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Abstract

Online learning algorithms have impressive convergence properties when it comes
to risk minimization and convex games on very large problems. However, they are
inherently sequential in their design which prevents them from taking advantage
of modern multi-core architectures. In this paper we prove that online learning
with delayed updates converges well, thereby facilitating parallel online learning.

1 Introduction

Online learning has become the paradigm of choice for tackling very large scale estimation prob-
lems. The convergence properties are well understood and have been analyzed in a number of differ-
ent frameworks such as by means of asymptotics [12], game theory [8], or stochastic programming
[13]. Moreover, learning-theory guarantees show that O(1) passes over a dataset suffice to obtain
optimal estimates [3, 2]. This suggests that online algorithms are an excellent tool for learning.

This view, however, is slightly deceptive for several reasons: current online algorithms process
one instance at a time. That is, they receive the instance, make some prediction, incur a loss, and
update an associated parameter. In other words, the algorithms are entirely sequential in their nature.
While this is acceptable in single-core processors, it is highly undesirable given that the number
of processing elements available to an algorithm is growing exponentially (e.g. modern desktop
machines have up to 8 cores, graphics cards up to 1024 cores). It is therefore very wasteful if only
one of these cores is actually used for estimation.

A second problem arises from the fact that network and disk I/O have not been able to keep up with
the increase in processor speed. A typical network interface has a throughput of 100MB/s and disk
arrays have comparable parameters. This means that current algorithms reach their limit at problems
of size 1TB whenever the algorithm is I/O bound (this amounts to a training time of 3 hours), or even
smaller problems whenever the model parametrization makes the algorithm CPU bound.

Finally, distributed and cloud computing are unsuitable for today’s online learning algorithms. This
creates a pressing need to design algorithms which break the sequential bottleneck. We propose two
variants. To our knowledge, this is the first paper which provides theoretical guarantees combined
with empirical evidence for such an algorithm. Previous work, e.g. by [6] proved rather inconclusive
in terms of theoretical and empirical guarantees.

In a nutshell, we propose the following two variants: several processing cores perform stochastic
gradient descent independently of each other while sharing a common parameter vector which is
updated asynchronously. This allows us to accelerate computationally intensive problems when-
ever gradient computations are relatively expensive. A second variant assumes that we have linear
function classes where parts of the function can be computed independently on several cores. Sub-
sequently the results are combined and the combination is then used for a descent step.

A common feature of both algorithms is that the update occurs with some delay: in the first case
other cores may have updated the parameter vector in the meantime, in the second case, other cores
may have already computed parts of the function for the subsequent examples before an update.
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2 Algorithm

2.1 Platforms

We begin with an overview of three platforms which are available for parallelization of algorithms.
They differ in their structural parameters, such as synchronization ability, latency, and bandwidth
and consequently they are better suited to different styles of algorithms. The description is not com-
prehensive by any means. For instance, there exist numerous variants of communication paradigms
for distributed and cloud computing.

Shared Memory Architectures: The commercially available 4-16 core CPUs on servers and desk-
top computers fall into this category. They are general purpose processors which operate on a joint
memory space where each of the processors can execute arbitrary pieces of code independently of
other processors. Synchronization is easy via shared memory/interrupts/locks. A second example
are graphics cards. There the number of processing elements is vastly higher (1024 on high-end
consumer graphics cards), although they tend to be bundled into groups of 8 cores (also referred
to as multiprocessing elements), each of which can execute a given piece of code in a data-parallel
fashion. An issue is that explicit synchronization between multiprocessing elements is difficult — it
requires computing kernels on the processing elements to complete.

Clusters: To increase I/O bandwidth one can combine several computers in a cluster using MPI or
PVM as the underlying communications mechanism. A clear limit here is bandwidth constraints
and latency for inter-computer communication. On Gigabit Ethernet the TCP/IP latency can be in
the order of 100µs, the equivalent of 105 clock cycles on a processor and network bandwidth tends
to be a factor 100 slower than memory bandwdith.

Grid Computing: Computational paradigms such as MapReduce [4] and Hadoop are well suited
for the parallelization of batch-style algorithms [17]. In comparison to cluster configurations com-
munication and latency are further constrained. For instance, often individual processing elements
are unable to communicate directly with other elements with disk / network storage being the only
mechanism of inter-process data transfer. Moreover, the latency is significantly increased.

