
A unified framework for high-dimensional analysis of
M -estimators with decomposable regularizers

Sahand Negahban
Department of EECS

UC Berkeley
sahand n@eecs.berkeley.edu

Pradeep Ravikumar
Department of Computer Sciences

UT Austin
pradeepr@cs.utexas.edu

Martin J. Wainwright
Department of Statistics
Department of EECS

UC Berkeley
wainwrig@eecs.berkeley.edu

Bin Yu
Department of Statistics
Department of EECS

UC Berkeley
binyu@stat.berkeley.edu

Abstract

High-dimensional statistical inference deals with models in which the the num-
ber of parameters p is comparable to or larger than the sample size n. Since it
is usually impossible to obtain consistent procedures unless p/n → 0, a line of
recent work has studied models with various types of structure (e.g., sparse vec-
tors; block-structured matrices; low-rank matrices; Markov assumptions). In such
settings, a general approach to estimation is to solve a regularized convex program
(known as a regularizedM -estimator) which combines a loss function (measuring
how well the model fits the data) with some regularization function that encour-
ages the assumed structure. The goal of this paper is to provide a unified frame-
work for establishing consistency and convergence rates for such regularizedM -
estimators under high-dimensional scaling. We state one main theorem and show
how it can be used to re-derive several existing results, and also to obtain several
new results on consistency and convergence rates. Our analysis also identifies
two key properties of loss and regularization functions, referred to as restricted
strong convexity and decomposability, that ensure the corresponding regularized
M -estimators have fast convergence rates.

1 Introduction

In many fields of science and engineering (among them genomics, financial engineering, natural lan-
guage processing, remote sensing, and social network analysis), one encounters statistical inference
problems in which the number of predictors p is comparable to or even larger than the number of
observations n. Under this type of high-dimensional scaling, it is usually impossible to obtain sta-
tistically consistent estimators unless one restricts to subclasses of models with particular structure.
For instance, the data might be sparse in a suitably chosen basis, could lie on some manifold, or the
dependencies among the variables might have Markov structure specified by a graphical model.

In such settings, a common approach to estimating model parameters is is through the use of a
regularized M -estimator, in which some loss function (e.g., the negative log-likelihood of the data)
is regularized by a function appropriate to the assumed structure. Such estimators may also be
interpreted from a Bayesian perspective as maximum a posteriori estimates, with the regularizer
reflecting prior information. In this paper, we study such regularized M -estimation procedures,
and attempt to provide a unifying framework that both recovers some existing results and provides
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new results on consistency and convergence rates under high-dimensional scaling. We illustrate
some applications of this general framework via three running examples of constrained parametric
structures. The first class is that of sparse vector models; we consider both the case of “hard-sparse”
models which involve an explicit constraint on the number on non-zero model parameters, and also
a class of “weak-sparse” models in which the ordered coefficients decay at a certain rate. Second,
we consider block-sparse models, in which the parameters are matrix-structured, and entire rows are
either zero or not. Our third class is that of low-rank matrices, which arise in system identification,
collaborative filtering, and other types of matrix completion problems.

To motivate the need for a unified analysis, let us provide a brief (and hence necessarily incomplete)
overview of the broad range of past and on-going work on high-dimensional inference. For the case
of sparse regression, a popular regularizer is the !1 norm of the parameter vector, which is the sum of
the absolute values of the parameters. A number of researchers have studied the Lasso [15, 3] as well
as the closely related Dantzig selector [2] and provided conditions on various aspects of its behavior,
including !2-error bounds [7, 1, 21, 2] and model selection consistency [22, 19, 6, 16]. For gener-
alized linear models (GLMs) and exponential family models, estimators based on !1-regularized
maximum likelihood have also been studied, including results on risk consistency [18] and model
selection consistency [11]. A body of work has focused on the case of estimating Gaussian graphical
models, including convergence rates in Frobenius and operator norm [14], and results on operator
norm and model selection consistency [12]. Motivated by inference problems involving block-sparse
matrices, other researchers have proposed block-structured regularizers [17, 23], and more recently,
high-dimensional consistency results have been obtained for model selection and parameter consis-
tency [4, 8].

