
Conditional Neural Fields

Jian Peng
Toyota Technological Institute at Chicago

6045 S. Kenwood Ave.
Chicago, IL 60637

jpengwhu@gmail.com

Liefeng Bo
Toyota Technological Institute at Chicago

6045 S. Kenwood Ave.
Chicago, IL 60637

liefengbo@gmail.com

Jinbo Xu
Toyota Technological Institute at Chicago

6045 S. Kenwood Ave.
Chicago, IL 60637

jinboxu@gmail.com

Abstract

Conditional random fields (CRF) are widely used for sequence labeling such as
natural language processing and biological sequence analysis. Most CRF models
use a linear potential function to represent the relationship between input features
and output. However, in many real-world applications such as protein structure
prediction and handwriting recognition, the relationship between input features
and output is highly complex and nonlinear, which cannot be accurately modeled
by a linear function. To model the nonlinear relationship between input and output
we propose a new conditional probabilistic graphical model, Conditional Neural
Fields (CNF), for sequence labeling. CNF extends CRF by adding one (or possi-
bly more) middle layer between input and output. The middle layer consists of a
number of gate functions, each acting as a local neuron or feature extractor to cap-
ture the nonlinear relationship between input and output. Therefore, conceptually
CNF is much more expressive than CRF. Experiments on two widely-used bench-
marks indicate that CNF performs significantly better than a number of popular
methods. In particular, CNF is the best among approximately 10 machine learning
methods for protein secondary structure prediction and also among a few of the
best methods for handwriting recognition.

1 Introduction

Sequence labeling is a ubiquitous problem arising in many areas, including natural language pro-
cessing [1], bioinformatics [2, 3, 4] and computer vision [5]. Given an input/observation sequence,
the goal of sequence labeling is to infer the state sequence (also called output sequence), where a
state may be some type of labeling or segmentation. For example, in protein secondary structure
prediction, the observation is a protein sequence consisting of a collection of residues. The output
is a sequence of secondary structure types. Hidden Markov model (HMM) [6] is one of the popular
methods for sequence labeling. HMM is a generative learning model since it generates output from
a joint distribution between input and output. In the past decade, several discriminative learning
models such as conditional random fields (CRF) have emerged as the mainstream methods for se-
quence labeling. Conditional random fields, introduced by Lafferty [7], is an undirected graphical
model. It defines the conditional probability of the output given the input. CRF is also a special case
of the log-linear model since its potential function is defined as a linear combination of features. An-
other approach for sequence labeling is max margin structured learning such as max margin Markov

1

networks (MMMN) [8] and SVM-struct [9]. These models generalize the large margin and kernel
methods to structured learning.

In this work, we present a new probabilistic graphical model, called conditional neural fields (CNF),
for sequence labeling. CNF combines the advantages of both CRF and neural networks. First, CNF
preserves the globally consistent prediction, i.e. exploiting the structural correlation between out-
puts, and the strength of CRF as a rigorous probabilistic model. Within the probabilistic framework,
posterior probability can be derived to evaluate confidence on predictions. This property is particu-
larly valuable in applications that require multiple cascade predictors. Second, CNF automatically
learns an implicit nonlinear representation of features and thus, can capture more complicated rela-
tionship between input and output. Finally, CNF is much more efficient than kernel-based methods
such as MMMN and SVM-struct. The learning and inference procedures in CNF adopt efficient
dynamic programming algorithm, which makes CNF applicable to large scale tasks.

2 Conditional Random Fields

Assume the input and output sequences are X and Y , respectively. Meanwhile, Y =
{y1, y2, ..., yN} ∈ ΣN where Σ is the alphabet of all possible output states and |Σ| = M .

CRF uses two types of features given a pair of input and output sequences. The first type of features
describes the dependency between the neighboring output labels.

fy,y′(Y,X, t) = δ[yt = y]δ[yt−1 = y′] (1)

where δ[yt = y] is a indicator function. It is equal to 1 if and only if the state at position t is y.

