn

[
L(ŵλ)− L̂(ŵλ)

]
=

1

n

n∑
i=1

Ez1,...,zn,z′i
[
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

]
≤ 32H

λn
Ez1,...,zn [L(ŵλ)]

Noting the definition of L̂λ(w) and rearranging we get

Ez1,...,zn [L(ŵλ)− L(w?)] ≤ 32H

λn
Ez1,...,zn [L(ŵλ)] + λF (w?)− λF (ŵλ) ≤ 32H

λn
Ez1,...,zn [L(ŵλ)] + λF (w?)

Rearranging further we get

Ez1,...,zn [L (ŵλ)]− L (w?) ≤

(
1

1− 32H
λn

− 1

)
L (w?) +

λ

1− 32H
λn

F (w?)

plugging in the value of λ gives the result.

4 Tightness

In this Section we return to the learning rates for the ERM for parametric and for scale-sensitive hypothesis classes
(i.e. in terms of the dimensionality and in terms of scale sensitive complexity measures), discussed in the Introduction
and analyzed in Section 2. We compare the guarantees on the learning rates in different situations, identify differences
between the parametric and scale-sensitive cases and between the smooth and non-smooth cases, and argue that these
differences are real by showing that the corresponding guarantees are tight. Although we discuss the tightness of the
learning guarantees for ERM in the stochastic setting, similar arguments can also be made for online learning.

Table 1 summarizes the bounds on the excess risk of the ERM implied by Theorem 1 as well previous bounds for Lips-
chitz loss on finite-dimensional [23] and scale-sensitive [2] classes, and a bound for squared-loss on finite-dimensional
classes [9, Theorem 11.7] that can be generalized to any smooth strongly convex loss.

Parametric Scale-Sensitive
Loss function is: dim(H) ≤ d , |h| ≤ 1 Rn(H) ≤

√
R/n

D-Lipschitz dD
n +

√
dDL∗

n

√
D2R
n

H-smooth dH
n +

√
dHL∗

n
HR
n +

√
HRL∗

n

H-smooth and λ-strongly Convex H
λ
dH
n

HR
n +

√
HRL∗

n

Table 1: Bounds on the excess risk, up to polylogarithmic factors.

We shall now show that the 1/
√
n dependencies in Table 1 are unavoidable. To do so, we will consider the class

H = {x 7→ 〈w,x〉 : ‖w‖ ≤ 1} of `2-bounded linear predictors (all norms in this Section are Euclidean), with different
loss functions, and various specific distributions over X × Y , where X =

{
x ∈ Rd : ‖x‖ ≤ 1

}
and Y = [0, 1]. For

the non-parametric lower-bounds, we will allow the dimensionality d to grow with the sample size n.

Infinite dimensional, Lipschitz (non-smooth), separable
Consider the absolute difference loss φ(h(x), y) = |h(x)− y|, take d = 2n and consider the following distribution: X
is uniformly distributed over the d standard basis vectors ei and ifX = ei, then Y = 1√

n
ri, where r1, . . . , rd ∈ {±1} is

an arbitrary sequence of signs unknown to the learner (say drawn randomly beforehand). Taking w? = 1√
n

∑n
i=1 riei,

‖w?‖ = 1 and L∗ = L (w?) = 0. However any sample (x1, y1), . . . , (xn, yn) reveals at most n of 2n signs ri, and no
information on the remaining ≥ n signs. This means that for any algorithm used by the learner, there exists a choice
of ri’s such that on at least n of the remaining points not seen by the learner the learner has to suffer a loss of at least
1/
√
n, yielding an overall risk of at least 1/(2

√
n).

Infinite dimensional, smooth, non-separable, even if strongly convex
Consider the squared loss φ(h(x), y) = (h(x) − y)2 which is 2-smooth and 2-strongly convex. For any σ ≥ 0 let
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d =
√
n/σ and consider the following distribution: X is uniform over ei as before, but this time Y |X is random, with

Y |(X = ei) ∼ N ( ri
2
√
d
, σ), where again ri are pre-determined, unknown to the learner, random signs. The minimizer

of the expected risk is w? =
∑d
i=1

ri
2
√
d
ei, with ‖w?‖ = 1

2 and L∗ = L(w?) = σ2. Furthermore, for any w ∈W,

L (w)− L (w?) = E [〈w −w?,x〉]2 =
1

d

d∑
i=1

(w[i]−w?[i])2 =
1

d
‖w −w?‖2

If the norm constraint becomes tight, i.e. ‖ŵ‖ = 1, then L(ŵ) − L(w?) ≥ 1/(4d) = σ/(4
√
n) =

√
L∗/(4

√
n).