In this paper, we derive a single main theorem, and show how we are able to rederive a wide range
of known results on high-dimensional consistency, as well as some novel ones, including estima-
tion error rates for low-rank matrices, sparse matrices, and “weakly”-sparse vectors. Due to space
constraints, many of the technical details are deferred to the full-length version of this conference
paper.

2 Problem formulation and some key properties

In this section, we begin with a precise formulation of the problem, and then develop some key
properties of the regularizer and loss function. In particular, we define a notion of decomposability
for regularizing functions r, and then prove that when it is satisfied, the error ∆̂ = θ̂ − θ∗ of the
regularizedM -estimator must satisfy certain constraints We use these constraints to define a notion
of restricted strong convexity that the loss function must satisfy.

2.1 Problem set-up

Consider a random variable Z with distribution P taking values in a set Z . Let Zn
1 := {Z1, . . . , Zn}

denote n observations drawn in an i.i.d. manner from P, and suppose θ∗ ∈ Rp is some parameter
of this distribution. We consider the problem of estimating θ∗ from the data Zn

1 , and in order to do
so, we consider the following class of regularized M -estimators. Let L : Rp × Zn %→ R be some
loss function that assigns a cost to any parameter θ ∈ Rp, for a given set of observations Zn

1 . Let
r : Rp %→ R denote a regularization function. We then consider the regularized M -estimator given
by

θ̂ ∈ arg min
θ∈Rp

{
L(θ;Zn

1 ) + λnr(θ)
}
, (1)

where λn > 0 is a user-defined regularization penalty. For ease of notation, in the sequel, we adopt
the shorthand L(θ) for L(θ;Zn

1 ). Throughout the paper, we assume that the loss function L is
convex and differentiable, and that the regularizer r is a norm.

Our goal is to provide general techniques for deriving bounds on the error θ̂−θ∗ in some error metric
d. A common example is the !2-norm d(θ̂−θ∗) := ‖θ̂−θ∗‖2. As discussed earlier, high-dimensional
parameter estimation is made possible by structural constraints on θ∗ such as sparsity, and we will
see that the behavior of the error is determined by how well these constraints are captured by the
regularization function r(·). We now turn to the properties of the regularizer r and the loss function
L that underlie our analysis.
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2.2 Decomposability

Our first condition requires that the regularization function r be decomposable, in a sense to be
defined precisely, with respect to a family of subspaces. This notion is a formalization of the manner
in which the regularization function imposes constraints on possible parameter vectors θ∗ ∈ Rp. We
begin with some abstract definitions, which we then illustrate with a number of concrete examples.
Take some arbitrary inner product space H, and let ‖ ·‖ 2 denote the norm induced by the inner
product. Consider a pair (A,B) of subspaces of H such that A ⊆ B⊥. For a given subspace A and
vector u ∈ H, we let πA(u) := argminv∈A ‖u− v‖2 denote the orthogonal projection of u onto A.
We let V = {(A,B) | A ⊆ B⊥} be a collection of subspace pairs. For a given statistical model,
our goal is to construct subspace collections V such that for any given θ∗ from our model class, there
exists a pair (A,B) ∈ V with ‖πA(θ∗)‖2 ≈ ‖θ∗‖2, and ‖πB(θ∗)‖2 ≈ 0. Of most interest to us are
subspace pairs (A,B) in which this property holds but the subspace A is relatively small and B is
relatively large. Note that A represents the constraints underlying our model class, and imposed by
our regularizer. For the bulk of the paper, we assume that H = Rp and use the standard Euclidean
inner product (which should be assumed unless otherwise specified).

As a first concrete (but toy) example, consider the model class of all vectors θ∗ ∈ Rp, and the sub-
space collection T that consists of a single subspace pair (A,B) = (Rp, 0). We refer to this choice
(V = T ) as the trivial subspace collection. In this case, for any θ∗ ∈ Rp, we have πA(θ∗) = θ∗ and
πB(θ∗) = 0. Although this collection satisfies our desired property, it is not so useful since A = Rp

is a very large subspace. As a second example, consider the class of s-sparse parameter vectors
θ∗ ∈ Rp, meaning that θ∗i )= 0 only if i ∈ S, where S is some s-sized subset of {1, 2, . . . , p}. For
any given subset S and its complement Sc, let us define the subspaces

A(S) = {θ ∈ Rp | θSc = 0}, and B(S) = {θ ∈ Rp | θS = 0},
and the s-sparse subspace collection S = {(A(S), B(S)) | S ⊂ {1, . . . , p}, |S| = s}. With this
set-up, for any s-sparse parameter vector θ∗, we are guaranteed that there exists some (A,B) ∈ S
such that πA(θ∗) = θ∗ and πB(θ∗) = 0. In this case, the property is more interesting, since the
subspaces A(S) are relatively small as long as |S| = s + p.