The second type of features describes the dependency between the label at one position and the
observations around this position.

fy(Y,X, t) = f(X, t)δ[yt = y] (2)

where f(X,t) is the local observation or feature vector at position t.

In a linear chain CRF model [7], the conditional probability of the output sequence Y given the
input sequence X is the normalized product of the exponentials of potential functions on all edges
and vertices in the chain.

P (Y |X) =
1

Z(X)
exp(

N
∑

t=1

(ψ(Y,X, t) + φ(Y,X, t))) (3)

where

φ(Y,X, t) =
∑

y
wT

y fy(Y,X, t) (4)

is the potential function defined on vertex at the tth position, which measures the compatibility
between the local observations around the tth position and the output label yt; and

ψ(Y,X, t) =
∑

y,y′

uy,y′fy,y′(Y,X, t) (5)

is the potential function defined on an edge connecting two labels yt and yt+1. This potential mea-
sures the compatibility between two neighbor output labels.

Although CRF is a very powerful model for sequence labeling, CRF does not work very well on
the tasks in which the input features and output labels have complex relationship. For example,
in computer vision or bioinformatics, many problems require the modeling of complex/nonlinear
relationship between input and output [10, 11]. To model complex/nonlinear relationship between
input and output, CRF has to explicitly enumerate all possible combinations of input features and
output labels. Nevertheless, even assisted with domain knowledge, it is not always possible for CRF
to capture all the important nonlinear relationship by explicit enumeration.

3 Conditional Neural Fields

Here we propose a new probabilistic graphical model, conditional neural fields (CNF), for se-
quence labeling. Figure 1 shows the structural difference between CNF and CRF. CNF not only

2

can parametrize the conditional probability in the log-linear like formulation, but also is able to im-
plicitly model complex/nonlinear relationship between input features and output labels. In a linear
chain CNF, the edge potential function is similar to that of a linear chain CRF. That is, the edge func-
tion describes only the interdependency between the neighbor output labels. However, the potential
function of CNF at each vertex is different from that of CRF. The function is defined as follows.

φ(Y,X, t) =
∑

y

K
∑

g=1

wy,gh(θ
T
g f(X, t))δ[yt = y] (6)

where h is a gate function. In this work, we use the logistic function as the gate function. The
major difference between CRF and CNF is the definition of the potential function at each vertex. In
CRF, the local potential function (see Equation (4)) is defined as a linear combination of features. In
CNF, there is an extra hidden layer between the input and output, which consists ofK gate functions
(see Figure 1 and Equation (6)). The K gate functions extract a K-dimensional implicit nonlinear
representation of input features. Therefore, CNF can be viewed as a CRF with its inputs being K
homogeneous hidden feature-extractors at each position. Similar to CRF, CNF can also be defined
on a general graph structure or an high-order Markov chain. This paper mainly focuses on a linear
chain CNF model for sequence labeling.

yi-2

uyi-1,yi uyi,yi+1

yi-1 yi yi+1 yi+2

xi+2xi+1xi-2 xixi-1

uyi-2,yi-1 uyi+2,yi+1

wyi

Input

Output

1
θ

yi-2

uyi-1,yi uyi,yi+1

wyi,1 wyi,K

yi-1 yi yi+1 yi+2

xi+2xi+1xi-2 xixi-1

Kθ

gθ

uyi-2,yi-1 uyi+2,yi+1

Local window

… … Gates Level

Local window

Input

Output

Figure 1: Structures of CRF and CNF

CNF can also be viewed as a natural combination of neural networks and log-linear models. In the
hidden layer, there are a set of neurons that extract implicit features from input. Then the log-linear
model in the output layer utilizes the implicit features as its input. The parameters in the hidden
neurons and the log-linear model can be jointly optimized. After learning the parameters, we can first
compute all the hidden neuron values from the input and then use an inference algorithm to predict
the output. Any inference algorithm used by CRF, such as Viterbi [7], can be used by CNF. Assume
that the dimension of feature vector at each vertex is D. The computational complexity for the K
neurons is O(NKD). Supposing Viterbi is used as the inference algorithm, the total computational
complexity of CNF inference is O(NMK + NKD). Empirically the number of hidden neurons
K is small, so the CNF inference procedure may have lower computational complexity than CRF.
In our experiments, CNF shows superior predictive performance over two baseline methods: neural
networks and CRF.