Otherwise, each coordinate is a separate mean estimation problem, with ni samples, where ni is the number of ap-
pearances of ei in the sample. We have E

[
(ŵ[i]−w?[i])2

]
= σ2/ni and so

L(ŵ)− L∗ =
1

d
‖ŵ −w?‖2 =

1

d

d∑
i=1

σ2

ni
≥ σ2

d

d2∑
i ni

=
σ2d

n
=

σ√
n

=

√
L∗

n

Finite dimensional, smooth, not strongly convex, non-separable:
Take d = 1, with X = 1 with probability q and X = 0 with probability 1 − q. Conditioned X = 0 let Y = 0
deterministically, while conditioned on X = 1 let Y = +1 with probability p = 1

2 + 0.2√
qn and Y = −1 with

probability 1−p. Consider the following 1-smooth loss function, which is quadratic around the correct prediction, but
linear away from it:

φ(h(x), y) =

{
(h(x)− y)2 if |h(x)− y| ≤ 1/2

|h(x)− y| − 1/4 if |h(x)− y| ≥ 1/2

First note that irrespective of choice of w, when x = 0 and so y = 0 we always have h(x) = 0 and so suffer no loss.
This happens with probability 1 − q. Next observe that for p > 1/2, the optimal predictor is w? ≥ 1/2. However,
for n > 20, with probability at least 0.25,

∑n
i=1 yi < 0, and so the empirical minimizer is ŵ ≤ −1/2. We can now

calculate

L(ŵ)− L∗ > L(−1/2)− L(1/2) = q(2p− 1) + (1− q)0 =
0.4 q
√
qn

=
0.4
√
q

√
n

.

However note that for p > 1/2, w∗ = 3
2 −

1
2p and so for n > 20:

L∗ >
q

2

Hence we conclude that with probability 0.25 over the sample,

L(ŵ)− L∗ >
√

0.32L∗

n
.

5 Implications

We demonstrate the implications of our results in several settings.

5.1 Improved Margin Bounds

“Margin bounds” provide a bound on the expected zero-one loss of a classifiers based on the margin zero-one error
on the training sample. Koltchinskii and Panchenko [13] provides margin bounds for a generic class H based on the
Rademacher complexity of the class. This is done by using a non-smooth Lipschitz “ramp” loss that upper bounds
the zero-one loss and is upper-bounded by the margin zero-one loss. However, such an analysis unavoidably leads to
a 1/
√
n rate even in the separable case, since as we discuss in Section 4, it is not possible to get a faster rate for a

non-smooth loss. Following the same idea we use the following smooth “ramp”:

φ(t) =


1 t ≤ 0
1+cos(πt/γ)

2
0 < t < γ

0 t ≥ γ

11



This loss function is π2

4γ2 -smooth and is lower bounded by the zero-one loss and upper bounded by the γ mar-
gin loss. Using Theorem 1 we can now provide improved margin bounds for the zero-one loss of any classifier
based on empirical margin error. Denote err(h) = E

[
11{h(x)6=y}

]
the zero-one risk and for any γ > 0 and sample

(x1, y1), . . . , (xn, yn) ∈ X × {±1} define the γ-margin empirical zero one loss as

êrrγ(h) :=
1

n

n∑
i=1

11{yih(xi)<γ}

Theorem 5. For any hypothesis classH, with |h| ≤ b, and any δ > 0, with probability at least 1− δ, simultaneously
for all margins γ > 0 and all h ∈ H:

err(h) ≤ êrrγ(h) +K

(√
êrrγ(h)

(
log1.5 n

γ Rn(H) +

√
log(log( 4b

γ )/δ)

n

)
+ log3 n

γ2 R2
n(H) +

log(log( 4b
γ )/δ)

n

)
where K is a numeric constant from Theorem 1

In particular, the above bound implies:

err(h) ≤ 1.01êrrγ(h) +K

(
2 log3 n

γ2
R2
n(H) +

2 log(log( 4b
γ )/δ)

n

)
where K is an appropriate numeric constant.