With this set-up, we say that the regularizer r is decomposable with respect to a given subspace pair
(A,B) if

r(u + z) = r(u) + r(z) for all u ∈ A and z ∈ B. (2)
In our subsequent analysis, we impose the following condition on the regularizer:
Definition 1. The regularizer r is decomposable with respect to a given subspace collection V ,
meaning that it is decomposable for each subspace pair (A,B) ∈ V .

Note that any regularizer is decomposable with respect to the trivial subspace collection
T = {(Rp, 0)}. It will be of more interest to us when the regularizer decomposes with respect to
a larger collection V that includes subspace pairs (A,B) in which A is relatively small and B is
relatively large. Let us illustrate with some examples.

• Sparse vectors and !1 norm regularization. Consider a model involving s-sparse regression vec-
tors θ∗ ∈ Rp, and recall the definition of the s-sparse subspace collection S discussed above. We
claim that the !1-norm regularizer r(u) = ‖u‖1 is decomposable with respect to S. Indeed, for
any s-sized subset S and vectors u ∈ A(S) and v ∈ B(S), we have ‖u + v‖1 = ‖u‖1 + ‖v‖1, as
required.

• Group-structured sparse matrices and !1,q matrix norms. Various statistical problems involve
matrix-valued parameters Θ ∈ Rk×m; examples include multivariate regression problems or
(inverse) covariance matrix estimation. We can define an inner product on such matrices via
〈〈Θ, Σ〉〉 = trace(ΘT Σ) and the induced (Frobenius) norm

∑k
i=1

∑m
j=1 Θ2

i,j . Let us suppose
thatΘ satisfies a group sparsity condition, meaning that the ith row, denotedΘi, is non-zero only
if i ∈ S ⊆ {1, . . . , k} and the cardinality of S is controlled. For a given subset S, we can define
the subspace pair

B(S) =
{
Θ ∈ Rk×m | Θi = 0 for all i ∈ Sc

}
, and A(S) = (B(S))⊥,

For some fixed s ≤ k, we then consider the collection
V = {(A(S), B(S)) | S ⊂ {1, . . . , k}, |S| = s},
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which is a group-structured analog of the s-sparse set S for vectors. For any q ∈ [1,∞], now
suppose that the regularizer is the !1/!q matrix norm, given by r(Θ) =

∑k
i=1[

∑m
j=1 |Θij |q]1/q,

corresponding to applying the !q norm to each row and then taking the !1-norm of the result. It
can be seen that the regularizer r(Θ) = |||Θ|||1,q is decomposable with respect to the collection V .

• Low-rank matrices and nuclear norm. The estimation of low-rank matrices arises in vari-
ous contexts, including principal component analysis, spectral clustering, collaborative filter-
ing, and matrix completion. In particular, consider the class of matrices Θ ∈ Rk×m that have
rank r ≤ min{k, m}. For any given matrix Θ, we let row(Θ) ⊆ Rm and col(Θ) ⊆ Rk denote its
row space and column space respectively. For a given pair of r-dimensional subspaces U ⊆ Rk

and V ⊆ Rm, we define a pair of subspaces A(U, V ) and B(U, V ) of Rk×m as follows:

A(U, V ) :=
{
Θ ∈ Rk×m | row(Θ) ⊆ V, col(Θ) ⊆ U

}
, and (3a)

B(U, V ) :=
{
Θ ∈ Rk×m | row(Θ) ⊆ V ⊥, col(Θ) ⊆ U⊥}

. (3b)

Note that A(U, V ) ⊆ B⊥(U, V ), as is required by our construction. We then consider the col-
lection V = {(A(U, V ), B(U, V )) | U ⊆ Rk, V ⊆ Rm}, where (U, V ) range over all pairs of
r-dimensional subspaces. Now suppose that we regularize with the nuclear norm r(Θ) = |||Θ|||1,
corresponding to the sum of the singular values of the matrix Θ. It can be shown that the nuclear
norm is decomposable with respect to V . Indeed, since any pair of matrices M ∈ A(U, V ) and
M ′ ∈ B(U, V ) have orthogonal row and column spaces, we have |||M +M ′|||1 = |||M |||1 + |||M ′|||1
(e.g., see the paper [13]).