4 Parameter Optimization

Similar to CRF, we can use the maximum likelihood method to train the model parameters such that
the log-likelihood is maximized. For CNF, the log-likelihood is as follows.

logP (Y |X) =

N
∑

t=1

(ψ(Y,X, t) + φ(Y,X, t))) − logZ(X) (7)

3

Since CNF contains a hidden layer of gate function h, the log-likelihood function is not convex any
more. Therefore, it is very likely that we can only obtain a local optimal solution of the parame-
ters. Although both the output and hidden layers contain model parameters, all the parameters can
be learned together by gradient-based optimization. We can use LBFGS [12] as the optimization
routine to search for the optimal model parameters because 1) LBFGS is very efficient and robust;
and 2) LBFGS provides us an approximation of inverse Hessian for hyperparameter learning [13],
which will be described in the next section. The gradient of the log-likelihood with respect to the
parameters is given by

∂ logP

∂uy,y′

=

N
∑

t=1

δ[yt = y]δ[yt−1 = y′] − EP (Ỹ |X,w,u,θ)[

N
∑

t=1

δ[ỹt = y]δ[ỹt−1 = y′]] (8)

∂ logP

∂wy,g

=

N
∑

t=1

δ[yt = y]h(θT
g f(X, t)) − EP (Ỹ |X,w,u,θ)[

N
∑

t=1

δ[ỹt = y]h(θT
g f(X, t))] (9)

∂ logP

∂θg

=

N
∑

t=1

wyt,g

∂h(θT
g f(X, t))

∂θg

− EP (Ỹ |X,w,u,θ)[

N
∑

t=1

wỹt,g

∂h(θT
g f(X, t))

∂θg

] (10)

where δ is the indicator function.

Just like CRF, we can calculate the expectations in these gradients efficiently using the forward-
backward algorithm. Assume that the dimension of feature vector at each vertex is D. Since the K
gate functions can be computed in advance, the computational complexity of the gradient computa-
tion is O(NKD+NM2K) for a single input-output pair with length N . If K is smaller than D, it
is very possible that the computation of gradient in CNF is faster than in CRF, where the complexity
of gradient computation is O(NM2D). In our experiments,K is usually much smaller than D. For
example, in protein secondary structure prediction, K = 30 and D = 260. In handwriting recog-
nition, K = 40 and D = 128. As a result, although the optimization problem is non-convex, the
training time of CNF is acceptable. Our experiments show that the training time of CNF is about 2
or 3 times that of CRF.

5 Regularization and Hyperparameter Optimization

Because an hidden layer is added to CNF to introduce more expressive power than CRF, it is cru-
cial to control the model complexity of CNF to avoid overfitting. Similar to CRF, we can enforce
regularization on the model parameters to avoid overfitting. We assume that the parameters have
a Gaussian prior and constrain the inverse covariance matrix (of Gaussian distribution) by a small
number of hyperparameters. To simplify the problem, we divide the model parameter vector λ into
three different groups w, u and θ (see Figure 1) and assume that the parameters among different
groups are independent of each other. Furthermore, we assume parameters in each group share the
same Gaussian prior with a diagonal covariance matrix. Let α = [αw, αu, αθ]

T denote the vector of
three regularizations/hyperparameters for these three groups of parameters, respectively. While grid
search provides a practical way to determine the best value at low resolution for a single hyperpa-
rameter, we need a more sophisticated method to determine three hyperparameters simultaneously.
In this section, we discuss the hyperparameter learning in evidence framework.