We consider only the first two platforms since latency plays a critical role in the analysis of the
class of algorithms we propose. While we do not exclude the possibility of devising parallel online
algorithms suited to grid computing, we believe that the family of algorithm proposed in this paper
is unsuitable and a significantly different synchronization paradigm would be needed.

2.2 Delayed Stochastic Gradient Descent

Many learning problems can be written as convex minimization problems. It is our goal to find some
parameter vector x (which is drawn from some Banach space X with associated norm ‖·‖) such that
the sum over convex functions fi : X → R takes on the smallest value possible. For instance,
(penalized) maximum likelihood estimation in exponential families with fully observed data falls
into this category, so do Support Vector Machines and their structured variants. This also applies to
distributed games with a communications constraint within a team.

At the outset we make no special assumptions on the order or form of the functions fi. In particular,
an adversary may choose to order or generate them in response to our previous choices of x. In other
cases, the functions fi may be drawn from some distribution (e.g. whenever we deal with induced
losses). It is our goal to find a sequence of xi such that the cumulative loss

∑
i fi(xi) is minimized.

With some abuse of notation we identify the average empirical and expected loss both by f∗. This
is possible, simply by redefining p(f) to be the uniform distribution over F . Denote by

f∗(x) :=
1

|F |
∑
i

fi(x) or f∗(x) := Ef∼p(f)[f(x)] (1)

and correspondingly x∗ := argmin
x∈X

f∗(x) (2)

the average risk. We assume that x∗ exists (convexity does not guarantee a bounded minimizer) and
that it satisfies ‖x∗‖ ≤ R (this is always achievable, simply by intersecting X with the unit-ball of
radius R). We propose the following algorithm:
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Algorithm 1 Delayed Stochastic Gradient Descent

Input: Feasible space X ⊆ Rn, annealing schedule ηt and delay τ ∈ N
Initialization: set x1 . . . , xτ = 0 and compute corresponding gt = ∇ft(xt).
for t = τ + 1 to T + τ do

Obtain ft and incur loss ft(xt)
Compute gt := ∇ft(xt)
Update xt+1 = argminx∈X ‖x− (xt − ηtgt−τ )‖ (Gradient Step and Projection)

end for

loss
gradient

data
source

x

Figure 1: Data parallel stochastic gradient de-
scent with shared parameter vector. Observations
are partitioned on a per-instance basis among n
processing units. Each of them computes its own
gradient gt = ∂xft(xt). Since each computer is
updating x in a round-robin fashion, it takes a de-
lay of τ = n − 1 between gradient computation
and when the gradients are applied to x.

In this paper the annealing schedule will be either ηt = σ
(t−τ) or ηt = σ√

t−τ . Often, X = Rn.
If we set τ = 0, algorithm 1 becomes an entirely standard stochastic gradient descent algorithm.
The only difference with delayed stochastic gradient descent is that we do not update the parameter
vector xt with the current gradient gt but rather with a delayed gradient gt−τ that we computed τ
steps previously. We extend this to bounds which are dependent on strong convexity [1, 7] to obtain
adaptive algorithms which can take advantage of well-behaved optimization problems in practice.
An extension to Bregman divergences is possible. See [11] for details.

2.3 Templates

Asynchronous Optimization: Assume that we have n processors which can process data inde-
pendently of each other, e.g. in a multicore platform, a graphics card, or a cluster of workstations.
Moreover, assume that computing the gradient of ft(x) is at least n times as expensive as it is to up-
date x (read, add, write). This occurs, for instance, in the case of conditional random fields [15, 18],
in planning [14], and in ranking [19].

The rationale for delayed updates can be seen in the following setting: assume that we have n
cores performing stochastic gradient descent on different instances ft while sharing one common
parameter vector x. If we allow each core in a round-robin fashion to update x one at a time then
there will be a delay of τ = n − 1 between when we see ft and when we get to update xt+τ . The
delay arises since updates by different cores cannot happen simultaneously. This setting is preferable
whenever computation of ft itself is time consuming.

Note that there is no need for explicit thread-level synchronization between individual cores. All
we need is a read / write-locking mechanism for x or alternatively, atomic updates on the parameter
vector. On a multi-computer cluster we can use a similar mechanism simply by having one server act
as a state-keeper which retains an up-to-date copy of x while the loss-gradient computation clients
can retrieve at any time a copy of x and send gradient update messages to the state keeper.