Thus, we have demonstrated various models and regularizers in which decomposability is satisfied
with interesting subspace collections V . We now show that decomposability has important con-
sequences for the error ∆̂ = θ̂ − θ∗, where θ̂ ∈ Rp is any optimal solution of the regularized
M -estimation procedure (1). In order to state a lemma that captures this fact, we need to define the
dual norm of the regularizer, given by r∗(v) := supu∈Rp

〈u,v〉
r(u) . For the regularizers of interest, the

dual norm can be obtained via some easy calculations. For instance, given a vector θ ∈ Rp and
r(θ) = ‖θ‖1, we have r∗(θ) = ‖θ‖∞. Similarly, given a matrix Θ ∈ Rk×m and the nuclear norm
regularizer r(Θ) = |||Θ|||1, we have r∗(Θ) = |||Θ|||2, corresponding to the operator norm (or maximal
singular value).
Lemma 1. Suppose θ̂ is an optimal solution of the regularized M -estimation procedure (1), with
associated error∆ = θ̂−θ∗. Furthermore, suppose that the regularization penalty is strictly positive
with λn ≥ 2 r∗(∇L(θ∗)). Then for any (A,B) ∈ V

r(πB(∆̂)) ≤ 3r(πB⊥(∆̂)) + 4r(πA⊥(θ∗)).

This property plays an essential role in our definition of restricted strong convexity and subsequent
analysis.

2.3 Restricted Strong Convexity

Next we state our assumption on the loss function L. In general, guaranteeing that L(θ̂) − L(θ∗)
is small is not sufficient to show that θ̂ and θ∗ are close. (As a trivial example, consider a loss
function that is identically zero.) The standard way to ensure that a function is “not too flat” is via
the notion of strong convexity—in particular, by requiring that there exist some constant γ > 0 such
that L(θ∗+∆)−L(θ∗)−〈∇L(θ∗),∆〉 ≥ γ d2(∆) for all∆ ∈ Rp. In the high-dimensional setting,
where the number of parameters p may be much larger than the sample size, the strong convexity
assumption need not be satisfied. As a simple example, consider the usual linear regression model
y = Xθ∗ + w, where y ∈ Rn is the response vector, θ∗ ∈ Rp is the unknown parameter vector,
X ∈ Rn×p is the design matrix, and w ∈ Rn is a noise vector, with i.i.d. zero mean elements. The
least-squares loss is given by L(θ) = 1

2n‖y − Xθ‖22, and has the Hessian H(θ) = 1
nXT X . It is

easy to check that the p × p matrix H(θ) will be rank-deficient whenever p > n, showing that the
least-squares loss cannot be strongly convex (with respect to d(·) = ‖ ·‖ 2) when p > n.

Herein lies the utility of Lemma 1: it guarantees that the error ∆̂ must lie within a restricted set,
so that we only need the loss function to be strongly convex for a limited set of directions. More
precisely, we have:

4



Definition 2. Given some subset C ⊆ Rp and error norm d(·), we say that the loss function L
satisfies restricted strong convexity (RSC) (with respect to d(·)) with parameter γ(L) > 0 over C if

L(θ∗ + ∆)− L(θ∗)− 〈∇L(θ∗),∆〉 ≥ γ(L) d2(∆) for all∆ ∈ C. (4)

In the statement of our results, we will be interested in loss functions that satisfy RSC over sets
C(A,B, ε) that are indexed by a subspace pair (A,B) and a tolerance ε ≥ 0 as follows:

C(A,B, ε) :=
{
∆ ∈ Rp | r(πB(∆)) ≤ 3r(πB⊥(∆)) + 4r(πA⊥(θ∗)), d(∆) ≥ ε

}
. (5)

In the special case of least-squares regression with hard sparsity constraints, the RSC condition cor-
responds to a lower bound on the sparse eigenvalues of the Hessian matrixXT X , and is essentially
equivalent to a restricted eigenvalue condition introduced by Bickel et al. [1].