5.1 Laplace’s Approximation

The evidence framework [14] assumes that the posterior of α is sharply peaked around the maximum
αmax. Since no prior knowledge of α is known, the prior of each αi, i ∈ {w, u, θ}, P (αi) is chosen
to be a constant on log-scale or flat. Thus, the value of α maximizing the posterior of α P (α|Y,X)
can be found by maximizing

P (Y |X,α) =

∫

λ

P (Y |X,λ)P (λ|α)dλ (11)

By Laplace’s approximation [14], this integral is approximated around the MAP estimation of
weights. We have

logP (Y |X,α) = logP (Y |X,λMAP) + logP (λMAP |α) −
1

2
log det(A) + const (12)

4

where A is the hessian of logP (Y |X,λMAP) + logP (λMAP |α) with respect to λ.

In order to maximize the approximation, we take the derivative of the right hand side of Equation
(12) with respect to α. The optimal α value can be derived by the following update formula.

αnew
i =

1

λT
MAPλMAP

(Wi − αold
i Tr(A−1)) (13)

where Wi is the number of parameters in group i ∈ {w, u, θ}.

5.2 Approximation of the Trace of Inverse Hessian

When there is a large number of model parameters, accurate computation of Tr(A−1) is very ex-
pensive. All model parameters are coupled together by the normalization factor, so the diagonal
approximation of Hessian or the outer-product approximation are not appropriate. In this work, we
approximate inverse Hessian using information available in the parameter optimization procedure.
The LBFGS algorithm is used to optimize parameters iteratively, so we can approximate inverse
Hessian at λMAP using the update information generated in the past several iterations. This ap-
proach is also employed in [15, 14]. From the LBFGS update formula [13], we can compute the
approximation of the trace of inverse Hessian very efficiently. The computational complexity of
this approximation is only O(m3 + nm2), while the accurate computation has complexity O(n3)
where n is the number of parameters and m is the size of history budget used by LBFGS. Since m
is usually much smaller than n, the computational complexity is only O(nm2). See Theorem 2.2 in
[13] for more detailed account of this approximation method.

5.3 Hyperparameter Update

The hyperparameter α is iteratively updated by a two-step procedure. In the first step we fix hyper-
parameter α and optimize the model parameters by maximizing the log-likelihood in Equation (7)
using LBFGS. In the second step,we fix the model parameters and then update α using Equation
(13). This two-step procedure is iteratively carried out until the norm of α does not change more
than a threshold. Figure 2 shows the learning curve of the hyperparameter on a protein secondary
structure prediction benchmark. In our experiments, the update usually converges in less than 15
iterations. Also we found that this method achieves almost the same test performance as the grid
search approach on two public benchmarks.

1 2 3 4 5 6 7 8 9 10
79.2

79.4

79.6

79.8

80

80.2

80.4

80.6

Iterations

A
c
c
u
ra

c
y

Hyperparameter Training

Figure 2: Learning curve of hyperparameter α.

6 Related Work

Most existing methods for sequence labeling are built under the framework of graphical models such
as HMM and CRF. Since these approaches are incapable of capturing highly complex relationship
between observations and labels, many structured models are proposed for nonlinear modeling of
label-observation dependency. For example, kernelized max margin Markov networks [8], SVM-
struct [9] and kernel CRF [16] use nonlinear kernels to model the complex relationship between

5

observations and labels. Although these kernelized models are convex, it is still too expensive to
train and test them in the case that observations are of very high dimension. Furthermore,the num-
ber of resultant support vectors for these kernel methods are also very large. Instead, CNF has
computational complexity comparable to CRF. Although CNF is non-convex and usually only the
local minimum solution can be obtained, CNF still achieves very good performance in real-world
applications. Very recently, the probabilistic neural language model [17] and recurrent temporal re-
stricted Boltzmann machine [18] are proposed for natural language and time series modeling. These
two methods model sequential data using a directed graph structure, so they are essentially genera-
tive models. By contrast, our CNF is a discriminative model, which is mainly used for discriminative
prediction of sequence data. The hierarchical recurrent neural networks [19, 20] can be viewed as
a hybrid of HMM and neural networks (HMM/NN), building on a directed linear chain. Similarly,
CNF can be viewed as an a hybrid of CRF and neural networks, which has the global normalization
factor and alleviate the label-bias problem.

