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Abstract

Several motor related Brain Computer Interfaces (BCIs) have been developed over
the years that use activity decoded from the contralateral hemisphere to operate de-
vices. Contralateral primary motor cortex is also the region most severely affected
by hemispheric stroke. Recent studies have identified ipsilateral cortical activity
in planning of motor movements and its potential implications for a stroke rele-
vant BCI. The most fundamental functional loss after a hemispheric stroke is the
loss of fine motor control of the hand. Thus, whether ipsilateral cortex encodes
finger movements is critical to the potential feasibility of BCI approaches in the
future. This study uses ipsilateral cortical signals from humans (using ECoG) to
decode finger movements. We demonstrate, for the first time, successful finger
movement detection using machine learning algorithms. Our results show high
decoding accuracies in all cases which are always above chance. We also show
that significant accuracies can be achieved with the use of only a fraction of all the
features recorded and that these core features are consistent with previous phys-
iological findings. The results of this study have substantial implications for ad-
vancing neuroprosthetic approaches to stroke populations not currently amenable
to existing BCI techniques.

1 Introduction

Note by authors after publication: The results in Figure 3 could not be reproduced in sub-
sequent experiments and should be considered invalid. We apologize for this mishap. Other
results in this paper are not affected. The evolving understanding of motor function in the brain
has led to novel Brain Computer Interface (BCI) platforms that can potentially assist patients with
severe motor disabilities. A BCI is a device that can decode human intent from brain activity alone
in order to create an alternate communication and control channel for people with severe motor im-
pairments [39]. This brain-derived control is dependent on the emerging understanding of cortical
physiology as it pertains to motor function. Examples are seen in the seminal discoveries by Geor-
gopoulus and Schwartz that neurons in motor cortex show directional tuning and, when taken as a
population, can predict direction and speed of arm movements in monkey models [12, 19]. In the
subsequent two decades, these findings were translated to substantial levels of brain-derived con-
trol in monkey models and preliminary human clinical trials [14, 34]. Another example is seen in
Pfurtschellers work in analyzing electroencephalography (EEG). His group was one of the first to
describe the changes in amplitudes in sensorimotor rhythms associated with motor movement [24].
As a result, both Pfurtscheller and Wolpaw have used these signals to achieve basic levels of control
in humans with amyotrophic lateral sclerosis (ALS) and spinal cord injury [25, 40]. All these meth-
ods are based on a functioning motor cortex capable of controlling the contralateral limb. This is the
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exact situation that does not exist in unilateral stroke. Hence, these systems to date offer little hope
for patients suffering from hemispheric stroke. For a BCI to assist a hemiparetic patient, the implant
will likely need to utilize unaffected cortex ipsilateral to the affected limb (opposite the side of the
stroke). To do so, an expanded understanding of how and to what degree of complexity motor and
motor associated cortex encodes ipsilateral hand movements is essential.

Electrocorticography (ECoG), or signal recorded from the surface of the brain, offers an excellent
opportunity to further define what level of motor information can be deciphered from human ipsi-
lateral cortex related to movements (e.g. gross motor movements versus fine motor kinematics of
individual finger movements). The ECoG signal is more robust compared to the EEG signal: its
magnitude is typically five times larger, its spatial resolution as it relates to independent signals is
much greater (0.125 versus 3.0 cm for EEG), and its frequency bandwidth is significantly higher
(0-550 Hz versus 0- 40 Hz for EEG) [11, 30]. When analyzed on a functional level, many studies
have revealed that different frequency bandwidths carry highly specific and anatomically focal in-
formation about cortical processing. Thus far, however, no studies have utilized these ECoG spectral
features to definitively analyze and decode cortical processing of the specific kinematics of ipsilat-
eral finger movements.

