
1 Supplementary Material: Complete Proof of Theorem 4

Define two new functions L̃λ and H̃α as

L̃λ :=
1

λ− 1

∑
j∈L

πΘjλ
dj − 1

 =
∑
j∈L

πΘj

dj−1∑
h=0

λh


H̃α := 1− 1(∑K

k=1 π
α
Θk

) 1
α

,

where L̃λ is related to the cost function Lλ(Π) as

λLλ(Π) = (λ− 1)L̃λ + 1, (1)

and H̃α is related to the α-Rényi entropy Hα(Πy) as

Hα(Πy) =
1

1− α
log2

K∑
k=1

παΘk =
1

α log2 λ
log2

K∑
k=1

παΘk = logλ

(
K∑
k=1

παΘk

) 1
α

(2a)

=⇒ λHα(Πy) =

(
K∑
k=1

παΘk

) 1
α

=

(
K∑
k=1

παΘk

) 1
α

H̃α + 1 (2b)

where we use the definition of α, i.e., α = 1
1+log2 λ

in (2a).

Now, we note from Lemma 1 that L̃λ can be decomposed as

L̃λ =
∑
a∈I

λdaπΘa

=⇒ λLλ(Π) = 1 +
∑
a∈I

(λ− 1)λdaπΘa (3)

where da denotes the depth of internal node ‘a’ in the tree T . Similarly, note from Lemma 2 that
H̃α can be decomposed as

H̃α =
1(∑K

k=1 π
α
Θk

) 1
α

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]
=⇒ λHα(Πy) = 1 +

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]
. (4)

Finally, the result follows from (3) and (4) above.

Lemma 1. The function L̃λ can be decomposed over the internal nodes in a tree T , as

L̃λ =
∑
a∈I

λdaπΘa

where da denotes the depth of internal node a ∈ I and πΘa is the probability mass of the objects at
that node.

Proof. Let Ta denote a subtree from any internal node ‘a’ in the tree T and let Ia,La denote the set
of internal nodes and leaf nodes in the subtree Ta, respectively. Then, define L̃aλ in the subtree Ta to
be

L̃aλ =
∑
j∈La

πΘj
πΘa

[∑daj−1

h=0 λh
]

where daj denotes the depth of leaf node j ∈ La in the subtree Ta.
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Now, we show using induction that for any subtree Ta in the tree T , the following relation holds

πΘaL̃
a
λ =

∑
s∈Ia

λd
a
sπΘs (5)

where das denotes the depth of internal node s ∈ Ia in the subtree Ta.

The relation holds trivially for any subtree Ta rooted at an internal node a ∈ I whose both child
nodes terminate as leaf nodes, with both the left hand side and the right hand side of the expression
equal to πΘa . Now, consider a subtree Ta rooted at an internal node a ∈ I whose left child (or
right child) alone terminates as a leaf node. Assume that the above relation holds true for the subtree
rooted at the right child of node ‘a’. Then,

πΘaL̃
a
λ =

∑
j∈La

πΘj

daj−1∑
h=0

λh


=

∑
{j∈La:daj=1}

πΘj +
∑

{j∈La:daj>1}

πΘj

daj−1∑
h=0

λh


= πΘl(a) +

∑
{j∈La:daj>1}

πΘj

1 + λ

daj−2∑
h=0

λh


= πΘa + λ

∑
j∈Lr(a)

πΘj

d
r(a)
j −1∑
h=0

λh


= πΘa + λ

∑
s∈Ir(a)

λd
r(a)
s πΘs

where the last step follows from the induction hypothesis. Finally, consider a subtree Ta rooted at
an internal node a ∈ I whose neither child node terminates as a leaf node. Assume that the relation
in (5) holds true for the subtrees rooted at its left and right child nodes. Then,

πΘaL̃
a
λ =

∑
j∈La

πΘj

daj−1∑
h=0

λh


=

∑
j∈Ll(a)

πΘj

1 + λ

daj−2∑
h=0

λh

+
∑

j∈Lr(a)

πΘj

1 + λ

daj−2∑
h=0

λh


= πΘa + λ

∑
j∈Ll(a)

πΘj

d
l(a)
j −1∑
h=0

λh

+ λ
∑

j∈Lr(a)

πΘj

d
r(a)
j −1∑
h=0

λh


= πΘa + λ

 ∑
s∈Il(a)

λd
l(a)
s πΘs +

∑
s∈Ir(a)

λd
r(a)
s πΘs

 =
∑
s∈Ia

λd
a
sπΘs

thereby completing the induction. Finally, the result follows by applying the relation in (5) to the
tree T whose probability mass at the root node, πΘa = 1.

