
Online Learning of Assignments

Matthew Streeter
Google, Inc.

Pittsburgh, PA 15213
mstreeter@google.com

Daniel Golovin
Carnegie Mellon University

Pittsburgh, PA 15213
dgolovin@cs.cmu.edu

Andreas Krause
California Institute of Technology

Pasadena, CA 91125
krausea@caltech.edu

Abstract

Which ads should we display in sponsored search in order to maximize our revenue?
How should we dynamically rank information sources to maximize the value of
the ranking? These applications exhibit strong diminishing returns: Redundancy
decreases the marginal utility of each ad or information source. We show that
these and other problems can be formalized as repeatedly selecting an assignment
of items to positions to maximize a sequence of monotone submodular functions
that arrive one by one. We present an efficient algorithm for this general problem
and analyze it in the no-regret model. Our algorithm possesses strong theoretical
guarantees, such as a performance ratio that converges to the optimal constant
of 1 − 1/e. We empirically evaluate our algorithm on two real-world online
optimization problems on the web: ad allocation with submodular utilities, and
dynamically ranking blogs to detect information cascades.

1 Introduction
Consider the problem of repeatedly choosing advertisements to display in sponsored search to
maximize our revenue. In this problem, there is a small set of positions on the page, and each time
a query arrives we would like to assign, to each position, one out of a large number of possible
ads. In this and related problems that we call online assignment learning problems, there is a set
of positions, a set of items, and a sequence of rounds, and on each round we must assign an item
to each position. After each round, we obtain some reward depending on the selected assignment,
and we observe the value of the reward. When there is only one position, this problem becomes
the well-studied multiarmed bandit problem [2]. When the positions have a linear ordering the
assignment can be construed as a ranked list of elements, and the problem becomes one of selecting
lists online. Online assignment learning thus models a central challenge in web search, sponsored
search, news aggregators, and recommendation systems, among other applications.

A common assumption made in previous work on these problems is that the quality of an assignment
is the sum of a function on the (item, position) pairs in the assignment. For example, online advertising
models with click-through-rates [6] make an assumption of this form. More recently, there have been
attempts to incorporate the value of diversity in the reward function [16]. Intuitively, even though the
best K results for the query “turkey” might happen to be about the country, the best list of K results
is likely to contain some recipes for the bird as well. This will be the case if there are diminishing
returns on the number of relevant links presented to a user; for example, if it is better to present each
user with at least one relevant result than to present half of the users with no relevant results and
half with two relevant results. We incorporate these considerations in a flexible way by providing
an algorithm that performs well whenever the reward for an assignment is a monotone submodular
function of its set of (item, position) pairs.

Our key contributions are: (i) an efficient algorithm, TABULARGREEDY, that provides a (1− 1/e)
approximation ratio for the problem of optimizing assignments under submodular utility functions, (ii)
an algorithm for online learning of assignments, TGBANDIT, that has strong performance guarantees
in the no-regret model, and (iii) an empirical evaluation on two problems of information gathering on
the web.

1

2 The assignment learning problem

We consider problems, where we have K positions (e.g., slots for displaying ads), and need to assign
to each position an item (e.g., an ad) in order to maximize a utility function (e.g., the revenue from
clicks on the ads). We address both the offline problem, where the utility function is specified in
advance, and the online problem, where a sequence of utility functions arrives over time, and we need
to repeatedly select a new assignment.

The Offline Problem. In the offline problem we are given sets P1, P2, . . . , PK , where Pk is the
set of items that may be placed in position k. We assume without loss of generality that these sets
are disjoint.1 An assignment is a subset S ⊆ V , where V = P1 ∪ P2 ∪ · · · ∪ PK is the set of all
items. We call an assignment feasible, if at most one item is assigned to each position (i.e., for all k,
|S ∩ Pk| ≤ 1). We use P to refer to the set of feasible assignments.

