Appendix

Theorem 6.1. Given a set of n training data mstances lying in a ball of radius 1, the sensitivity
of regularized logistic regression classifier is at most . If wi and wa are classifiers trained on
adjacent datasets of size n with regularization parameter /\

2
w1 —wal[1 < —.

n

Lemma 6.2. Let G(w) and g(w) be two differentiable, convex functions of w. If wi =
arg min, G(w) and wo = arg min, G(w)+g(w), then [|[w1—w2|| < &= where g1 = max, [|[Vg(w)]|
and G5 = min, min,, vI'V2G (w)v for any unit vector v € R%.

Proof of Theorem 4.2. We formulate the problem of estimating the individual classifiers w; and the
classifier w* trained over the entire training data in terms of minimizing the two differentiable and
convex functions g(w) and G(w).

w; = argmin J(w,x|;,y|;) = argmin G(w),
w* = argmin J(w,x,y) = argmin L(w,x|;,y|;) + Z L(w,x|;,y];) + A|w||?
v v le[K]—j

= argmin J(w,x|;,y|;) + > L(W,x|;,y|;) = argmin G(w) + g(w).
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Substituting the bounds on g; and G5 in Lemma 6.2,
1 1
W, — wh| < — —. 7
o - vl <33 )

Applying triangle inequality,

) 1. 1 ) 1. )
W —w"|| = ?Ej:wj—w* == Ej:wj—Kw* = 2 (%1 = W)+ (ke —w)|
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where n(1) = min; n;. O

Proof of Theorem 4.3. We use the Taylor series expansion of the function .J to have
1
J(W*) = J(w*) + (W —w) IV (w*) + 5(‘%«5 —w)TV2T(w) (W — w*)

for some w € R, By definition, V.J(w*) = 0.
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Taking ¢5 norm on both sides and applying Cauchy-Schwarz inequality,
. * 1 S *
[T(W°) = J(wW)] < S = wo|* [ V2T (w)]| (8)

The second gradient of the regularized loss function for logistic regression is
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Since the logistic function term is always less than one and all x; lie in a unit ball, [|[V2J(w)| <
A + 1. Substituting this into Equation 8 and using the fact that J(w*) < J(w),Vw € R?,

A+1 )

TOW) < T(W) + S - w ©)

The classifier w* is the perturbed aggregate classifier, i.e., W' = W + 77, with the noise term 7 ~
Lap ( 2 ) We apply Lemma 6.3 to bound ||n|| with probability at least 1 — §. Substituting this

77,(1)6)\
into Equation 9, we have

~ S * 1 ~ * * )‘+1 ~ * ~ *
JW) < JW) 4 S lIW = w* + ) = J(w") + == [[W = w[[” + [In]|* + 2(% = w") "]

< J(w*) +
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Using the Cauchy-Schwarz inequality on the last term,
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Proof of Theorem 4.4. Let w" be the classifier minimizing the true risk .J (w). By rearranging the
terms,

T(W*) = J(W*) + [J(W") = J(W)] + [T(wW") = J(W)] < (W) + [J(W") = J(w")].

Sridharan, et al. [14] present a bound between the true excess risk of any classifier as an expres-
sion of bound on the regularized empirical risk for that classifier and the classifier minimizing the
regularized empirical risk. With probability at least 1 — 6,

J(W*) — J(w") < 2[J(W®) — J(w*")] + % {32 + log (;ﬂ . (10)

Substituting the bound from Theorem 4.3,

< e = 20K —1)2(A+1) 4d*(A+1), 5 [(d

J —Jw") < 1 - 11

W)= < =5 S a5 an
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1 = — |32 +1 |- 12
e B\ T [T (12)

Substituting this bound into Equation 10 gives us a bound on the true excess risk of the classifier w’
over the classifier w*. O
Lemma 6.3. Given a d-dimensional random variable 1) ~ Lap(f3) i.e., P(n) = %6_%, with

probability at least 1 — §, the {5 norm of the random variable is bounded as

d
Inll < 24510 (5) .

The proof is similar to Lemma 5 of [8].
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