1 Supplementary Material: Complete Proof of Theorem 4

Define two new functions L » and H o as
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where L, is related to the cost function Ly (II) as
A — (N = 1)Ly + 1, (1)

and H., is related to the a-Rényi entropy H, (IL) as

H,(Il,) = 1og2 Zw@k = log 5 log, Zw@k = log, (Z 7r®k> (2a)
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where we use the definition of o, i.e., o« = m in (2a).

Now, we note from Lemma 1 that L A can be decomposed as
A= Z )\d“ o,
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where d,, denotes the depth of internal node ‘a’ in the tree T'. Similarly, note from Lemma 2 that
H,, can be decomposed as
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Finally, the result follows from (3) and (4) above.
Lemma 1. The function L A can be decomposed over the internal nodes in a tree T, as
Ly = Z )\d“ O,
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where d, denotes the depth of internal node o € T and g, is the probability mass of the objects at
that node.

Proof. Let T, denote a subtree from any internal node ‘a’ in the tree T" and let Z,, £, denote the set

of internal nodes and leaf nodes in the subtree T, respectively. Then, define L in the subtree T}, to
be

s = deca Tou [Zh 0 )‘h}

where dj denotes the depth of leaf node j € L, in the subtree Tf,.



Now, we show using induction that for any subtree T}, in the tree 7', the following relation holds
mo.L5 =D A, )
SET,
where d? denotes the depth of internal node s € Z, in the subtree T},.

The relation holds trivially for any subtree T}, rooted at an internal node a € Z whose both child
nodes terminate as leaf nodes, with both the left hand side and the right hand side of the expression
equal to mg,. Now, consider a subtree T}, rooted at an internal node a € Z whose left child (or
right child) alone terminates as a leaf node. Assume that the above relation holds true for the subtree
rooted at the right child of node ‘a’. Then,
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where the last step follows from the induction hypothesis. Finally, consider a subtree 7}, rooted at
an internal node a € Z whose neither child node terminates as a leaf node. Assume that the relation
in (5) holds true for the subtrees rooted at its left and right child nodes. Then,
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thereby completing the induction. Finally, the result follows by applying the relation in (5) to the
tree T" whose probability mass at the root node, 7g, = 1. O

Lemma 2. The function H,, can be decomposed over the internal nodes in a tree T, as
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where D, (0,) = {Zk 1 ( . ) } and g, denotes the probability mass of the objects at any
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internal node a € 1.



Proof. Let T, denote a subtree from any internal node ‘a’ in the tree 7" and let Z, denote the set of
internal nodes in the subtree T7,. Then, define H¢ in a subtree T}, to be
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Now, we show using induction that for any subtree T}, in the tree 7', the following relation holds
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Note that the relation holds trivially for any subtree T}, rooted at an internal node a € Z whose both
child nodes terminate as leaf nodes. Now, consider a subtree T, rooted at any other internal node
a € Z. Assume the above relation holds true for the subtrees rooted at its left and right child nodes.
Then,
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where the last step follows from the induction hypothesis. Finally, the result follows by applying the
relation in (6) to the tree 7. O

2 Proof of Theorem 3

The result in Theorem 3 follows from the above result where each group is of size one, thereby
reducing D, (0,) to
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where Iy, c o,y is the indicator function which takes the value one when 0; € O,, and zero other-
wise.

3 Proof of Theorem 2

The result in Theorem 2 is a special case of that in Theorem 4 when A — 1. It follows by taking the
logarithm to the base A on both sides of equation
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and then finding the limit as A — 1.



Using L’Hopital’s rule, the left hand side (LHS) of the equation reduces to

lim log, (LHS) = lim L, (IT) = d,
lim log,, (LHS) = lim L (IT) ;ﬂej i)
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where L) (IT) = log, (Z e o, )\di) . Similarly, the right hand side (RHS) of the equation reduces
to
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Finally, the result follows by noticing that
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where (7b) follows from (7a) by using the relation Tok = W@;c( ) + 71'@1?( )’ and (7d) follows from

(7¢) using the definitions of p, and p*.

4 Proof of Theorem 1

The result in Theorem 1 follows from the above result where each group is of size one, thereby
having p¥ = 1 Vk at each internal node a € Z. Tt can also be derived as the limiting case of the
relation in Theorem 3 by taking logarithm to the base A on both sides of the relation and letting
A— 1.