Our goal is to find a feasible assignment maximizing a utility function f : 2V → R≥0. As we discuss
later, many important assignment problems satisfy submodularity, a natural diminishing returns
property: Assigning a new item to a position k increases the utility more if few elements have been
assigned yet, and less if many items have already been assigned. Formally, a utility function f is
called submodular, if for all S ⊆ S′ and s /∈ S′ it holds that f(S∪{s})−f(S) ≥ f(S′∪{s})−f(S′).
We will also assume f is monotone (i.e., for all S ⊆ S′, we have f(S) ≤ f(S′)). Our goal is thus,
for a given non-negative, monotone and submodular utility function f , to find a feasible assignment
S∗ of maximum utility, S∗ = arg maxS∈P {f(S)}.
This optimization problem is NP-hard. In fact, a stronger negative result holds:

Theorem 1 ([14]). For any ε > 0, any algorithm guaranteed to obtain a solution within a factor of
(1− 1/e+ ε) of maxS∈P {f(S)} requires exponentially many evaluations of f in the worst case.

In light of this negative result, we can only hope to efficiently obtain a solution that achieves a fraction
of (1− 1/e) of the optimal value. In §3.2 we develop such an algorithm.

The Online Problem. The offline problem is inappropriate to model dynamic settings, where the
utility function may change over time, and we need to repeatedly select new assignments, trading
off exploration (experimenting with ad display to gain information about the utility function), and
exploitation (displaying ads which we believe will maximize utility). More formally, we face a
sequential decision problem, where, on each round (which, e.g., corresponds to a user query for a
particular term), we want to select an assignment St (ads to display). We assume that the sets P1, P2,
. . . , PK are fixed in advance for all rounds. After we select the assignment we obtain reward ft(St)
for some non-negative monotone submodular utility function ft. We call the setting where we do
not get any information about ft beyond the reward the bandit feedback model. In contrast, in the
full-information feedback model we obtain oracle access to ft (i.e., we can evaluate ft on arbitrary
feasible assignments). Both models arise in real applications, as we show in §5.

The goal is to maximize the total reward we obtain, namely
∑

t ft(St). Following the multiarmed
bandit literature, we evaluate our performance after T rounds by comparing our total reward against
that obtained by a clairvoyant algorithm with knowledge of the sequence of functions 〈f1, . . . , fT 〉,
but with the restriction that it must select the same assignment on each round. The difference between
the clairvoyant algorithm’s total reward and ours is called our regret. The goal is then to develop an
algorithm whose expected regret grows sublinearly in the number of rounds; such an algorithm is
said to have (or be) no-regret. However, since sums of submodular functions remain submodular, the
clairvoyant algorithm has to solve an offline assignment problem with f(S) =

∑
t ft(S). Considering

Theorem 1, no polynomial-time algorithm can possibly hope to achieve a no-regret guarantee. To
accommodate this fact, we discount the reward of the clairvoyant algorithm by a factor of (1− 1/e):
We define the (1− 1/e)-regret of a random sequence 〈S1, . . . , ST 〉 as(

1− 1
e

)
·max

S∈P

{
T∑

t=1

ft(S)

}
− E

[
T∑

t=1

ft(St)

]
.

Our goal is then to develop efficient algorithms whose (1− 1/e)-regret grows sublinearly in T .

1If the same item can be placed in multiple positions, simply create multiple distinct copies of it.

2

Subsumed Models. Our model generalizes several common models for sponsored search ad
selection, and web search results. These include models with click-through-rates, in which it is
assumed that each (ad, position) pair has some probability p(a, k) of being clicked on, and there is
some monetary reward b(a) that is obtained whenever ad a is clicked on. Often, the click-through-
rates are assumed to be separable, meaning p(a, k) has the functional form α(a) · β(k) for some
functions α and β. See [7, 12] for more details on sponsored search ad allocation. Note that in both
of these cases, the (expected) reward of a set S of (ad, position) pairs is

∑
(a,k)∈S g(a, k) for some

nonnegative function g. It is easy to verify that such a reward function is monotone submodular.
Thus, we can capture this model in our framework by setting Pk = A× {k}, where A is the set of
ads. Another subsumed model, for web search, appears in [16]; it assumes that each user is interested
in a particular set of results, and any list of results that intersects this set generates a unit of value;
all other lists generate no value, and the ordering of results is irrelevant. Again, the reward function
is monotone submodular. In this setting, it is desirable to display a diverse set of results in order to
maximize the likelihood that at least one of them will interest the user.

Our model is flexible in that we can handle position-dependent effects and diversity considerations
simultaneously. For example, we can handle the case that each user u is interested in a particular
set Au of ads and looks at a set Iu of positions, and the reward of an assignment S is any monotone-
increasing concave function g of |S ∩ (Au × Iu)|. If Iu = {1, 2, . . . , k} and g(x) = x, this models
the case where the quality is the number of relevant result that appear in the first k positions. If Iu
equals all positions and g(x) = min {x, 1} we recover the model of [16].