3 Convergence rates

We are now ready to state a general result that provides bounds and hence convergence rates for
the error d(θ̂ − θ∗). Although it may appear somewhat abstract at first sight, we illustrate that this
result has a number of concrete consequences for specific models. In particular, we recover the best
known results about estimation in s-sparse models with general designs [1, 7], as well as a number
of new results, including convergence rates for estimation under !q-sparsity constraints, estimation
in sparse generalized linear models, estimation of block-structured sparse matrices and estimation
of low-rank matrices.

In addition to the regularization parameter λn and RSC constant γ(L) of the loss function, our
general result involves a quantity that relates the error metric d to the regularizer r; in particular, for
any set A ⊆ Rp, we define

Ψ(A) := sup
{u∈Rp | d(u)=1}

r(u), (6)

so that r(u) ≤ Ψ(A)d(u) for u ∈ A.
Theorem 1 (Bounds for general models). For a given subspace collection V , suppose that the reg-
ularizer r is decomposable, and consider the regularizedM -estimator (1) with λn ≥ 2 r∗(∇L(θ∗)).
Then, for any pair of subspaces (A,B) ∈ V and tolerance ε ≥ 0 such that the loss function L satis-
fies restricted strong convexity over C(A,B, ε), we have

d(θ̂ − θ∗) ≤ max
{

ε,
1

γ(L)
[
2 Ψ(B⊥) λn +

√
2 λn γ(L) r(πA⊥(θ∗))

]}
. (7)

The proof is motivated by arguments used in past work on high-dimensional estimation (e.g., [9,
14]); we provide the details in the full-length version. The remainder of this paper is devoted to il-
lustrations of the consequences of Theorem 1 for specific models. In all of these uses of Theorem 1,
we choose the regularization parameter as small as possible—namely, λn = 2 r∗(∇L(θ∗)). Al-
though Theorem 1 allows for more general choices, in this conference version, we focus exclusively
on the case when d(·) to be the !2-norm, In addition, we choose a tolerance parameter ε = 0 for all
of the results except for the weak-sparse models treated in Section 3.1.2.

3.1 Bounds for linear regression

Consider the standard linear regression model y = Xθ∗ + w, where θ∗ ∈ Rp is the regression
vector, X ∈ Rn×p is the design matrix, and w ∈ Rn is a noise vector. Given the observations
(y, X), our goal is to estimate the regression vector θ∗. Without any structural constraints on θ∗,
we can apply Theorem 1 with the trivial subspace collection T = {(Rp, 0)} to establish a rate
‖θ̂ − θ∗‖2 = O(σ

√
p/n) for ridge regression, which holds as long as X is full-rank (and hence

requires n > p). Here we consider the sharper bounds that can be obtained when it is assumed that
θ∗ is an s-sparse vector.
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3.1.1 Lasso estimates of hard sparse models

More precisely, let us consider estimating an s-sparse regression vector θ∗ by solving the Lasso
program θ̂ ∈ arg minθ∈Rp

{
1
2n‖y − Xθ‖22 + λn‖θ‖1

}
. The Lasso is a special case of our M -

estimator (1) with r(θ) = ‖θ‖1, and L(θ) = 1
2n‖y − Xθ‖22. Recall the definition of the s-sparse

subspace collection S from Section 2.2. For this problem, let us set ε = 0 so that the restricted strong
convexity set (5) reduces to C(A,B, 0) = {∆ ∈ Rp | ‖∆Sc‖1 ≤ 3‖∆S‖1}. Establishing restricted
strong convexity for the least-squares loss is equivalent to ensuring the following bound on the
design matrix:

‖Xθ‖22/n ≥ γ(L) ‖θ‖22 for all θ ∈ Rp such that ‖θS‖1 ≤ 3‖θS‖1. (8)

As mentioned previously, this condition is essentially the same as the restricted eigenvalue condition
developed by Bickel et al. [1]. In very recent work, Raskutti et al. [10] show that condition (8) holds
with high probability for various random ensembles of Gaussian matrices with non-i.i.d. elements.