Pipelined Optimization: The key impediment in the previous template is that it required significant
amounts of bandwidth solely for the purpose of synchronizing the state vector. This can be addressed
by parallelizing computing the function value fi(x) explicitly rather than attempting to compute
several instances of fi(x) simultaneously. Such situations occur, e.g. when fi(x) = g(〈φ(zi), x〉) for
high-dimensional φ(zi). If we decompose the data zi (or its features) over n nodes we can compute
partial function values and also all partial updates locally. The only communication required is to
combine partial values and to compute gradients with respect to 〈φ(zi), x〉.
This causes delay since the second stage is processing results of the first stage while the latter has
already moved on to processing ft+1 or further. While the architecture is quite different, the effects
are identical: the parameter vector x is updated with some delay τ . Note that here τ can be much
smaller than the number of processors and mainly depends on the latency of the communication
channel. Also note that in this configuration the memory access for x is entirely local.
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Randomization: Order of observations matters for delayed updates: imagine that an adversary,
aware of the delay τ bundles each of the τ most similar instances ft together. In this case we will
incur a loss that can be τ times as large as in the non-delayed case and require a learning rate which is
τ times smaller. The reason being that only after seeing τ instances of ft will we be able to respond
to the data. Such highly correlated settings do occur in practice: for instance, e-mails or search
keywords have significant temporal correlation (holidays, political events, time of day) and cannot
be treated as iid data. Randomization of the order of data can be used to alleviate the problem.

3 Lipschitz Continuous Losses

Due to space constraints we only state the results and omit the proofs. A more detailed analysis
can be found in [11]. We begin with a simple game theoretic analysis that only requires ft to
be convex and where the subdifferentials are bounded ‖∇ft(x)‖ ≤ L by some L > 0. Denote
by x∗ the minimizer of f∗(x). It is our goal to bound the regret R associated with a sequence
X = {x1, . . . , xT } of parameters. If all terms are convex we obtain

R[X] :=
T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

〈∇ft(xt), xt − x∗〉 =

T∑
t=1

〈gt, xt − x∗〉 . (3)

Next define a potential function measuring the distance between xt and x∗. In the more general
analysis this will become a Bregman divergence. We define D(x‖x′) := 1

2 ‖x− x
′‖2. At the heart

of our regret bounds is the following which bounds the instantaneous risk at a given time [16]:

Lemma 1 For all x∗ and for all t > τ , if X = Rn, the following expansion holds:

〈xt−τ − x∗, gt−τ 〉 =
1

2
ηt ‖gt−τ‖2 +

D(x∗‖xt)−D(x∗‖xt+1)

ηt
+

min(τ,t−(τ+1))∑
j=1

ηt−j 〈gt−τ−j , gt−τ 〉

Note that the decomposition of Lemma 1 is very similar to standard regret decomposition bounds,
such as [21]. The key difference is that we now have an additional term characterizing the correlation
between successive gradients which needs to be bounded. In the worst case all we can do is bound
〈gt−τ−j , gt−τ 〉 ≤ L2, whenever the gradients are highly correlated, which yields the following:

Theorem 2 Suppose all the cost functions are Lipschitz continuous with a constant L and
maxx,x′∈X D(x‖x′) ≤ F 2. Given ηt = σ√

t−τ for some constant σ > 0, the regret of the delayed
update algorithm is bounded by

R[X] ≤ σL2
√
T + F 2

√
T

σ
+ L2στ

2

2
+ 2L2στ

√
T (4)

and consequently for σ2 = F 2

2τL2 and T ≥ τ2 we obtain the bound

R[X] ≤ 4FL
√
τT (5)

In other words the algorithm converges at rate O(
√
τT ). This is similar to what we would expect

in the worst case: an adversary may reorder instances such as to maximally slow down progress.
In this case a parallel algorithm is no faster than a sequential code. This result may appear overly
pessimistic but the following example shows that such worst-case scaling behavior is to be expected:

Lemma 3 Assume that an optimal online algorithm with regard to a convex game achieves regret
R[m] after seeing m instances. Then any algorithm which may only use information that is at least
τ instances old has a worst case regret bound of τR[m/τ ].

Our construction works by designing a sequence of functions fi where for a fixed n ∈ N all fnτ+j
are identical (for j ∈ {1, . . . , n}). That is, we send identical functions to the algorithm while it has
no chance of responding to them. Hence, even an algorithm knowing that we will see τ identical
instances in a row but being disallowed to respond to them for τ instances will do no better than one
which sees every instance once but is allowed to respond instantly.