3 An approximation algorithm for the offline problem
3.1 The locally greedy algorithm

A simple approach to the assignment problem is the following greedy procedure: the algorithm
steps through all K positions (according to some fixed, arbitrary ordering). For position k, it simply
chooses the item that increases the total value as much as possible, i.e., it chooses

sk = arg max
s∈Pk

{f({s1, . . . , sk−1}+ s)} ,

where, for a set S and element e, we write S + e for S ∪ {e}. Perhaps surprisingly, no matter which
ordering over the positions is chosen, this so-called locally greedy algorithm produces an assignment
that obtains at least half the optimal value [8]. In fact, the following more general result holds. We
will use this lemma in the analysis of our improved offline algorithm, which uses the locally greedy
algorithm as a subroutine.

Lemma 2. Suppose f : 2V → R≥0 is of the form f(S) = f0(S) +
∑K

k=1 fk(S ∩ Pk) where
f0 : 2V → R≥0 is monotone submodular, and fk : 2Pk → R≥0 is arbitrary for k ≥ 1. Let L be the
solution returned by the locally greedy algorithm. Then f(L) + f0(L) ≥ maxS∈P {f(S)}.

The proof is given in an extended version of this paper [9]. Observe that in the special case where
fk ≡ 0 for all k ≥ 1, Lemma 2 says that f(L) ≥ 1

2 maxS∈P f(S). In [9] we provide a simple
example showing that this 1/2 approximation ratio is tight.

3.2 An algorithm with optimal approximation ratio

We now present an algorithm that achieves the optimal approximation ratio of 1− 1/e, improving on
the 1

2 approximation for the locally greedy algorithm. Our algorithm associates with each partition
Pk a color ck from a palette [C] of C colors, where we use the notation [n] = {1, 2, . . . , n}. For any
set S ⊆ V × [C] and vector ~c = (c1, . . . , cK), define sample~c(S) =

⋃K
k=1 {x ∈ Pk : (x, ck) ∈ S}.

Given a set S of (item, color) pairs, which we may think of as labeling each item with one or more
colors, sample~c(S) returns a set containing each item x that is labeled with whatever color ~c assigns
to the partition that contains x. Let F (S) denote the expected value of f(sample~c(S)) when each
color ck is selected uniformly at random from [C]. Our TABULARGREEDY algorithm greedily
optimizes F , as shown in the following pseudocode.

Observe that when C = 1, there is only one possible choice for ~c, and TABULARGREEDY is
simply the locally greedy algorithm from §3.1. In the limit as C → ∞, TABULARGREEDY can
intuitively be viewed as an algorithm for a continuous extension of the problem followed by a

3

Algorithm: TABULARGREEDY

Input: integer C, sets P1, P2, . . . , PK , function f : 2V → R≥0 (where V =
⋃K

k=1 Pk)

set G := ∅.
for c from 1 to C do /* For each color */

for k from 1 to K do /* For each partition */
set gk,c = arg maxx∈Pk×{c} {F (G+ x)} /* Greedily pick gk,c */
set G := G+ gk,c;

for each k ∈ [K], choose ck uniformly at random from [C].
return sample~c(G), where ~c := (c1, . . . , cK).

rounding procedure, in the same spirit as Vondrák’s continuous-greedy algorithm [4]. In our case, the
continuous extension is to compute a probability distribution Dk for each position k with support in
Pk (plus a special “select nothing” outcome), such that if we independently sample an element xk

from Dk, E [f({x1, . . . , xK})] is maximized. It turns out that if the positions individually, greedily,
and in round-robin fashion, add infinitesimal units of probability mass to their distributions so as to
maximize this objective function, they achieve the same objective function value as if, rather than
making decisions in a round-robin fashion, they had cooperated and added the combination of K
infinitesimal probability mass units (one per position) that greedily maximizes the objective function.
The latter process, in turn, can be shown to be equivalent to a greedy algorithm for maximizing a
(different) submodular function subject to a cardinality constraint, which implies that it achieves
a 1 − 1/e approximation ratio [15]. TABULARGREEDY represents a tradeoff between these two
extremes; its performance is summarized by the following theorem. For now, we assume that the
arg max in the inner loop is computed exactly. In the extended version [9], we bound the performance
loss that results from approximating the arg max (e.g., by estimating F by repeated sampling).
Theorem 3. Suppose f is monotone submodular. Then F (G) ≥ β(K,C) ·maxS∈P {f(S)}, where
β(K,C) is defined as 1− (1− 1

C)C −
(
K
2

)
C−1.