In addition to the RSC condition, we assume that X has bounded column norms (specifically,
‖Xi‖2 ≤ 2

√
n for all i = 1, . . . , p), and that the noise vector w ∈ Rn has i.i.d. ele-

ments with zero-mean and sub-Gaussian tails (i.e., there exists some constant σ > 0 such that
P[|wi| > t] ≤ exp(−t2/2σ2) for all t > 0). Under these conditions, we recover as a corollary of
Theorem 1 the following known result [1, 7].
Corollary 1. Suppose that the true vector θ∗ ∈ Rp is exactly s-sparse with support S, and that the
design matrix X satisfies condition (8). If we solve the the Lasso with λ2

n = 16σ2 log p
n , then with

probability at least 1− c1 exp(−c2nλ2
n), the solution satisfies

‖θ̂ − θ∗‖2 ≤ 8σ

γ(L)

√
s log p

n
. (9)

Proof. As noted previously, the !1-regularizer is decomposable for the sparse subspace collection
S, while condition (8) ensures that RSC holds for all sets C(A,B, 0) with (A,B) ∈ S. We must
verify that the given choice of regularization satisfies λn ≥ 2 r∗(∇L(θ∗)). Note that r∗(·) = ‖ ·‖∞,
and moreover that ∇L(θ∗) = XT w/n. Under the column normalization condition on the design
matrix X and the sub-Gaussian nature of the noise, it follows that ‖XT w/n‖∞ ≤

√
4σ2 log p

n with
high probability. The bound in Theorem 1 is thus applicable, and it remains to compute the form
that its different terms take in this special case. For the !1-regularizer and the !2 error metric, we
have Ψ(AS) =

√
|S|. Given the hard sparsity assumption, r(θ∗Sc) = 0, so that Theorem 1 implies

that ‖θ̂ − θ∗‖2 ≤ 2
γ(L)

√
sλn = 8σ

γ(L)

√
s log p

n , as claimed.

3.1.2 Lasso estimates of weak sparse models

We now consider models that satisfy a weak sparsity assumption. More concretely, suppose that θ∗
lies in the !q-“ball” of radius Rq—namely, the set Bq(Rq) := {θ ∈ Rp |

∑p
i=1 |θi|q ≤ Rq} for

some q ∈ (0, 1]. Our analysis exploits the fact that any θ∗ ∈ Bq(Rq) can be well approximated by
an s-sparse vector (for an appropriately chosen sparsity index s). It is natural to approximate θ∗ by
a vector supported on the set S = {i | |θ∗i | ≥ τ}. For any choice of threshold τ > 0, it can be
shown that |S| ≤ Rqτ−q, and it is optimal to choose τ equal to the same regularization parameter
λn from Corollary 1 (see the full-length version for details). Accordingly, we consider the s-sparse
subspace collection S with subsets of size s = Rqλ−q

n . We assume that the noise vector w ∈ Rn

is as defined above and that the columns are normalized as in the previous section. We also assume
that the matrix X satisfies the condition

‖Xv‖2 ≥ κ1‖v‖2 − κ2

( log p

n

) 1
2 ‖v‖1 for constants κ1,κ2 > 0. (10)

Raskutti et al. [10] show that this property holds with high probablity for suitable Gaussian random
matrices. Under this condition, it can be verified that RSC holds with γ(L) = κ1/2 over the set
C
(
A(S), B(S), εn), where εn =

(
4/κ1 +

√
4/κ1)R

1
2
q

(√ 16 σ2 log p
n

)1−q/2. The following result,
which we obtain by applying Theorem 1 in this setting, is new to the best of our knowledge:
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Corollary 2. Suppose that the true vector θ∗ ∈ Bq(Rq), and the design matrix X satisfies condi-
tion (10). If we solve the Lasso with λ2

n = 16σ2 log p
n , then with probability 1− c1 exp(−c2nλ2

n), the
solution satisfies

‖θ̂ − θ∗‖2 ≤ R
1
2
q

(√
16 σ2 log p

n

)1−q/2 [
2

γ(L)
+

√
2√

γ(L)

]
. (11)

We note that both of the rates—for hard-sparsity in Corollary 1 and weak-sparsity in Corollary 2—
are known to be optimal1 in a minimax sense [10].