Lemma 2. The function H̃α can be decomposed over the internal nodes in a tree T , as

H̃α =
1(∑K

k=1 π
α
Θk

) 1
α

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]

where Dα(Θa) :=
[∑K

k=1

(πΘka
πΘa

)α] 1
α

and πΘa denotes the probability mass of the objects at any
internal node a ∈ I.
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Proof. Let Ta denote a subtree from any internal node ‘a’ in the tree T and let Ia denote the set of
internal nodes in the subtree Ta. Then, define H̃a

α in a subtree Ta to be

H̃a
α = 1− πΘa[∑K

k=1 π
α
Θia

] 1
α

Now, we show using induction that for any subtree Ta in the tree T , the following relation holds[
K∑
k=1

παΘka

] 1
α

H̃a
α =

∑
s∈Ia

[
πΘsDα(Θs)− πΘl(s)Dα(Θl(s))− πΘr(s)Dα(Θr(s))

]
(6)

Note that the relation holds trivially for any subtree Ta rooted at an internal node a ∈ I whose both
child nodes terminate as leaf nodes. Now, consider a subtree Ta rooted at any other internal node
a ∈ I. Assume the above relation holds true for the subtrees rooted at its left and right child nodes.
Then, [

K∑
k=1

παΘka

] 1
α

H̃a
α =

[
K∑
k=1

παΘka

] 1
α

− πΘa =

[
K∑
k=1

παΘka

] 1
α

− πΘl(a) − πΘr(a)

=

[
K∑
k=1

παΘka

] 1
α

−

[
K∑
k=1

παΘk
l(a)

] 1
α

−

[
K∑
k=1

παΘk
r(a)

] 1
α

+

[ K∑
k=1

παΘk
l(a)

] 1
α

− πΘl(a)

+

[ K∑
k=1

παΘk
r(a)

] 1
α

− πΘr(a)


=
[
πΘaDα(Θa)− πΘl(a)Dα(Θl(a))− πΘr(a)Dα(Θr(a))

]
+

[
K∑
k=1

παΘk
l(a)

] 1
α

H̃ l(a)
α +

[
K∑
k=1

παΘk
r(a)

] 1
α

H̃r(a)
α

=
∑
s∈Ia

[
πΘsDα(Θs)− πΘl(s)Dα(Θl(s))− πΘr(s)Dα(Θr(s))

]
where the last step follows from the induction hypothesis. Finally, the result follows by applying the
relation in (6) to the tree T .

2 Proof of Theorem 3

The result in Theorem 3 follows from the above result where each group is of size one, thereby
reducing Dα(Θa) to

Dα(Θa) =

[
M∑
i=1

(
πiI{θi∈ Θa}

πΘa

)α] 1
α

=

 ∑
{i:θi∈ Θa}

(
πi
πΘa

)α 1
α

,

where I{θi∈ Θa} is the indicator function which takes the value one when θi ∈ Θa, and zero other-
wise.

3 Proof of Theorem 2

The result in Theorem 2 is a special case of that in Theorem 4 when λ→ 1. It follows by taking the
logarithm to the base λ on both sides of equation

λLλ(Π) = λHα(Πy) +
∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))
]
,

and then finding the limit as λ→ 1.
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Using L’Hôpital’s rule, the left hand side (LHS) of the equation reduces to

lim
λ→1

logλ(LHS) = lim
λ→1

Lλ(Π) =
∑
j∈L

πΘjdj ,

whereLλ(Π) = logλ
(∑

j∈L πΘjλ
dj
)

. Similarly, the right hand side (RHS) of the equation reduces
to

lim
λ→1

logλ(RHS) = H(Πy) +
∑
a∈I

πΘa

[
1−

(
H(Θa)−

πΘl(a)

πΘa

H(Θl(a))−
πΘr(a)

πΘa

H(Θr(a))
)]

,

where H(Θa) = −
∑K
k=1

πΘka
πΘa

log2

(πΘka
πΘa

)
.

Finally, the result follows by noticing that

H(Θa)−
πΘl(a)

πΘa

H(Θl(a))−
πΘr(a)

πΘa

H(Θr(a))

=
1
πΘa

[
K∑
k=1

πΘka
log2

(
πΘa

πΘka

)
− πΘk

l(a)
log2

(
πΘl(a)

πΘk
l(a)

)
− πΘk

r(a)
log2

(
πΘr(a)

πΘk
r(a)

)]
(7a)

=
1
πΘa

[
K∑
k=1

πΘk
l(a)

log2

(
πΘa

πΘl(a)

·
πΘk

l(a)

πΘka

)
+ πΘk

r(a)
log2

(
πΘa

πΘr(a)

·
πΘk

r(a)

πΘka

)]
(7b)

=
1
πΘa

[
πΘl(a) log2

(
πΘa

πΘl(a)

)
+ πΘr(a) log2

(
πΘa

πΘr(a)

)

+
K∑
k=1

πΘk
l(a)

log2

(
πΘk

l(a)

πΘka

)
+ πΘk

r(a)
log2

(
πΘk

r(a)

πΘka

)]
(7c)

= H(ρa) +
K∑
k=1

πΘka

πΘa

H(ρka), (7d)

where (7b) follows from (7a) by using the relation πΘka
= πΘk

l(a)
+ πΘk

r(a)
, and (7d) follows from

(7c) using the definitions of ρa and ρka.

4 Proof of Theorem 1

The result in Theorem 1 follows from the above result where each group is of size one, thereby
having ρka = 1 ∀k at each internal node a ∈ I. It can also be derived as the limiting case of the
relation in Theorem 3 by taking logarithm to the base λ on both sides of the relation and letting
λ→ 1.
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