It follows that, for any ε > 0, TABULARGREEDY achieves a (1 − 1/e − ε) approximation factor
using a number of colors that is polynomial in K and 1/ε. The theorem will follow immediately
from the combination of two key lemmas, which we now prove. Informally, Lemma 4 analyzes the
approximation error due to the outer greedy loop of the algorithm, while Lemma 5 analyzes the
approximation error due to the inner loop.
Lemma 4. Let Gc = {g1,c, g2,c, . . . , gK,c}, and let G−c = G1 ∪ G2 ∪ . . . ∪ Gc−1. For each
color c, choose Ec ∈ R such that F (G−c ∪ Gc) ≥ maxx∈Rc

{F (G−c ∪ x)} − Ec where Rc :=
{R : ∀k ∈ [K] , |R ∩ (Pk × {c})| = 1} is the set of all possible choices for Gc. Then

F (G) ≥ β(C) ·max
S∈P
{f(S)} −

C∑
c=1

Ec . (3.1)

where β(C) = 1−
(
1− 1

C

)C
.

Proof (Sketch). We will refer to an element R ofRc as a row, and to c as the color of the row. Let
R[C] :=

⋃C
c=1Rc be the set of all rows. Consider the function H : 2R[C] → R≥0, defined as

H(R) = F
(⋃

R∈RR
)
. We will prove the lemma in three steps: (i) H is monotone submodular, (ii)

TABULARGREEDY is simply the locally greedy algorithm for finding a set of C rows that maximizes
H , where the cth greedy step is performed with additive error Ec, and (iii) TABULARGREEDY obtains
the guarantee (3.1) for maximizing H , and this implies the same ratio for maximizing F .

To show that H is monotone submodular, it suffices to show that F is monotone submodular.
Because F (S) = E~c [f(sample~c(S))], and because a convex combination of monotone submodular
functions is monotone submodular, it suffices to show that for any particular coloring ~c, the function
f(sample~c(S)) is monotone submodular. This follows from the definition of sample and the fact
that f is monotone submodular.

The second claim is true by inspection. To prove the third claim, we note that the row colors for a set
of rowsR can be interchanged with no effect on H(R). For problems with this special property, it is

4

known that the locally greedy algorithm obtains an approximation ratio of β(C) = 1−(1− 1
C)C [15].

Theorem 6 of [17] extends this result to handle additive error, and yields

F (G) = H({G1, G2, . . . , GC}) ≥ β(C) · max
R⊆R[C]:|R|≤C

{H(R)} −
C∑

c=1

Ec .

To complete the proof, it suffices to show that maxR⊆R[C]:|R|≤C {H(R)} ≥ maxS∈P {f(S)}. This
follows from the fact that for any assignment S ∈ P , we can find a set R(S) of C rows such that
sample~c(

⋃
R∈R(S)R) = S with probability 1, and therefore H(R(S)) = f(S).

We now bound the performance of the the inner loop of TABULARGREEDY.
Lemma 5. Let f∗ = maxS∈P {f(S)}, and let Gc, G−c , and Rc be defined as in the statement of
Lemma 4. Then, for any c ∈ [C], F (G−c ∪Gc) ≥ maxR∈Rc

{F (G−c ∪R)} −
(
K
2

)
C−2f∗.