4



The useful consequence of Theorem 2 is that we are guaranteed to converge at all even if we en-
counter delay (the latter is not trivial — after all, we could end up with an oscillating parameter
vector for overly aggressive learning rates). While such extreme cases hardly occur in practice, we
need to make stronger assumptions in terms of correlation of ft and the degree of smoothness in ft
to obtain tighter bounds. We conclude this section by studying a particularly convenient case: the
setting when the functions fi are strongly convex satisfying

f(x∗) ≥ fi(x) + 〈x∗ − x, ∂xf(x)〉+
hi
2
‖x− x∗‖2 (6)

Here we can get rid of the D(x∗‖x1) dependency in the loss bound.

Theorem 4 Suppose that the functions fi are strongly convex with parameter λ > 0. Moreover,
choose the learning rate ηt = 1

λ(t−τ) for t > τ and ηt = 0 for t ≤ τ . Then under the assumptions
of Theorem 2 we have the following bound:

R[X] ≤ λτF 2 +
[
1
2 + τ

] L2

λ
(1 + τ + log T ) (7)

The key difference is that now we need to take the additional contribution of the gradient correlations
into account. As before, we pay a linear price in the delay τ .

4 Decorrelating Gradients

To improve our bounds beyond the most pessimistic case we need to assume that the adversary is not
acting in the most hostile fashion possible. In the following we study the opposite case — namely
that the adversary is drawing the functions fi iid from an arbitrary (but fixed) distribution. The key
reason for this requirement is that we need to control the value of 〈gt, gt′〉 for adjacent gradients.

The flavor of the bounds we use will be in terms of the expected regret rather than an actual regret.
Conversions from expected to realized regret are standard. See e.g. [13, Lemma 2] for an example
of this technique. For this purpose we need to take expectations of sums of copies of the bound of
Lemma 1. Note that this is feasible since expectations are linear and whenever products between
more than one term occur, they can be seen as products which are conditionally independent given
past parameters, such as 〈gt, gt′〉 for |t − t′| ≤ τ (in this case no information about gt can be used
to infer gt′ or vice versa, given that we already know all the history up to time min(t, t′)− 1.

A key quantity in our analysis are bounds on the correlation between subsequent instances. In some
cases we will only be able to obtain bounds on the expected regret rather than the actual regret. For
the reasons pointed out in Lemma 3 this is an in-principle limitation of the setting.

Our first strategy is to assume that ft arises from a scalar function of a linear function class. This
leads to bounds which, while still bearing a linear penalty in τ , make do with considerably improved
constants. The second strategy makes stringent smoothness assumptions on ft, namely it assumes
that the gradients themselves are Lipschitz continuous. This will lead to guarantees for which the
delay becomes increasingly irrelevant as the algorithm progresses.

4.1 Covariance bounds for linear function classes

Many functions ft(x) depend on x only via an inner product. They can be expressed as

ft(x) = l(yt, 〈zt, x〉) and hence gt(x) = ∇ft(x) = zt∂〈zt,x〉l(yt, 〈zt, x〉) (8)

Now assume that
∣∣∂〈zt,x〉l(yt, 〈zt, x〉)∣∣ ≤ Λ for all x and all t. This holds, e.g. in the case of

logistic regression, the soft-margin hinge loss, novelty detection. In all three cases we have Λ = 1.
Robust loss functions such as Huber’s regression score [9] also satisfy (8), although with a different
constant (the latter depends on the level of robustness). For such problems it is possible to bound
the correlation between subsequent gradients via the following lemma:

Lemma 5 Denote by (y, z), (y′, z′) ∼ Pr(y, z) random variables which are drawn independently
of x, x′ ∈ X. In this case

Ey,z,y′,z′ [〈∂xl(y, 〈z, x〉), ∂xl(y′, 〈z′, x′〉)〉] ≤ Λ2
∥∥∥Ez,z′ [z′z>]∥∥∥

Frob
=: L2α (9)
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Here we defined α to be the scaling factor which quantifies by how much gradients are correlated.
This yields a tighter version of Theorem 2.