3.2 Bounds for generalized linear models

Our next example is a generalized linear model with canonical link function, where the distribution
of response y ∈ Y based on a predictor x ∈ Rp is given by p(y | x; θ∗) = exp(y〈θ∗, x〉 −
a(〈θ∗, X〉) + d(y)), for some fixed functions a : R %→ R and d : Y %→ R, where ‖x‖∞ ≤ A, and
|y| ≤ B. We consider estimating θ∗ from observations {(xi, yi)}n

i=1 by !1-regularized maximum
likelihood θ̂ ∈ arg minθ∈Rp

{
− 1

n 〈θ,
( ∑n

i=1 yixi

)
〉+ 1

n

∑n
i=1 a(〈θ, xi〉)+‖θ‖1

}
. This is a special

case of our M -estimator (1) with L(θ) = −〈θ,
(

1
n

∑n
i=1 yixi

)
〉 + 1

n

∑n
i=1 a(〈θ, xi〉), and r(θ) =

‖θ‖1. Let X ∈ Rn×p denote the matrix with ith row xi. For analysis, we again use the s-sparse
subspace collection S and ε = 0. With these choices, it can be verified that an appropriate version of
the RSC will hold if the second derivative a′′ is strongly convex, and the design matrixX satisfies a
version of the condition (8).
Corollary 3. Suppose that the true vector θ∗ ∈ Rp is exactly s-sparse with support S, and the
model (a,X) satisfies an RSC condition. Suppose that we compute the !1-regularized MLE with
λ2

n = 32A2B2 log p
n . Then with probability 1− c1 exp(−c2nλ2

n), the solution satisfies

‖θ̂ − θ∗‖2 ≤ 16AB

γ(L)

√
s log p

n
. (12)

We defer the proof to the full-length version due to space constraints.

3.3 Bounds for sparse matrices

In this section, we consider some extensions of our results to estimation of regression matrices.
Various authors have proposed extensions of the Lasso based on regularizers that have more structure
than the !1 norm (e.g., [17, 20, 23, 5]). Such regularizers allow one to impose various types of
block-sparsity constraints, in which groups of parameters are assumed to be active (or inactive)
simultaneously. We assume that the observation model takes on the form Y = XΘ∗ + W , where
Θ∗ ∈ Rk×m is the unknown fixed set of parameters, X ∈ Rn×k is the design matrix, and W ∈
Rn×m is the noise matrix. As a loss function, we use the Frobenius norm 1

nL(Θ) = |||Y −XΘ|||2F ,
and as a regularizer, we use the !1,q-matrix norm for some q ≥ 1, which takes the form |||Θ|||1,q =∑k

i=1 ‖(Θi1, . . . ,Θim)‖q. We refer to the resulting estimator as the q-group Lasso. We define the
quantity η(m; q) = 1 if q ∈ (1, 2] and η(m; q) = m1/2−1/q if q > 2. We then set the regularization
parameter as follows:

λn =

{ 4σ√
n
[η(m; q)

√
log k + Cqm1−1/q] if q > 1

4σ
√

log(km)
n for q = 1.

Corollary 4. Suppose that the true parameter matixΘ∗ has non-zero rows only for indices i ∈ S ⊆
{1, . . . , k} where |S| = s, and that the design matrix X ∈ Rn×k satisfies condition (8). Then with
probability at least 1− c1 exp(−c2nλ2

n), the q-block Lasso solution satisfies

|||Θ̂−Θ∗|||F ≤ 2
γ(L)

Ψ(S)λn. (13)

1Raskutti et al. [10] show that the rate (11) is achievable by solving the computationally intractable problem
of minimizing L(θ) over the "q-ball.
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The proof is provided in the full-length version; here we consider three special cases of the above
result. A simple argument shows that Ψ(S) =

√
s if q ≥ 2, and Ψ(S) = m1/q−1/2√s if q ∈ [1, 2].