7 Experiments

7.1 Protein Secondary Structure Prediction

Protein secondary structure (SS) prediction is a fundamental problem in computational biology as
well as a typical problem used to evaluate sequence labeling methods. Given a protein sequence
consisting of a collection of residues, the problem of protein SS prediction is to predict the secondary
structure type at each residue. A variety of methods have been described in literature for protein SS
prediction.

Given a protein sequence,we first run PSI-BLAST [21] to generate sequence profile and then use this
profile as input to predict SS. A sequence profile is a position-specific scoring matrixX with n× 20
elements where n is the number of residues in a protein. Formally, X = [x1, x2, x3, ..., xn] where
xi is a vector of 20 elements. Each xi contains 20 position-specific scores, each corresponding to
one of the 20 amino acids in nature. The output we want to predict is Y = [y1, y2, ..., yn] where
yi ∈ {H,E,C} represents the secondary structure type at the ith residue.

We evaluate all the SS prediction methods using the CB513 benchmark [22], which consists of 513
no-homologous proteins. The true secondary structure for each protein is calculated using DSSP
[23], which generates eight possible secondary structure states. Then we convert these 8 states into
three SS types as follows: H and G to H (Helix), B and E to E (Sheets) and all other states to C
(Coil). Q3 is used to measure the accuracy of three SS types averaged on all positions. To obtain
good performance, we also linearly transform X into values in [0, 1] as suggested by Kim et al[24].

S(x) =

{

0 if x < −5;
0.1x+0.5 if −5 ≤ x ≤ 5;
1 if x > 5.

To determine the number of gate functions for CNF, we enumerate this number in set
{10,20,30,40,60,100}. We also enumerate window size for CNF in set {7,9,11,13,15,17} and find
that the best evidence is achieved when window size is 13 and K = 30. Two baseline methods are
used for comparison: conditional random fields and neural networks. All the parameters of these
methods are carefully tuned. The best window sizes for neural networks and CRF are 15 and 13,
respectively. We also compared our methods with other popular secondary structure prediction pro-
grams. CRF, neural networks, Semi-Markov HMM [25], SVMpsi [24], PSIPRED[2] and CNF use
the sequence profile generated by PSI-BLAST as described above. SVMpro [26] uses the position
specific frequency as input feature. YASSPP [27] and SPINE [28] also use other residue-specific
features in addition to sequence profile.

Table 1 lists the overall performance of a variety of methods on the CB513 data set. As shown in
this table, there are two types of gains on accuracy. First, by using one hidden layer to model the
nonlinear relationship between input and output, CNF achieves a very significant gain over linear
chain CRF. This also confirms that strong nonlinear relationship exists between sequence profile and
secondary structure type. Second, by modeling interdependency between neighbor residues, CNF
also obtains much better prediction accuracy over neural networks. We also tested the the hybrid
of HMM/NN on this dataset. The predicted accuracy of HMM/NN is about three percent less than

6

Table 1: Performance of various methods for protein secondary structure prediction on the CB513 dataset.
Semi-Markov HMM is a segmental semi-Markov model for sequence labeling. SVMpro and SVMpsi are jury
method with the SVM (Gaussian kernel) as the basic classifiers. YASSPP use the SVM with a specifically
designed profile kernel function for SVM classifiers. PSIPRED is a two stage double-hidden layer neural
network. SPINE is voting systems with multiple coupled neural networks. YASSPP, PSIPRED and SPINE
also use other features besides the PSSM scores. An * symbol indicates the methods are tested over a 10-fold
cross-validation on CB513, while others are tested over a 7-fold cross-validation.