Proof (Sketch). Let N denote the number of partitions whose color (assigned by ~c) is c. For R ∈ Rc,
let ∆~c(R) := f(sample~c(G−c ∪R))−f(sample~c(G−c)), and let Fc(R) := F (G−c ∪R)−F (G−c). By
definition, Fc(R) = E~c [∆~c(R)] = P [N = 1] E~c [∆~c(R)|N = 1] + P [N ≥ 2] E~c [∆~c(R)|N ≥ 2],
where we have used the fact that ∆~c(R) = 0 when N = 0. The idea of the proof is that
the first of these terms dominates as C → ∞, and that E~c [∆~c(R)|N = 1] can be optimized
exactly simply by optimizing each element of Pk × {c} independently. Specifically, it can
be seen that E~c [∆~c(R)|N = 1] =

∑K
k=1 fk(R ∩ (Pk × {c})) for suitable fk. Additionally,

f0(R) = P [N ≥ 2] E~c [∆~c(R)|N ≥ 2] is a monotone submodular function of a set of (item,
color) pairs, for the same reasons F is. Applying Lemma 2 with these {fk : k ≥ 0} yields
Fc(Gc) + P [N ≥ 2] E~c [∆~c(Gc)|N ≥ 2] ≥ maxR∈Rc

{Fc(R)}. To complete the proof, it suf-
fices to show P [N ≥ 2] ≤

(
K
2

)
C−2 and E~c [∆~c(Gc)|N ≥ 2] ≤ f∗. The first inequality holds

because, if we let M be the number of pairs of partitions that are both assigned color c, we have
P [N ≥ 2] = P [M ≥ 1] ≤ E [M] =

(
K
2

)
C−2. The second inequality follows from the fact that for

any ~c we have ∆~c(Gc) ≤ f(sample~c(G−c ∪Gc)) ≤ f∗.

4 An algorithm for online learning of assignments
We now transform the offline algorithm of §3.2 into an online algorithm. The high-level idea behind
this transformation is to replace each greedy decision made by the offline algorithm with a no-regret
online algorithm. A similar approach was used in [16] and [18] to obtain an online algorithm for
different (simpler) online problems.

Algorithm: TGBANDIT (described in the full-information feedback model)
Input: integer C, sets P1, P2, . . . , PK

for each k ∈ [K] and c ∈ [C], let Ek,c be a no-regret algorithm with action set Pk × {c}.
for t from 1 to T do

for each k ∈ [K] and c ∈ [C], let gt
k,c ∈ Pk × {c} be the action selected by Ek,c

for each k ∈ [K], choose ck uniformly at random from [C]. Define ~c = (c1, . . . , cK).
select the set Gt = sample~c

({
gt

k,c : k ∈ [K] , c ∈ [C]
})

observe ft, and let F̄t(S) := ft(sample~c(S))
for each k ∈ [K], c ∈ [C] do

define Gt−
k,c ≡

{
gt

k′,c′ : k′ ∈ [K] , c′ < c
}
∪
{
gt

k′,c : k′ < k
}

for each x ∈ Pk × {c}, feed back F̄t(Gt−
k,c + x) to Ek,c as the reward for choosing x

The following theorem summarizes the performance of TGBANDIT.

Theorem 6. Let rk,c be the regret of Ek,c, and let β(K,C) = 1−
(
1− 1

C

)C − (K2)C−1. Then

E

[
T∑

t=1

ft(Gt)

]
≥ β(K,C) ·max

S∈P

{
T∑

t=1

ft(S)

}
− E

[
K∑

k=1

C∑
c=1

rk,c

]
.

5

Observe that Theorem 6 is similar to Theorem 3, with the addition of the E [rk,c] terms. The idea
of the proof is to view TGBANDIT as a version of TABULARGREEDY that, instead of greedily
selecting single (element,color) pairs gk,c ∈ Pk × {c}, greedily selects (element vector, color) pairs
~gk,c ∈ PT

k × {c} (here, PT
k is the T th power of the set Pk). We allow for the case that the greedy

decision is made imperfectly, with additive error rk,c; this is the source of the extra terms. Once this
correspondence is established, the theorem follows along the lines of Theorem 3. For a proof, see the
extended version [9].

Corollary 7. If TGBANDIT is run with randomized weighted majority [5] as the subroutine, then

E

[
T∑

t=1

ft(Gt)

]
≥ β(K,C) ·max

S∈P

{
T∑

t=1

ft(S)

}
−O

(
C

K∑
k=1

√
T log |Pk|

)
.

where β(K,C) = 1−
(
1− 1

C

)C − (K2)C−1.

Optimizing for C in Corollary 7 yields (1 − 1
e)-regret Θ̃(K3/2T 1/4

√
OPT) ignoring logarithmic

factors, where OPT := maxS∈P

{∑T
t=1 ft(S)

}
is the value of the static optimum.