In the past year, the first demonstration of this concept of utilizing ipsilateral motor signals for
simple device control have been published both with ECoG (in healthy subjects) and MEG (in
stroke patients) [4, 38]. In this study we set out to further explore the decoding of individual finger
movements of the ipsilateral hand that could potentially be utilized for more sophisticated BCIs in
the future. We studied 3 subjects who required invasive monitoring for seizure localization. Each had
electrode arrays placed over the frontal lobe and a portion of sensorimotor cortex for approximately a
week. Each subject performed individual finger tasks and the concurrent ECoG signal was recorded
and analyzed. The principal results show that individual ipsilateral finger movements can be decoded
with high accuracy. Through machine learning techniques, our group was able to determine the
intent to flex and extend individual finger movements of the ipsilateral hand. These results indicate
that an ECoG based BCI platform could potentially operate a hand orthotic based on ipsilateral
motor signals. This could provide a neuroprosthetic alternative to patients with hemispheric stroke
who have otherwise failed non-invasive and medical rehabilitative techniques.

2 Data Collection

The subjects in this study were three patients (females; 8, 36, 48 years of age) with intractable
epilepsy who underwent temporary placement of intracranial electrode arrays to localize seizure foci
prior to surgical resection. All had normal levels of cognitive function and all were right-handed.
Subject 1 had a right hemispheric 8×8 grid while subjects 2 and 3 had left hemispheric 8×8 grids.
All gave informed consent. The study was approved by the Washington University Human Research
Protection Office.

Each subject sat in their hospital bed 75 cm from a 17-inch LCD video screen. In this study, the
subject wore a data glove on the each hand to precisely monitor finger movements. Each hand rested
on a table in front of the screen. The screen randomly cued the patient to flex and extend a given
finger (e.g., left index finger, right ring finger, etc.). A cue came up on the monitor and as long
as it was present, subjects would, at a self-paced speed, move the indicated finger from the flexed
to the extended position until the cue disappeared. They were instructed on the method prior to
participation. Each cued task period would last 2 seconds with a randomized rest period between
1.5 and 2.5 seconds(i.e., a trial). There were on average 30 trials per finger for a given subject.
For subject 1, the thumb data recording was found to be noisy and hence was eliminated from any
further analysis. Visual cues were presented using the BCI2000 program [27]. All motor hand
kinematics were monitored by the patient wearing a USB linked 5DT Data Glove 5 Ultras (Fifth
Dimension, Irvine, CA) on each hand. These data gloves are designed to measure finger flexure
with one sensor per finger at up to 8-bit flexure resolution. The implanted platinum electrode arrays
were 8×8 electrode arrays(Ad-Tech, Racine, WI and PMT, Chanhassen, MN). The grid and system
setup details are described elsewhere [38]. ECoG signals were acquired using BCI2000, stored,
and converted to MATLAB files for further processing and analysis. All electrodes were referenced
to an inactive intracranial electrode. The sampling frequency was 1200 Hz and data acquisition is
band-pass filtered from 0.15 to 500 Hz.
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2.1 Data Preprocessing

Gabor Filter Analysis All ECoG data sets were visually inspected and re-referenced with respect to
the common average to account for any unwanted environmental noise. For these analyses, the time-
series ECoG data was converted into the frequency domain using a Gabor filter bank [17]. Spectral
amplitudes between 0 and 550 Hz were analyzed on a logarithmic scale. The finger positions from
the data glove were converted into velocities. These frequency responses and velocities were then
used as an input to machine learning algorithms described below. Inherent in this is the estimation
of the lag between the ECoG signal and the actual finger movement. As part of the modeling
process, the value of this variable which resulted in the best decoding accuracy was chosen for
further analysis. Average time lags were then used to align the ECoG signal to the finger movement
signal. Those features optimized for predicting individual finger movement were then reviewed in
light of anatomic location and spectral association in each subject.

Dimensionality Reduction Due to the high dimensionality of the spectral data (#channels(N)×
#frequencies(F )), it is important to reduce the dimensions in order to build a more conducive
machine learning algorithm. Principle component analysis, or PCA, is among the most popular
dimensionality reduction algorithm. PCA projects the original high-dimensional feature space into
a much lower principle subspace, such that the variance of low-dimensional data is maximized. In
the real-time decoding task, we use PCA to reduce the input data. However, in the weight analysis,
we preserve all the N × F features because we want to study the effect of using all the features.

Electrode Co-Registration Radiographs were used to identify the stereotactic coordinates of each
grid electrode [10], and cortical areas were defined the GetLOC package for ECoG electrode local-
ization [18]. Stereotactically defined electrodes were mapped to the standardized brain model. The
experimental results were then collated with these anatomical mapping data.