For q = 1, solving the group Lasso is identical solving a Lasso problem with sparsity sm and
ambient dimension km, and the resulting upper bound 8σ

γ(L)

√
s m log(km)

n reflects this fact (compare

to Corollary 1). For the case q = 2, Corollary 4 yields the upper bound 8σ
γ(L)

[√ s log k
n +

√
sm
n

]
,

which also has a natural interpretation: the term s log k
n captures the difficulty of finding the s non-

zero rows out of the total k, whereas the term sm
n captures the difficulty of estimating the sm free

parameters in the matrix (once the non-zero rows have been determined). We note that recent work
by Lounici et al. [4] established the bound O( σ

γ(L)

√
c
√

m s log k
n + sm

n ), which is equivalent apart

from a term
√

m. Finally, for q = ∞, we obtain the upper bound 8σ
γ(L)

[√ s log k
n + m

√
s
n

]
.

3.4 Bounds for estimating low rank matrices

Finally, we consider the implications of our main result for the problem of estimating low-rank ma-
trices. This structural assumption is a natural variant of sparsity, and has been studied by various
authors (see the paper [13] and references therein). To illustrate our main theorem in this con-
text, let us consider the following instance of low-rank matrix learning. Given a low-rank matrix
Θ∗ ∈ Rk×m, suppose that we are given n noisy observations of the form Yi = 〈〈Xi, Θ∗〉〉 + Wi,
where Wi ∼ N(0, 1) and 〈〈A, B〉〉 := trace(AT B). Such an observation model arises in sys-
tem identification settings in control theory [13]. The following regularized M -estimator can be
considered in order to estimate the desired low-rank matrix Θ∗:

min
Θ∈Rm×p

1
2n

n∑

i=1

|Yi − 〈〈Xi, Θ)〉〉|2 + |||Θ|||1, (14)

where the regularizer, |||Θ|||1, is the nuclear norm, or the sum of the singular values of Θ. Recall
the rank-r collection V defined for low-rank matrices in Section 2.2. Let Θ∗ = UΣWT be the
singular value decomposition (SVD) of Θ∗, so that U ∈ Rk×r andW ∈ Rm×r are orthogonal, and
Σ ∈ Rr×r is a diagonal matrix. If we let A = A(U,W ) and B = B(U,W ), then, πB(Θ∗) = 0, so
that by Lemma 1 we have that |||πB(∆)|||1 ≤ 3 |||πB⊥(∆)|||1. Thus, for restricted strong convexity to
hold it can be shown that the design matrices Xi must satisfy

1
n

n∑

i=1

|〈〈Xi, ∆〉〉|2 ≥ γ(L) |||∆|||2F for all ∆ such that |||πB(∆)|||1 ≤ 3 |||πB⊥(∆)|||1, (15)

and satisfy the appropriate analog of the column-normalization condition. As with analogous con-
ditions for sparse linear regression, these conditions hold w.h.p. for various non-i.i.d. Gaussian
random matrices.2

Corollary 5. Suppose that the true matrixΘ∗ has rank r + min(k, m), and that the design matrices
{Xi} satisfy condition (15). If we solve the regularized M -estimator (14) with λn = 16

√
k+

√
m√

n
,

then with probability at least 1− c1 exp(−c2(k + m)), we have

|||Θ̂−Θ∗|||F ≤
16

γ(L)

[√rk

n
+

√
rm

n

]
. (16)

Proof. Note that if rank(Θ∗) = r, then |||Θ∗|||1 ≤
√

r|||Θ∗|||F so that Ψ(B⊥) =
√

2r, since the
subspace B(U, V )⊥ consists of matrices with rank at most 2r. All that remains is to show that
λn ≥ 2 r∗(∇L(Θ∗)). Standard analysis gives that the dual norm to ||| · |||1 is the operator norm,
||| · |||2. Applying this observation we may construct a bound on the operator norm of ∇L(Θ∗) =
1
n

∑n
i=1 XiWi. Given unit vectors u ∈ Rk and v ∈ Rm, 1

n

∑n
i=1 |〈〈Xi, vuT 〉〉|2 ≤ |||vuT |||2F = 1.

Therefore, 1
n

∑n
i=1(u

T Xiv)Wi ∼ N(0, 1
n ). A standard argument shows that the supremum over all

unit vectors u and v is bounded above by 8
√

k+
√

m√
n

with probability at least 1−c1 exp(−c2(k+m)),
verifying that λn ≥ 2r∗(∇L(Θ∗)) with high probability.

2This claim involves some use of concentration of measure and Gaussian comparison inequalities analogous
to arguments in Raskutti et al. [10]; see the full-length length version for details.
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