Improved margin bounds of the above form have been previously shown specifically for linear prediction in a Hilbert
space (as in Support Vector Machines) based on the PAC Bayes theorem [20, 15]. However these PAC-Bayes based
results are specific to the linear function class. Theorem 5 is, in contrast, a generic concentration-based result that can
be applied to any function class with and yields rates dominated byR2(H).

5.2 Interaction of Norm and Dimension

Consider the problem of learning a low-norm linear predictor with respect to the squared loss φ(t, z) = (t − z)2,
where X ∈ Rd, for finite but very large d, and where the expected norm of X is low. Specifically, let X be Gaussian
with E

[
‖X‖2

]
= B, Y = 〈w∗, X〉 + N (0, σ2) with ‖w∗‖ = 1, and consider learning a linear predictor using `2

regularization. What determines the sample complexity? How does the error decrease as the sample size increases?

From a scale-sensitive statistical learning perspective, we expect that the sample complexity, and the decrease of the
error, should depend on the norm B, especially if d � B2. However, for any fixed d and B, even if d � B2,
asymptotically as the number of samples increase, the excess risk of norm-constrained or norm-regularized regression
actually behaves as L(ŵ) − L∗ ≈ d

nσ
2, and depends (to first order) only on the dimensionality d and not at all on B

[17]. How does the scale sensitive complexity come into play?

The asymptotic dependence on the dimensionality alone can be understood through Table 1. In this non-separable
situation, parametric complexity controls can lead to a 1/n rate, ultimately dominating the 1/

√
n rate resulting from

L∗ > 0 when considering the scale-sensitive, non-parametric complexity control B. (The dimension-dependent
behavior here is actually a bit better then in the generic situation—the well-posed Gaussian model allows the bound to
depend on σ2 = L∗ rather then on sup(w′x− y)2 ≈ B2 + σ2).

Combining Theorem 4 with the asymptotic d
nσ

2 behavior, and noting that at the worst case we can predict using a zero
vector, yields the following overall picture on the expected excess risk of ridge regression with an optimally chosen λ:

L(ŵλ)− L∗ ≤ O
(

min

(
B2,

B2

n
+
Bσ√
n
,
dσ2

n

))
Roughly speaking, each term above describes the behavior in a different regime of the sample size:

• The first (“random”) regime until n = Θ(B2) where the excess is is B2.

• The second (“low-noise”) regime, where the excess risk is dominated by the norm and behaves asB2/n, until
n = Θ(B2/σ2) and L(ŵ) = Θ(L∗).
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• The third (“slow”) regime, where the excess risk is controlled by the norm and the approximation error and
behaves as Bσ/

√
n, until n = Θ(d2σ2/B2) and L(ŵ) = L∗ + Θ(B2/d).

• the fourth (“asymptotic”) regimes, where the excess risk is dominated by the dimensionality and behaves as
d/n.

This sheds further light on recent work on this phenomena by Liang and Srebro based on exact asymptotics of simpli-
fied situations [18].

5.3 Sparse Prediction

The use of the `1 norm has become very popular for learning sparse predictors in high dimensions, as in the LASSO.
The LASSO estimator [30] ŵ is obtained by considering the squared loss φ(z, y) = (z − y)2 and minimizing L̂(w)
subject to ‖w‖1 ≤ B. Let us assume there is some (unknown) sparse reference predictor w0 that has low expected
loss and sparsity (number of non-zeros)

∥∥w0
∥∥
0

= k, and that ‖x‖∞ ≤ 1, y ≤ 1. In order to choose B and apply
Theorem 1 in this setting, we need to bound

∥∥w0
∥∥
1
. This can be done by, e.g., assuming that the features x[i] in

the support of w0 are mutually uncorrelated. Under such an assumption, we have:
∥∥w0

∥∥2
1
≤ kE

[〈
w0, x

〉2] ≤
2k(L(w0) + E

[
y2
]
) ≤ 4k. Thus, Theorem 1 along with Rademacher complexity bounds from [11] gives us,

L(ŵ) ≤ L(w0) + Õ

(
k log(d)

n
+

√
k L(w0) log(d)

n

)
. (15)

It is possible to relax the no-correlation assumption to a bound on the correlations, as in mutual incoherence, or to other
weaker conditions [26]. But in any case, unlike typical analysis for compressed sensing, where the goal is recovering
w0 itself, here we are only concerned with correlations inside the support of w0. Furthermore, we do not need to
require that the optimal predictor is sparse or close to being sparse, or that the model is well specified: only that there
exists a good (low risk) predictor using a small number of fairly uncorrelated features.