Methods Q3(%)
Conditional Random Fields 72.9

SVM-struct (Linear Kernel) 73.1
Neural Networks (one hidden layer) 72

Neural Networks (two hidden layer) 74

Semimarkov HMM 72.8
SVMpro 73.5

SVMpsi 76.6

PSIPRED 76
YASSPP 77.8

SPINE* 76.8

Conditional Neural Fields 80.1 ±0.3
Conditional Neural Fields* 80.5 ±0.3

that of CNF. By seamlessly integrating neural networks and CRF, CNF outperforms all other the-
state-of-art prediction methods on this dataset. We also tried Max-Margin Markov Network [8] and
SVM-struct1 with RBF kernel for this dataset. However, because the dataset is large and the feature
space is of high dimension, it is impossible for these kernel-based methods to finish training within
a reasonable amount of time. Both of them failed to converge within 120 hours. The running time
of CNF learning and inference is about twice that of CRF.

7.2 Handwriting Recognition

Handwriting recognition(OCR) is another widely-used benchmark for sequence labeling algorithms.
We use the subset of OCR dataset chosen by Taskar [8], which contains 6876 sequences. In this
dataset, each word consists of a sequence of characters and each character is represented by an
image with 16× 8 binary pixels. In addition to using the vector of pixel values as input features, we
do not use any higher-level features. Formally, the input X = [x1, x2, x3, ..., xn] is a sequence of
128-dimensional binary vectors. The output we want to predict is a sequence of labels. Each label yi

for image xi is one of the 26 classes {a, b, c, ..., z}. The accuracy is defined as the average accuracy
over all characters.

The number of gate functions for CNF is selected from set {10, 20, 30, 40, 60, 100} and we find that
the best evidence is achieved when K = 40. Window sizes for all methods are fixed to 1. All the
methods are tested using 10-fold cross-validation and their performance are shown in Table 2. As
shown in this table, CNF achieves superior performance over log-linear methods, SVM, CRF and
neural networks. CNF is also comparable with two slightly different max margin Markov network
models.

8 Discussion

We present a probabilistic graphical model conditional neural fields (CNF) for sequence labeling
tasks which require accurate account of nonlinear relationship between input and output. CNF is
a very natural integration of conditional graphical models and neural networks and thus, inherits
advantages from both of them. On one hand, by neural networks, CNF can model nonlinear re-
lationship between input and output. On the other hand, by using graphical representation, CNF

1http://svmlight.joachims.org/svm struct.html

7

Table 2: Performance of various methods on handwriting recognition. The results of logistic regression, SVM
and max margin Markov networks are taken from [8]. Both CNF and neural networks use 40 neurons in the
hidden layer. The CRF performance (78.9%) we obtained is a bit better than 76% in [8].

Methods Accuracy(%)
Logistic Regression 71

SVM (linear) 71

SVM (quadratic) 80
SVM (cubic) 81

SVM-struct 80
Conditional Random Fields 78.9

Neural Networks 79.8

MMMN (linear) 80
MMMN (quadratic) 87

MMMN (cubic) 87

Conditional Neural Fields 86.9 ±0.4

can model interdependency between output labels. While CNF is more sophisticated and expressive
than CRF, the computational complexity of learning and inference is not necessarily higher. Our
experimental results on large-scale datasets indicate that CNF can be trained and tested as almost
efficient as CRF but much faster than kernel-based methods. Although CNF is not convex, it can still
be trained using the quasi-Newton method to obtain a local optimal solution, which usually works
very well in real-world applications.

In two real-world applications, CNF significantly outperforms two baseline methods, CRF and neu-
ral networks. On protein secondary structure prediction, CNF achieves the best performance over all
methods we tested. on handwriting recognition, CNF also compares favorably with the best method
max-margin Markov network. We are currently generalizing our CNF model to a second-order
Markov chain and a more general graph structure and also studying if it will improve predictive
power of CNF by interposing more than one hidden layers between input and output.