Dealing with bandit feedback. TGBANDIT can be modified to work in the bandit feedback model.
The idea behind this modification is that on each round we “explore” with some small probability, in
such a way that on each round we obtain an unbiased estimate of the desired feedback values F̄t(Gt−

k,c+
x) for each k ∈ [K], c ∈ [C], and x ∈ Pk. This technique can be used to achieve a bound similar to
the one stated in Corollary 7, but with an additive regret term of O

(
(T |V|CK)

2
3 (log |V|)

1
3

)
.

Stronger notions of regret. By substituting in different algorithms for the subroutines Ek,c, we can
obtain additional guarantees. For example, Blum and Mansour [3] consider online problems in which
we are given time-selection functions I1, I2, . . . , IM . Each time-selection function I : [T]→ [0, 1]
associates a weight with each round, and defines a corresponding weighted notion of regret in the
natural way. Blum and Mansour’s algorithm guarantees low weighted regret with respect to all
M time selection functions simultaneously. This can be used to obtain low regret with respect to
different (possibly overlapping) windows of time simultaneously, or to obtain low regret with respect
to subsets of rounds that have particular features. By using their algorithm as a subroutine within
TGBANDIT, we get similar guarantees, both in the full information and bandit feedback models.

5 Evaluation
We evaluate TGBANDIT experimentally on two applications: Learning to rank blogs that are effective
in detecting cascades of information, and allocating advertisements to maximize revenue.

5.1 Online learning of diverse blog rankings

We consider the problem of ranking a set of blogs and news sources on the web. Our approach is
based on the following idea: A blogger writes a posting, and, after some time, other postings link to
it, forming cascades of information propagating through the network of blogs.

More formally, an information cascade is a directed acyclic graph of vertices (each vertex corresponds
to a posting at some blog), where edges are annotated by the time difference between the postings.
Based on this notion of an information cascade, we would like to select blogs that detect big
cascades (containing many nodes) as early as possible (i.e., we want to learn about an important
event before most other readers). In [13] it is shown how one can formalize this notion of utility
using a monotone submodular function that measures the informativeness of a subset of blogs.
Optimizing the submodular function yields a small set of blogs that “covers” most cascades. This
utility function prefers diverse sets of blogs, minimizing the overlap of the detected cascades, and
therefore minimizing redundancy.

The work by [13] leaves two major shortcomings: Firstly, they select a set of blogs rather than a
ranking, which is of practical importance for the presentation on a web service. Secondly, they do
not address the problem of sequential prediction, where the set of blogs must be updated dynamically
over time. In this paper, we address these shortcomings.

6

1 2 4
6

6.5

7

7.5

8 x 104

Number of colors

P
er

fo
rm

an
ce

Average
Maximum

(a) Blogs: Offline results

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Number of rounds (days)

A
vg

. n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

1 color
4 colors

(b) Blogs: Online results

102 104 106103 105 106
0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

Number of rounds

Av
er

ag
e

Pa
yo

ff

4 colors

2 colors

1 color

(c) Ad display: Online results

Figure 1: (a,b) Results for discounted blog ranking (γ = 0.8), in offline (a) and online (b) setting. (c)
Performance of TGBANDIT with C = 1, 2, and 4 colors for the sponsored search ad selection problem (each
round is a query). Note that C = 1 corresponds to the online algorithm of [16, 18].

Results on offline blog ranking. In order to model the blog ranking problem, we adopt the
assumption that different users have different attention spans: Each user will only consider blogs
appearing in a particular subset of positions. In our experiments, we assume that the probability that
a user is willing to look at position k is proportional to γk, for some discount factor 0 < γ < 1.
More formally, let g be the monotone submodular function measuring the informativeness of any set
of blogs, defined as in [13]. Let Pk = B × {k}, where B is the set of blogs. Given an assignment
S ∈ P , let S[k] = S ∩ {P1 ∪ P2 ∪ . . . ∪ Pk} be the assignment of blogs to positions 1 through k.
We define the discounted value of the assignment S as f(S) =

∑K
k=1 γ

k
(
g(S[k])− g(S[k−1])

)
. It

can be seen that f : 2V → R≥0 is monotone submodular.