3 Algorithms

In this section, we describe the machine learning algorithms used for the finger movement decoding
tasks. We focus on three different settings: 1. binary classification, 2. multiclass classification and
3. multitask classification. All the data is split into a training and a testing dataset. We chose our
parameters based on a validation dataset split from the training dataset.

Binary Classification We treat the finger movement detection problem as a binary classification
setting. The data is presented as a time series with feature vector xt and velocity label yt at time t.
The goal is to predict if at time t, a finger is moving (yt = 1) or not (yt = −1).

For this purpose, we adapted logistic regression (LR) [26] and binary support vector machines
(SVM) [7]. Both classifiers learn parameters (w, b) ∈ Rd×R. The prediction at time t is computed
as ŷt = sign(w>xt + b). The vector w is learned with the following optimization problem

min
(w,b)

T∑
t=1

L(w>xt + b, yt) + λ|w|q. (1)

Here, λ ≥ 0 is the regularization constant that trades off weight sparsity with complexity. The norm
of the regularization can be the `1 norm (q = 1) or the `2 norm (q = 2). The `1 norm has the
tendency to result in sparse classifiers which assign non-zero weights to only a small subset of the
available features. This allows us to infer which brain regions and frequencies are most important
for accurate predictions. The `2 norm tends to yield slightly better classification results (and is easier
to optimize) but is not as interpretable as it typically assigns small weights to many features. The
loss functions L differ for the two above mentioned algorithms. We will denote the loss function for
logistic regression as Llr and for SVMs as Lsvm. The exact definitions are:

Llr(z, y) = log(1 + exp(−yz)) Lsvm(z, y) = max(1− yz, 0) (2)

Multiclass Classification A second setting of interest is the differentiation of fingers. Here we do
not want to predict if a finger is moving but which one. Consequently, at any time point t we could
have one of K possible labels, such as “Index Finger” (yt = 1), “Ring Finger” (yt = 2), etc. We
adopt the Crammer and Singer multi-class adaptation of support vector machines (MCSVM) [8].
For each class k ∈ {1, . . . ,K}, we learn class-specific parameters wk, bk. The loss only focuses on
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pairwise comparisons between the different classes and ensures that w>k xt + bk ≥ w>r xt + br + 1
if yt = k for any r 6= k. For completeness, we re-state the optimization problem:

min
(w1,b1),...,(wK ,bK)

T∑
t=1

∑
r 6=yt

max(1 +wT
r xt + br − (wT

ytxyt + byt), 0) + λ

K∑
k=1

|wk|q. (3)

Similar to the scenario of binary classification, the constant λ ≥ 0 regulates the trade-off between
complexity and sparseness.

Multitask Learning In the movement detection setting, each finger is learned as an independent
classification problem. In the finger discrimination setting, we actively discriminate between the
individual fingers. Multitask learning (MTL) is a way to combine the binary finger movement
detection problems by learning them jointly [5]. In the setting of brain decoding, it seems reasonable
to assume that there are certain features which are associated with the general cortical processing of
finger movements. This is analogous to the notion of language processing and articulation in cortical
areas. Functional magnetic resonance imaging (fMRI) studies have shown that although speech is
represented in general cortical areas, individual features specific to different kinds of words can
be found [16, 23]. We adopt the MTL adaptation for SVMs of [9], and an analogous framework
for logistic regression, which leverages the commonalities across learning tasks by modeling them
explicitly with an additional shared weight vector w0. The prediction at time t for finger k is defined
as ŷt = (w0 +wk)

>xt. The corresponding optimization problem becomes

min
w0,w1,...,wK

λ0|w0|+
K∑
k=0

T∑
t=1

L((w0 +wk)
>xt, yt) + λk|wk|q. (4)

The parameter λ0 regulates how much of the learning is shared. If λ0 → +∞, then w0 = 0 and we
reduce our setting to the original binary classification mentioned above. On the other hand, setting
λ0 = 0 and λk>0 � 0 will result in weight vectors wk>0 = 0. As a result, one would learn only a
single classifier with weight vector w0 for generic finger movement.