Bounds similar to (15) have been derived using specialized arguments [12, 32, 5]—here we demonstrate that a simple
form of these bounds can be obtained under very simple conditions, using the generic framework we suggest.

It is also interesting to note that the methods and results of Section 3 can also be applied to this setting. But since
‖w‖21 is not strongly convex with respect to ‖w‖1, we must instead use the entropy regularizer

F (w) = B
∑
i

x[i] log

(
x[i]

1/d

)
+
B2

e
(16)

which is non-negative and 1-strongly convex with respect to ‖w‖1 on W =
{
w ∈ Rd

∣∣w[i] ≥ 0, ‖w‖1 ≤ B
}

, with
F (w) ≤ B2(1 + log d) (we consider here only non-negative weights—in order to allow w[i] < 0 we can include also
each features negation, doubling the dimensionality). Recalling that

∥∥w0
∥∥
1
≤ 2
√
k and using B = 2

√
k in (16), we

have from Theorem 4 we that:

L(ŵλ) ≤ L(w0) +O

(
k log(d)

n
+

√
k L(w0) log(d)

n

)
. (17)

where ŵλ is the regularized empirical minimizer (14) using the entropy regularizer (16) with λ as in Theorem 4. The
advantage here is that using Theorem 4 instead of Theorem 1 avoids the extra logarithmic factors (yielding a clean
big-O dependence in (17) as opposed to big-Õ in (15)).

More interestingly, following Corollary 3, one can use stochastic mirror descent, taking steps of the form (12) with the
entropy regularizer (16), to obtain the same performance guarantee as in (17). This provides an efficient, single-pass
optimization approach to sparse prediction as an alternative to batch optimization with an `1-norm constraint, and
yielding the same (if not somewhat better) guarantees.
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A Technical proofs

Lemma A.1. For any H-smooth non-negative function f : R 7→ R and any t, r ∈ R we have that

(f(t)− f(r))
2 ≤ 6H(f(t) + f(r))(t− r)2

Proof. We start by noting that by the mean value theorem for any t, r ∈ R there exists s between t and r such that

f(t)− f(r) = f ′(s)(t− r) (18)

By smoothness we have that
|f ′(s)− f ′(t)| ≤ H |t− s| ≤ H |t− r| .

Hence we see that
|f ′(s)| ≤ |f ′(t)|+H |t− r| (19)

We now consider two cases:
Case I: If |t− r| ≤ |f

′(t)|
5H then by Equation (19), |f ′(s)| ≤ 6/5 |f ′(t)|, and combining this with Equation (18) we

have:

(f(t)− f(r))2 ≤ f ′(s)2(t− r)2 ≤ 36

25
f ′(t)2(t− r)2

But Lemma 2.1 ensures f ′(t)2 ≤ 4Hf(t) yielding:

≤ 144

25
Hf(t)(t− r)2 < 6Hf(t)(t− r)2 (20)

Case II: On the other hand, when |t− r| > |f
′(t)|
5H , we have from Equation (19) that |f ′(s)| ≤ 6H |t− r|. Plugging

this into Equation (18) yields:

(f(t)− f(r))2 = |f(t)− f(t)| · |f(t)− f(r)| ≤ |f(t)− f(r)| (|f ′(s)| |t− r|)
≤ |f(t)− f(r)| (6H |t− r| · |t− r|) = 6H |f(t)− f(r)| (t− r)2

≤ 6H max{f(t), f(r)}(t− r)2 (21)

Combining the two cases, we have from Equations (20) and (21)) and the non-negativity of f(·), that in either case:

(f(t)− f(r))2 ≤ 6H (f(t) + f(r)) (t− r)2

Relating Fat-shattering Dimension and Rademacher complexity :

The following lemma upper bounds the fat-shattering dimension at scale ε ≥ Rn(H) in terms of the Rademacher
Complexity of the function class. The proof closely follows the arguments of Mendelson [21, discussion after Defini-
tion 4.2].

Lemma A.2. For any hypothesis classH, any sample size n and any ε > Rn(H) we have that

fatε(H) ≤ 4 nRn(H)2

ε2

In particular, ifRn(H) =
√
R/n (the typical case), then fatε(H) ≤ R/ε2.