For our experiments, we use the data set of [13], consisting of 45,192 blogs, 16,551 cascades, and
2 million postings collected during 12 months of 2006. We use the population affected objective
of [13], and use a discount factor of γ = 0.8. Based on this data, we run our TABULARGREEDY
algorithm with varying numbers of colors C on the blog data set. Fig. 1(a) presents the results of this
experiment. For each value of C, we generate 200 rankings, and report both the average performance
and the maximum performance over the 200 trials. Increasing C leads to an improved performance
over the locally greedy algorithm (C = 1).

Results on online learning of blog rankings. We now consider the online problem where on
each round t we want to output a ranking St. After we select the ranking, a new set of cascades
occurs, modeled using a separate submodular function ft, and we obtain a reward of ft(St). In
our experiments, we choose one assignment per day, and define ft as the utility associated with the
cascades occurring on that day. Note that ft allows us to evaluate the performance of any possible
ranking St, hence we can apply TGBANDIT in the full-information feedback model.

We compare the performance of our online algorithm using C = 1 and C = 4. Fig. 1(b) presents the
average cumulative reward gained over time by both algorithms. We normalize the average reward by
the utility achieved by the TABULARGREEDY algorithm (with C = 1) applied to the entire data set.
Fig. 1(b) shows that the performance of both algorithms rapidly (within the first 47 rounds) converges
to the performance of the offline algorithm. The TGBANDIT algorithm with C = 4 levels out at an
approximately 4% higher reward than the algorithm with C = 1.

5.2 Online ad display

We evaluate TGBANDIT for the sponsored search ad selection problem in a simple Markovian model
incorporating the value of diverse results and complex position-dependence among clicks. In this
model, each user u is defined by two sets of probabilities: pclick(a) for each ad a ∈ A, and pabandon(k)
for each position k ∈ [K]. When presented an assignment of ads {a1, a2, . . . , aK}, where ak

occupies position k, the user scans the positions in increasing order. For each position k, the user
clicks on ak with probability pclick(ak), leaving the results page forever. Otherwise, with probability
(1 − pclick(ak)) · pabandon(k), the user loses interest and abandons the results without clicking on
anything. Finally, with probability (1− pclick(ak)) · (1− pabandon(k)), the user proceeds to look at
position k + 1. The reward function ft is the number of clicks, which is either zero or one. We only
receive information about ft(St) (i.e., bandit feedback).

7

In our evaluation, there are 5 positions, 20 available ads, and two (equally frequent) types of users:
type 1 users interested in all positions (pabandon ≡ 0), and type 2 users that quickly lose interest
(pabandon ≡ 0.5). There are also two types of ads, half of type 1 and half of type 2, and users are
probabilistically more interested in ads of their own type than those of the opposite type. Specifically,
for both types of users we set pclick(a) = 0.5 if a has the same type as the user, and pclick(a) = 0.2
otherwise. In Fig. 1(c) we compare the performance of TGBANDIT with C = 4 to the online
algorithm of [16, 18], based on the average of 100 experiments. The latter algorithm is equivalent
to running TGBANDIT with C = 1. They perform similarly in the first 104 rounds; thereafter the
former algorithm dominates.

It can be shown that with several different types of users with distinct pclick(·) functions the offline
problem of finding an assignment within 1− 1

e + ε of optimal is NP-hard. This is in contrast to the
case in which pclick and pabandon are the same for all users; in this case the offline problem simply
requires finding an optimal policy for a Markov decision process, which can be done efficiently using
well-known algorithms. A slightly different Markov model of user behavior which is efficiently
solvable was considered in [1]. In that model, pclick and pabandon are the same for all users, and pabandon
is a function of the ad in the slot currently being scanned rather than its index.

6 Related Work
For a general introduction to the literature on submodular function maximization, see [19]. For
applications of submodularity to machine learning and AI see [11].

Our offline problem is known as maximizing a monotone submodular function subject to a (simple)
partition matroid constraint in the operations research and theoretical computer science communities.
The study of this problem culminated in the elegant (1−1/e) approximation algorithm of Vondrák [20]
and a matching unconditional lower bound of Mirrokni et al. [14]. Vondrák’s algorithm, called
the continuous-greedy algorithm, has also been extended to handle arbitrary matroid constraints [4].
The continuous-greedy algorithm, however, cannot be applied to our problem directly, because it
requires the ability to sample f(·) on infeasible sets S /∈ P . In our context, this means it must have
the ability to ask (for example) what the revenue will be if ads a1 and a2 are placed in position #1
simultaneously. We do not know how to answer such questions in a way that leads to meaningful
performance guarantees.