4 Results

In this section we evaluate our algorithms for ipsilateral decoding on three subjects. First, we ap-
proximate the time-lag between ECoG signal and finger movement, then we present decoding results
on finger movement detection, discrimination and also joint decoding of all fingers in one hand.
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Figure 1: Decoding time lag for ipsilateral finger move-
ment in Subject 1. The x-axis is the presumed time lag
δT (ms) between input feature vectors and target labels,
and the y-axis is the area under the ROC curve com-
puted from L1-regularized logistic regression model.
The bold black line is the average AUC, and the best
decoding time-lag is indicated by the black dotted line.

Time Lag We first study the effects of
decoding time lag between cortical signal
and movement using features. The decod-
ing accuracy is computed by shifting the
feature dataset xt and the target dataset yt
by a presumed number of sample points
(i.e. we are evaluating the performance of
decoder h: h(xt) = yt+δT , by increasing
the value of δT ). The best time lag is
selected as the value of δT which leads
to best decoding accuracy. Figure 1
shows the decoding accuracy as a function
of time-lag for four individual finger
movements in Subject 1. Offsets between
0 and 800 ms are tested for all fingers and
an average offset time is computed. The
average time lag for the ipsilateral finger
movement for Subject 1 is observed to be
around 158 ms. This is in accordance with
previous studies by our group which show
similar time lags between cortical activity
and actual movements [38]. All further analysis is based on cortical activity (features) shifted
relative to movement by the average time-lag reported here.
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(a) Subject 1
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(b) Subject 2
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(c) Subject 3

Figure 2: ROC curve for the ipsilateral finger movement decoder. Horizontal axis shows the false
positive rate, and the vertical axis shows the true positive rate. The dotted line is the accuracy of a
random classifier. Classifiers that have higher area under the ROC curve, or AUC, indicate better
classification performance.

Detecting Finger Movement We characterize the movement detection task as a binary classifica-
tion. We first set a threshold thresh, and label the targets yt as 1 if the velocity at time t vt ≥ thresh,
and -1 otherwise. Then, we use `1-regularized logistic regression for the binary classification. We
use receiver operating characteristic (ROC) curve to evaluate the performance of the binary clas-
sification. ROC curve is widely used in signal estimation and detection theory, and is a graphical
plot of true positive rate versus the false positive rate. ROC analysis allows user to pick the opti-
mal discrimination threshold for the binary classifier. We pick regularizer λ from validation dataset.
Figure 2 shows the result of ROC curve for three subjects. This demonstrates that `1-regularized
logistic regression is a powerful tool in detecting finger movement.

Finger Discrimination In this section, we study how to discriminate which finger has made the
movement. We first extract the sample points of which the finger is moving from the time-series.
We then apply multiclass SVM to do the classification. The result is shown as the confusion
matrices in Figure 3, and the colorbar shows the accuracy. Each row of the matrix represents the
finger that actually moved and each column represents predicted finger. The elements of the matrix
shows the percentage of all movements of a particular finger that has been classified as particular
predicted finger. Note that the accuracy by a random multiclass classifier is 1/(number of fingers).
It can be concluded that the ECoG signal contains useful information to discriminate individual
finger movement.
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Figure 3: Note from authors after publication: Results in this figure are invalid (see note in
introduction).Confusion matrix of finger movement multiclass classification. The rows are the
actual movement, and the columns are the predicted movement.

4.1 Learning Commonality from the Brain Activity

In this section, we present how multitask learning improves the performance of the classifier. Al-
though multitask learning has been employed in the context of brain signal decoding [2], we are the
first to decode ECoG signals in humans. We group all the individual finger movement together, such
that each task has similarity with others. First of all, we evaluate the performance of single-task
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learning using SVM. Then, we study the SVM-based multitask learning. As we show in Equation 4,
we make trade-off between modeling joint component and and modeling class-specific components
by adjusting parameters λ0 and λ. We search a number of regularization constant (λ0, λ), and pick
up the parameters that lead to highest average AUC for all tasks. Table 1 shows the comparison
of SVM-based single task learning and multitask learning. Here we evaluate the multitask learning
algorithm based on the improvement of (1-AUC); (1-AUC) stands for the area above the curve. The
average improvement of the decoder for three patients is 25.53%, 5.60%, and 18.57%, respectively.
This confirms our assumption that there exists brain activity that controls the finger movement, ir-
respective of any particular finger. By carefully searching the best parameters that regulates the
trade-off between learning commonality among all finger movement and specificity of exact finger
movement, the classification algorithm can be significantly improved. We also compare the `1/`2-
regularized logistic regression-based multitask learning with SVM-based multitask learning. There
is an improvement on (1-AUC) for logistic regression-based multitask learning. Again, it illustrates
that multitask learning is particularly helpful in learning similar tasks that are controlled by the brain.
However, we prefer SVM-based multitask learning because of the larger improvement.