Proof. Consider any ε ≥ Rn(H). Let x∗1, . . . , x
∗
fatε

be the set of fatε shattered points. This means that there exists
s1, . . . , sfatε such that for any J ⊂ [fatε] there exists hJ ∈ H such that ∀i ∈ J, hJ(xi) ≥ si + ε and ∀i 6∈ J, hJ(xi) ≤
si − ε. Now consider a sample x1, . . . , xn′ of size n′ = d n

fatε
efatε, obtained by taking each x∗i and repeating it d n

fatε
e
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times, i.e. xi = x∗b i
fatε
c. Now, following Mendelson’s arguments:

Rn′(H) ≥ Eσ∼Unif{±1}n′

 1

n′
sup
h∈H

∣∣∣∣∣∣
n′∑
i=1

σih(xi)

∣∣∣∣∣∣


≥ 1

2
Eσ∼Unif{±1}n′

 1

n′
sup

h,h′∈H

∣∣∣∣∣∣
n′∑
i=1

σi(h(xi)− h′(xi))

∣∣∣∣∣∣
 (triangle inequality)

=
1

2
Eσ∼Unif{±1}n′

 1

n′
sup

h,h′∈H

∣∣∣∣∣∣
fatε∑
i=1

dn/fatεe∑
j=1

σ(i−1)fatε+j

 (h(x∗i )− h′(x∗i ))

∣∣∣∣∣∣


≥ 1

2
Eσ∼Unif{±1}n′

 1

n′

∣∣∣∣∣∣
fatε∑
i=1

dn/fatεe∑
j=1

σ(i−1)fatε+j

 (hR(x∗i )− hR(x∗i ))

∣∣∣∣∣∣


where for each σ1, . . . , σn′ , R ⊆ [fatε] is given by R =
{
i ∈ [fatε]

∣∣∣sign
(∑dn/fatεe

j=1 σ(i−1)dn/fatεe+j

)
≥ 0
}

, hR is
the function inH that ε-shatters the set R and hR be the function that shatters the complement of set R.

≥ 1

2
Eσ∼Unif{±1}n′

 1

n′

fatε∑
i=1

∣∣∣∣∣∣
dn/fatεe∑
j=1

σ(i−1)fatε+j

∣∣∣∣∣∣ 2ε


≥ ε

n′

fatε∑
i=1

Eσ∼Unif{±1}n′

∣∣∣∣∣∣
dn/fatεe∑
j=1

σ(i−1)fatε+j

∣∣∣∣∣∣


≥ ε fatε
n′

√
dn/fatεe

2
(Kinchine’s inequality)

=

√
ε2 fatε
2 n′

.

We can now conclude that:

fatε ≤
2n′R2

n′(H)

ε2
≤ 4nR2

n(H)

ε2

where last inequality is because Rademacher complexity decreases with increase in number of samples and n ≤ n′ ≤
2n (because ε ≥ Rn(H) which implies that fatε < n).

Dudley Upper Bound :

In order to state and prove the following Lemma, we shall find it simpler to use the empirical Rademacher complexity
for a given sample x1, . . . , xn [2]:

R̂n(H) = Eσ∼Unif({±1}n)

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

h(xi)σi

∣∣∣∣∣
]
. (22)

and the L2 covering number at scale ε > 0 specific to a sample x1, . . . , xn, denoted by N2 (ε,F , (x1, . . . , xn)) as the
size of a minimal cover Cε such that

∀f ∈ F ,∃fε ∈ Cε s.t.

√√√√ 1

n

n∑
i=1

(f(zi)− fε(zi))2 ≤ ε .

We will also denote Ê
[
f2
]

= 1
n

∑n
i=1 f

2(xi).