In the online setting, the most closely related work is that of Streeter and Golovin [18]. Like us, they
consider sequences of monotone submodular reward functions that arrive online, and develop an
online algorithm that uses multi-armed bandit algorithms as subroutines. The key difference from our
work is that, as in [16], they are concerned with selecting a set ofK items rather than the more general
problem of selecting an assignment of items to positions addressed in this paper. Kakade et al. [10]
considered the general problem of using α-approximation algorithms to construct no α-regret online
algorithms, and essentially proved it could be done for the class of linear optimization problems in
which the cost function has the form c(S,w) for a solution S and weight vector w, and c(S,w) is
linear in w. However, their result is orthogonal to ours, because our objective function is submodular
and not linear2.

7 Conclusions
In this paper, we showed that important problems, such as ad display in sponsored search and
computing diverse rankings of information sources on the web, require optimizing assignments
under submodular utility functions. We developed an efficient algorithm, TABULARGREEDY, which
obtains the optimal approximation ratio of (1 − 1/e) for this NP-hard optimization problem. We
also developed an online algorithm, TGBANDIT, that asymptotically achieves no (1− 1/e)-regret
for the problem of repeatedly selecting informative assignments, under the full-information and
bandit-feedback settings. Finally, we demonstrated that our algorithm outperforms previous work on
two real world problems, namely online ranking of informative blogs and ad allocation.

Acknowledgments. This work was supported in part by Microsoft Corporation through a gift as well as
through the Center for Computational Thinking at Carnegie Mellon, by NSF ITR grant CCR-0122581 (The
Aladdin Center), and by ONR grant N00014-09-1-1044.

2 One may linearize a submodular function by using a separate dimension for every possible function
argument, but this leads to exponentially worse convergence time and regret bounds for the algorithms in [10]
relative to TGBANDIT.

8

References
[1] Gagan Aggarwal, Jon Feldman, S. Muthukrishnan, and Martin Pál. Sponsored search auctions with

markovian users. In WINE, pages 621–628, 2008.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[3] Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine Learning Research,
8:1307–1324, 2007.

[4] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set function
subject to a matroid constraint. SIAM Journal on Computing. To appear.

[5] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and Manfred K.
Warmuth. How to use expert advice. J. ACM, 44(3):427–485, 1997.

[6] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the generalized
second price auction: Selling billions of dollars worth of keywords. American Economic Review, 97(1):242–
259, 2007.

[7] Jon Feldman and S. Muthukrishnan. Algorithmic methods for sponsored search advertising. In Zhen Liu
and Cathy H. Xia, editors, Performance Modeling and Engineering. 2008.

[8] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of approximations for
maximizing submodular set functions - II. Mathematical Programming Study, (8):73–87, 1978.

[9] Daniel Golovin, Andreas Krause, and Matthew Streeter. Online learning of assignments that maximize
submodular functions. CoRR, abs/0908.0772, 2009.

[10] Sham M. Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approximation algorithms.
In STOC, pages 546–555, 2007.

[11] Andreas Krause and Carlos Guestrin. Beyond convexity: Submodularity in machine learning. Tutorial at
ICML 2008. http://www.select.cs.cmu.edu/tutorials/icml08submodularity.html.

[12] Sébastien Lahaie, David M. Pennock, Amin Saberi, and Rakesh V. Vohra. Sponsored search auctions. In
Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007.

[13] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-effective outbreak detection in networks. In KDD, pages 420–429, 2007.

[14] Vahab Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic lower bounds for welfare
maximization in combinatorial auctions. In EC, pages 70–77, 2008.

[15] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations for
maximizing submodular set functions - I. Mathematical Programming, 14(1):265–294, 1978.

[16] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with multi-armed
bandits. In ICML, pages 784–791, 2008.

[17] Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions. Technical
Report CMU-CS-07-171, Carnegie Mellon University, 2007.

[18] Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions. In
NIPS, pages 1577–1584, 2008.

[19] Jan Vondrák. Submodularity in Combinatorial Optimization. PhD thesis, Charles University, Prague,
Czech Republic, 2007.

[20] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. In
STOC, pages 67–74, 2008.

9