Subject 1 Subject 2 Subject 3
AUC STL MTL STL MTL STL MTL

Thumb N/A N/A 0.7710 0.7845 0.7680 0.8611
Index 0.8477 0.8494 0.9061 0.8948 0.7454 0.8242

Middle 0.8393 0.8569 0.9021 0.8990 0.9459 0.9481
Ring 0.8000 0.8561 0.8888 0.8894 0.7404 0.7479
Little 0.7425 0.7865 0.7124 0.7586 0.7705 0.7801

Table 1: Comparison of SVM-based single-task learning (STL) and SVM-based multi-task learning
(MTL). The parameters are chosen from validation dataset: λ0 = 10−2 and λ = 104 for Subject 1,
λ0 = 1 and λ = 102 for Subject 2, and λ0 = 102 and λ = 10−2 for Subject 3. The best decoding
performance is indicated in bold.

5 Weight Analysis

An important part of decoding finger movements from cortical activity is to map the features back
to cortical domain. Physiologically, it is important to understand the features which contribute most
to the decoding algorithms i.e. the features with the highest weights. As shown in Table 2 below, the
decoding accuracy, indicated by AUC, does not change much as we increase the number of features
used for classification. This signifies that from the large feature set used for decoding, a few features
form the core and are the most important. To visualize these core features, we mapped the top 30
features back to the brain. Figure 4 above shows the normalized weights from the features used to
classify finger movements from non-movements. It is apparent from the figure that the features with
the highest weights fall in the DLPFC and premotor areas. This is what we would expect since these
two areas are the one’s most involved in the planning of motor movements. As previously reported,
the frequency range with the highest weights falls in the lower frequencies in ipsilateral movements
[38]. In our case, the frequencies fall in the delta-alpha range. As noted by Tallon-Baudry, attention
networks of the brain affect the oscillatory synchrony as low as theta-alpha range frequencies [31].

# features 1 2 4 8 16 32 64 256 4096
AUC 0.681 0.717 0.755 0.787 0.803 0.807 0.807 0.807 0.808

Table 2: The area under the curve (AUC) as a function of the number of features used for classifi-
cation. Features were selected in decreasing order of their respective absolute weights from logistic
regression with `1 regularization.
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Subject 1 Subject 2 Subject 3

Figure 4: Brain map representing the weights of the top 30 features of the three subjects. It represents
the variability in cortical processing of ipsilateral finger movements. It can also be seen that cortical
processing occurs as a network involving dorsolateral prefrontal cortex, pre-motor and motor areas.
The frequency range for these features is in the delta and alpha range i.e. the low frequency range.

6 Discussion

The notion that motor cortex plays a role in ipsilateral body movements was first asserted by Nyberg-
Hansen et al. that 15% of corticospinal neurons did not decussate in cats [22]. Originally this was felt
to represent more axial motor control. Further studies in single-neuron recordings in monkey models
extended this observation to include ipsilateral hand and finger function. Tanji et al. demonstrated
that a small percentage of primary motor cortical neurons showed increased activity with ipsilateral
hand movements [32]. This site was found to be anatomically distinct from contralateral hand sites
and, when stimulated, produced ipsilateral hand movements [1]. Additionally, a larger subset of
premotor neurons was found to demonstrate more robust activations with cues to initiate movement
during both ipsilateral and contralateral movements than with primary motor sites [3, 6]. These
findings in animal models support the conclusion that a small percent of motor and a larger percent
of premotor cortex participate in control of ipsilateral limb and hand movements.