The following Lemma is stated in terms of the empirical Rademacher complexity and covering numbers. Taking a
supremum over samples of size n, we get the same relationship between the worst-case Rademacher complexity and
covering numbers, as is used in Section 2.
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Lemma A.3 ([27] following [21]). For any function class F containing functions f : X 7→ R, we have that

R̂n(F) ≤ inf
α≥0

4α+ 10

∫ supf∈F

√
Ê[f2]

α

√
logN (ε,F , (x1, . . . , xn))

n
dε



Proof. Let β0 = supf∈F

√
Ê [f2] and for any j ∈ Z+ let βj = 2−j supf∈F

√
Ê [f2]. The basic trick here is the idea

of chaining. For each j let Ti be a (proper) L2-cover at scale βj of F for the given sample. For each f ∈ F and j,
pick an f̂i ∈ Ti such that f̂i is an βi approximation of f . Now for any N , we express f by chaining as

f = f − f̂N +

N∑
i=1

(
f̂i − f̂i−1

)

where f̂0 = 0. Hence for any N we have that

R̂n(F) =
1

n
Eσ

sup
f∈F

n∑
i=1

σi

f(xi)− f̂N (xi) +

N∑
j=1

(
f̂j(xi)− f̂j−1(xi)

)
≤ 1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f(xi)− f̂N (xi)

)]
+

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]

≤ 1

n

√√√√ n∑
i=1

σ2
i sup
f∈F

√√√√ n∑
i=1

(f(xi)− f̂N (xi)2 +

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]

≤ βN +

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]
(23)

where the step before last is due to Cauchy-Shwarz inequality and σ = [σ1, ..., σn]
>. Now note that

1

n

n∑
i=1

(f̂j(xi)− f̂j−1(xi))
2 =

1

n

n∑
i=1

(
(f̂j(xi))− f(xi)) + (f(xi)− f̂j−1(xi))

)2
≤ 2

n

n∑
i=1

(
f̂j(xi))− f(xi)

)2
+

2

n

n∑
i=1

(
f(xi)− f̂j−1(xi)

)2
≤ 2β2

j + 2β2
j−1 = 6β2

j

Now Massart’s finite class lemma [19] states that if for any function class G, supg∈G

√
1
n

∑n
i=1 g(xi)2 ≤ R, then

R̂n(G) ≤
√

2R2 log(|G|)
n . Applying this to function classes {f − f ′ : f ∈ Tj , f ′ ∈ Tj−1} (for each j) we get from
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Equation (23) that for any N ,

R̂n(F) ≤ βN +

N∑
j=1

βj

√
12 log(|Tj | |Tj−1|)

n

≤ βN +

N∑
j=1

βj

√
24 log |Tj |

n

≤ βN + 10

N∑
j=1

(βj − βj+1)

√
log |Tj |

n

≤ βN + 10

N∑
j=1

(βj − βj+1)

√
log N (βj ,F , (x1, . . . , xn))

n

≤ βN + 10

∫ β0

βN+1

√
log N (ε,F , (x1, . . . , xn))

n
dε

where the third step is because 2(βj − βj+1) = βj and we bounded
√

24 by 5. Now for any α > 0, pick N = sup{j :
βj > 2α}. In this case we see that by our choice of N , βN+1 ≤ 2α and so βN = 2βN+1 ≤ 4ε. Also note that since
βN > 2α, βN+1 = βN

2 > α. Hence we conclude that

R̂n(F) ≤ 4α+ 10

∫ supf∈F

√
Ê[f2]

α

√
log N (ε,F , (x1, . . . , xn))

n
dε

Since the choice of α was arbitrary we take an infimum over α.

Detailed Proof of Main Result :

Detailed proof of Theorem 1. By Theorem 6.1 of [6] (specifically the displayed equation prior to the last one in the
proof of the theorem) we have that if ψn is any sub-root function that satisfies for all r > 0,Rn(Lφ(r)) ≤ ψn(r) then,

L (h) ≤ L̂(h) + 45r∗n +
√
L (h)

(√
8r∗n +

√
4b(log(1/ε) + 6 log log n)

n

)
+

20b(log(1/ε) + 6 log log n)

n
(24)

where r∗n is the largest solution to equation ψn(r) = r. Now by Lemma 2.2 we have that ψn(r) =

56
√
Hr log1.5 nR̂n(H) satisfies the property that for all r > 0, Rn(Lφ(r)) ≤ ψn(r) and so using this we see

that
r∗n = 562H log3nRn(H)

and for this r∗n Equation (24) holds. Now using the simple fact that for any non-negative A,B,C,

A ≤ B + C
√
A⇒ A ≤ B + C2 +

√
BC

we conclude,

L (h) ≤ L̂(h) + 106 r∗n +
48b

n

(
log 1

ε + log log n
)

+

√
L̂(h)

(
8r∗n +

4b

n

(
log 1

ε + log log n
))

plugging in r∗n we get the required statement.
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