Corollary 6 Given ηt = σ√
t−τ and the conditions of Lemma 5 the regret of the delayed update

algorithm is bounded by

R[X] ≤ σL2
√
T + F 2

√
T

σ
+ L2α

στ2

2
+ 2L2αστ

√
T (10)

Hence for σ2 = F 2

2ταL2 (assuming that τα ≥ 1) and T ≥ τ2 we obtain R[X] ≤ 4FL
√
ατT .

4.2 Bounds for smooth gradients

The key to improving the rate rather than the constant with regard to which the bounds depend on τ
is to impose further smoothness constraints on ft. The rationale is quite simple: we want to ensure
that small changes in x do not lead to large changes in the gradient. This is precisely what we need
in order to show that a small delay (which amounts to small changes in x) will not impact the update
that is carried out to a significant amount. More specifically we assume that the gradient of f is a
Lipschitz-continuous function. That is,

‖∇ft(x)−∇ft(x′)‖ ≤ H ‖x− x′‖ . (11)

Such a constraint effectively rules out piecewise linear loss functions, such as the hinge loss, struc-
tured estimation, or the novelty detection loss. Nonetheless, since this discontinuity only occurs on
a set of measure 0 delayed stochastic gradient descent still works very well on them in practice.

Theorem 7 In addition to the conditions of Theorem 2 assume that the functions fi are i.i.d., H ≥
L

4F
√
τ

and that H also upper-bounds the change in the gradients as in Equation 11. Moreover,

assume that we choose a learning rate ηt = σ√
t−τ with σ = F

L . In this case the risk is bounded by

E[R[X]] ≤
[
28.3F 2H +

2

3
FL+

4

3
F 2H log T

]
τ2 +

8

3
FL
√
T . (12)

Note that the convergence bound which is O(τ2 log T +
√
T ) is governed by two different regimes.

Initially, a delay of τ can be quite harmful since subsequent gradients are highly correlated. At a
later stage when optimization becomes increasingly an averaging process a delay of τ in the updates
proves to be essentially harmless. The key difference to bounds of Theorem 2 is that now the rate of
convergence has improved dramatically and is essentially as good as in sequential online learning.
Note that H does not influence the asymptotic convergence properties but it significantly affects the
initial convergence properties.

This is exactly what one would expect: initially while we are far away from the solution x∗ par-
allelism does not help much in providing us with guidance to move towards x∗. However, after
a number of steps online learning effectively becomes an averaging process for variance reduction
around x∗ since the stepsize is sufficiently small. In this case averaging becomes the dominant force,
hence parallelization does not degrade convergence further. Such a setting is desirable — after all,
we want to have good convergence for extremely large amounts of data.

4.3 Bounds for smooth gradients with strong convexity

We conclude this section with the tightest of all bounds — the setting where the losses are all
strongly convex and smooth. This occurs, for instance, for logistic regression with `2 regularization.
Such a requirement implies that the objective function f∗(x) is sandwiched between two quadratic
functions, hence it is not too surprising that we should be able to obtain rates comparable with what
is possible in the minimization of quadratic functions. Also note that the ratio between upper and
lower quadratic bound loosely corresponds to the condition number of a quadratic function — the
ratio between the largest and smallest eigenvalue of the matrix involved in the optimization problem.
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Figure 2: Experiments with simulated delay on the TREC dataset (left) and on a propietary dataset
(right). In both cases a delay of 10 has no effect on the convergence whatsoever and even a delay of
100 is still quite acceptable.
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Figure 3: Time performance on a subset of
the TREC dataset which fits into memory, us-
ing the quadratic representation. There was
either one thread (a serial implementation)
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slaves).

Theorem 8 Under the assumptions of Theorem 4, in particular, assuming that all functions fi are
i.i.d and strongly convex with constant λ and corresponding learning rate ηt = 1

λ(t−τ) and provided
that Equation 11 holds we have the following bound on the expected regret:

E [R[X]] ≤ 10

9

[
λτF 2 +

[
1

2
+ τ

]
L2

λ
[1 + τ + log(3τ + (Hτ/λ))] +

L2

2λ
[1 + log T ] +

π2τ2HL2

6λ2

]
.

(13)

As before, this improves the rate of the bound. Instead of a dependency of the form O(τ log T ) we
now have the dependency O(τ log τ + log T ). This is particularly desirable for large T . We are now
within a small factor of what a fully sequential algorithm can achieve. In fact, we could make the
constant arbitrary small for large enough T .