In humans, there appears to be a dichotomy in how motor regions contribute depending on whether
the primary or non-primary motor cortex is examined. Using fMRI Newton et al. demonstrated that
there was a negative change from baseline in fMRI bold sequence in M1 associated with ipsilateral
movements and postulated this to represent increased inhibition [21]. Verstynen et al., however,
recently published contrasting results. Their group showed that anatomically distinct primary motor
sites demonstrated increased activation that became more pronounced during the execution of com-
plex movements [36]. The role that premotor cortex plays appears to be distinct from that of primary
motor cortex. In normal subjects, fMRI shows that there is more robust bilateral activation of the
dorsal premotor cortex with either contralateral or ipsilateral hand movements [15]. The findings
by Huang, et al. (2004) demonstrated that ipsilateral premotor areas have magnetoencephalogra-
phy (MEG) dipole peak latencies that significantly precede contralateral M1 sensorimotor cortex
in performing unilateral finger movements. Using electroencephalography (EEG), ipsilateral hand
movements have been shown to induce alteration in cortical potentials prior to movement; this is re-
ferred to as premotor positivity [33, 29]. Spectral analyses of EEG signals have shown bihemispheric
low-frequency responses with various finger and hand movements. Utilizing electrocorticography
(ECoG), Wisneski et al more definitively demonstrated that the cortical physiology associated with
ipsilateral hand movements was associated with lower frequency spectral changes, an earlier timing,
and premotor predominant cortical localization, when compared to cortical physiology that was as-
sociated with contralateral hand movements [38]. Taken together, these findings support more of a
motor planning role, rather than execution role, in ipsilateral hand actions.

Decoding the information present in the ECoG signal with regard to ipsilateral finger movements is
important in defining the potential use of BCI methodologies for patients with hemispheric dysfunc-
tion due to stroke or trauma. If high resolution motor kinematics can be decoded from the ECoG
signal (e.g. individual finger flexion and extension), a BCI platform could potentially be created
to restore function to a stroke induced paretic hand. Since up to one-half of hemispheric stroke
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patients are chronically left with permanent loss of function in their affected hand, this could have
substantial clinical impact [20]. Functional imaging has shown these severely affected patients to
have increased activity in the premotor regions of their unaffected hemispheres [28, 37]. The exact
role this activity plays is still unclear. It may simply be an indicator of a more severe outcome [35]
or an adapative mechanism to optimize an already poor situation [13]. Thus, incomplete recovery
and its association with heightened ipsilateral activation may reflect the up-regulation of motor plan-
ning with an inability to execute or actuate the selected motor choice. In this situation, a BCI may
provide a unique opportunity to aid in actuating the nascent premotor commands. By decoding the
brain signals associated with a given motor intention, the BCI may then convert these signals into
commands that could control a robotic assist device that would allow for improved hand function
(i.e., a robotic glove that opens and closes the hand or a functional electrical simulator that operates
the nerves and muscles of the hand). The BCI would allow the ipsilateral premotor cortex to bypass
the physiological bottleneck determined by injured and dysfunctional contralateral primary cortex
(due to stroke) and the small and variable percentage of uncrossed motor fibers from ipsilateral M1.
This new methodology would allow for restoration of function in chronically and severely affected
subjects for whom methods of rehabilitation have not accomplished a sufficiently recovery.

7 Conclusion

To our knowledge, this work describes the first instance of successful detection of individual finger
movements from human ipsilateral ECoG signals. In this paper, we present a general decoding
framework using the following algorithms: (1) `1-regularized logistic regression for detecting finger
movement; (2) Multiclass support vector machines to discriminate between fingers; and (3) First
demonstration of multitask learning into the ECoG signal to improve decoding accuracy. The results
presented here suggest that there exists information on the cortex ipsilateral to the moving fingers
which can be decoded with high accuracy using machine learning algorithms. These results present
a great potential in the world of neuroprosthetics and BCI. For patients suffering from stroke and
hemiparesis, decoding finger movements from the unaffected hemisphere can be of tremendous help.
Our future goals involve simultaneous decoding of finger and arm movements (using standard center
out joystick task) from both ipsilateral and contralateral hemispheres. Another important goal is the
real-time use of these decoding results and demonstrate their utility in the world of BCI.
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