Acknowledgements

We thank Nathan Srebro and David McAllester for insightful discussions.

References

[1] Fei Sha and O. Pereira. Shallow parsing with conditional random fields. In Proceedings of
Human Language Technology-NAACL 2003.

[2] D. T. Jones. Protein secondary structure prediction based on position-specific scoring matrices.
Journal of Molecular Biology, 292(2):195–202, September 1999.

[3] Feng Zhao, Shuaicheng Li, Beckett W. Sterner, and Jinbo Xu. Discriminative learning for
protein conformation sampling. Proteins, 73(1):228–240, October 2008.

[4] Feng Zhao, Jian Peng, Joe Debartolo, Karl F. Freed, Tobin R. Sosnick, and Jinbo Xu. A
probabilistic graphical model for ab initio folding. In RECOMB 2’09: Proceedings of the 13th
Annual International Conference on Research in Computational Molecular Biology, pages 59–
73, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] Sy Bor Wang, Ariadna Quattoni, Louis-Philippe Morency, and David Demirdjian. Hidden
conditional random fields for gesture recognition. In CVPR 2006.

[6] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. In Proceedings of the IEEE, 1989.

[7] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML 2001.

[8] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In NIPS
2003.

8

[9] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In ICML 2004.

[10] Nam Nguyen and Yunsong Guo. Comparisons of sequence labeling algorithms and extensions.
In ICML 2007.

[11] Yan Liu, Jaime Carbonell, Judith Klein-Seetharaman, and Vanathi Gopalakrishnan. Compari-
son of probabilistic combination methods for protein secondary structure prediction. Bioinfor-
matics, 20(17), November 2004.

[12] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45(3), 1989.

[13] Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Representations of quasi-newton
matrices and their use in limited memory methods. Mathematical Programming, 63(2), 1994.

[14] David J. C. Mackay. A practical bayesian framework for backpropagation networks. Neural
Computation, 4:448–472, 1992.

[15] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
November 1995.

[16] John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel conditional random fields: representation and
clique selection. In ICML 2004.

[17] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[18] Ilya Sutskever, Geoffrey E Hinton, and Graham Taylor. The recurrent temporal restricted
boltzmann machine. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, NIPS
2009.

[19] Barbara Hammer. Recurrent networks for structured data - a unifying approach and its proper-
ties. Cognitive Systems Research, 2002.

[20] Alex Graves and Juergen Schmidhuber. Offline handwriting recognition with multidimensional
recurrent neural networks. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
NIPS 2009.

[21] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic
Acids Research, 25, September 1997.

[22] James A. Cuff and Geoffrey J. Barton. Evaluation and improvement of multiple sequence
methods for protein secondary structure prediction. Proteins: Structure, Function, and Genet-
ics, 34, 1999.

[23] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: Pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637,
December 1983.

[24] H. Kim and H. Park. Protein secondary structure prediction based on an improved support
vector machines approach. Protein Engineering, 16(8), August 2003.

[25] Wei Chu, Zoubin Ghahramani, and David. A graphical model for protein secondary structure
prediction. In ICML 2004.

[26] Sujun Hua and Zhirong Sun. A novel method of protein secondary structure prediction with
high segment overlap measure: Support vector machine approach. Journal of Molecular Biol-
ogy, 308, 2001.

[27] George Karypis. Yasspp: Better kernels and coding schemes lead to improvements in protein
secondary structure prediction. Proteins: Structure, Function, and Bioinformatics, 64(3):575–
586, 2006.

[28] O. Dor and Y. Zhou. Achieving 80% ten-fold cross-validated accuracy for secondary struc-
ture prediction by large-scale training. Proteins: Structure, Function, and Bioinformatics, 66,
March 2007.

9