5 Experiments

In our experiments we focused on pipelined optimization. In particular, we used two different train-
ing sets that were based on e-mails: the TREC dataset [5], consisting of 75,419 e-mail messages, and
a proprietary (significantly harder) dataset of which we took 100,000 e-mails. These e-mails were
tokenized by whitespace. The problem there is one of binary classification where we minimized a
’Huberized’ soft-margin loss function

ft(x) = l(yt 〈zt, x〉) where l(χ) =


1
2 − χ if χ ≤ 0
1
2 (χ− 1)2 if χ ∈ [0, 1]

0 otherwise
(14)

Here yt ∈ {±1} denote the labels of the binary classification problem, and l is the smoothed
quadratic soft-margin loss of [10]. We used two feature representations: a linear one which
amounted to a simple bag of words representation, and a quadratic one which amounted to gen-
erating a bag of word pairs (consecutive or not).
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To deal with high-dimensional feature spaces we used hashing [20]. In particular, for the TREC
dataset we used 218 feature bins and for the proprietary dataset we used 224 bins. Note that hash-
ing comes with performance guarantees which state that the canonical distortion due to hashing is
sufficiently small for the dimensionality we picked. We tried to address the following issues:

1. The obvious question is a systematic one: how much of a convergence penalty do we incur
in practice due to delay. This experiment checks the goodness of our bounds. We checked
convergence for a system where the delay is given by τ ∈ {0, 10, 100, 1000}.

2. Secondly, we checked on an actual parallel implementation whether the algorithm scales
well. Unlike the previous check includes issues such as memory contention, thread syn-
chronization, and general feasibility of a delayed updating architecture.

Implementation The code was written in Java, although several of the fundamentals were based
upon VW [10], that is, hashing and the choice of loss function. We added regularization using lazy
updates of the parameter vector (i.e. we rescale the updates and occasionally rescale the parameter).
This is akin to Leon Bottou’s SGD code. For robustness, we used ηt = 1√

t
.

All timed experiments were run on a single, 8 core machine with 32 GB of memory. In general, at
least 6 of the cores were free at any given time. In order to achieve advantages of parallelization,
we divide the feature space {1 . . . n} into roughly equal pieces, and assign a slave thread to each
piece. Each slave is given both the weights for its pieces, as well as the corresponding pieces
of the examples. The master is given the label of each example. We compute the dot product
separately on each piece, and then send these results to a master. The master adds the pieces together,
calculates the update, and then sends that back to the slaves. Then, the slaves update their weight
vectors in proportion to the magnitude of the central classifier. What makes this work quickly is that
there are multiple examples in flight through this dataflow simultaneously. Note that between the
time when a dot product is calculated for an example and when the results have been transcribed,
the weight vector has been updated with several other earlier examples and the dot products have
been calculated from several later examples. As a safeguard we limited the maximum delay to 100
examples. In this case the compute slave would simply wait for the pipeline to clear.

The first experiment that we ran was a simulation where we artificially added a delay between the
update and the product (Figure 2a). We ran this experiment using linear features, and observed
that the performance did not noticeably degrade with a delay of 10 examples, did not significantly
degrade with a delay of 100, but with a delay of 1000, the performance became much worse.

The second experiment that we ran was with a proprietary dataset (Figure 2b). In this case, the
delays hurt less; we conjecture that this was because the information gained from each example was
smaller. In fact, even a delay of 1000 does not result in particularly bad performance.

Since even the sequential version already handled 150,000 examples per second we tested paral-
lelization only for quadratic features where throughput would be in the order of 1000 examples per
second. Here parallelization dramatically improved performance — see Figure 3. To control for
disk access we loaded a subset of the data into memory and carried out the algorithm on it.

Summary and Discussion

The type of updates we presented is a rather natural one. However, intuitively, having a delay of τ
is like having a learning rate that is τ times larger. In this paper, we have shown theoretically how
independence between examples can make the actual effect much smaller.

The experimental results showed three important aspects: first of all, small simulated delayed up-
dates do not hurt much, and in harder problems they hurt less; secondly, in practice it is hard to
speed up “easy” problems with a small amount of computation, such as e-mails with linear features;
finally, when examples are larger or harder, the speedups can be quite dramatic.

8



References
[1] Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In

J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Pro-
cessing Systems 20, Cambridge, MA, 2008. MIT Press.

[2] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller,
Y. Singer, and S.T. Roweis, editors, NIPS. MIT Press, 2007.
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