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This appendix is mainly devoted to the proof of Theorem 1 in [1], which is splitted into two results.
First, Proposition 1 shows that n−1σ2(2 tr(Aλ)−tr(A>λAλ)) is a minimal penalty, so that Ĉ defined
in the Algorithm of Section 4.1 in [1] consistently estimates σ2 . Second, Proposition 2 shows that
penalizing the empirical risk with 2Ĉ tr(Aλ)n−1 and Ĉ ≈ σ2 leads to an oracle inequality. Proving
Theorem 1 in [1] is straightforward by combining Propositions 1 and 2.

In Section 1, we introduce some notation and make some computations that will be used in the fol-
lowing. Proposition 1 is proved in Section 2. Proposition 2 is proved in Section 3. Concentration
inequalities needed for proving Propositions 1 and 2 are stated and proved in Section 4. Computa-
tions specific to the kernel ridge regression example are made in Section 5.

1 Notation and first computations

Recall that
Y = F + ε

where F = (f(xi))1≤i≤n ∈ Rn is deterministic, ε = (εi)1≤i≤n ∈ Rn is centered with covariance
matrix σ2In and In is the n × n identity matrix. For every λ ∈ Λ, F̂λ = AλY for some n × n
real-valued matrix Aλ , so that∥∥∥F̂λ − F∥∥∥2

2
= ‖(Aλ − In)F‖22 + ‖Aλε‖22 + 2 〈Aλε, (Aλ − In)F 〉 , (1)∥∥∥F̂λ − Y ∥∥∥2

2
=
∥∥∥F̂λ − F∥∥∥2

2
+ ‖ε‖22 − 2 〈ε, Aλε〉+ 2 〈ε, (In −Aλ)F 〉 , (2)

where ∀t, u ∈ Rn, 〈t, u〉 =
∑n
i=1 tiui and ‖t‖22 = 〈t, t〉 .

Now, define, for every λ ∈ Λ ,

b(λ) = ‖(Aλ − In)F‖22
v1(λ) = tr(Aλ)σ2

δ1(λ) = 〈ε, Aλε〉 − tr(Aλ)σ2

v2(λ) = tr(A>λAλ)σ2

δ2(λ) = ‖Aλε‖22 − tr(A>λAλ)σ2

δ3(λ) = 2 〈Aλε, (Aλ − In)F 〉
δ4(λ) = 2 〈ε, (In −Aλ)F 〉 ,
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so that Eq. (1) and (2) can be rewritten∥∥∥F̂λ − F∥∥∥2

2
= b(λ) + v2(λ) + δ2(λ) + δ3(λ) (3)∥∥∥F̂λ − Y ∥∥∥2

2
=
∥∥∥F̂λ − F∥∥∥2

2
− 2v1(λ)− 2δ1(λ) + δ4(λ) + ‖ε‖22 . (4)

Note that b(λ), v1(λ) and v2(λ) are deterministic, and for all λ ∈ Λ , all δi(λ) are random with zero
mean. In particular, we deduce the following expressions of the risk and the empirical risk of F̂λ :

E
[
n−1

∥∥∥F̂λ − F∥∥∥2

2

]
= n−1 ‖(Aλ − In)F‖22 +

tr(A>λAλ)σ2

n
, (5)

E
[
n−1

∥∥∥F̂λ − Y ∥∥∥2

2

]
− σ2 = n−1 ‖(Aλ − In)F‖22 −

(
2 tr(Aλ)− tr(A>λAλ)

)
σ2

n
. (6)

Define

‖Aλ‖ := max Sp(Aλ) = sup
t∈Rn, t 6=0

{
‖Aλt‖2
‖t‖2

}
.

Since tr(Aλ) ≤
√
n tr(A>λAλ) , we have

v1(λ) ≤ σ
√
nv2(λ) . (7)

In addition, if Aλ has a spectrum Sp(Aλ) ⊂ [0, 1], then

0 ≤ tr(A>λAλ) ≤ tr(Aλ) ≤ 2 tr(Aλ)− tr(A>λAλ) ≤ 2 tr(Aλ) ,

so that
0 ≤ v2(λ) ≤ v1(λ) ≤ 2v1(λ)− v2(λ) ≤ 2v1(λ) . (8)

2 Minimal penalty

Define

∀C ≥ 0, λ̂0(C) ∈ arg min
λ∈Λ

{∥∥∥F̂λ − Y ∥∥∥2

2
+ C

(
2 tr(Aλ)− tr(A>λAλ)

)}
. (9)

We will prove the following proposition in this section.

Proposition 1 Let λ̂0 be defined by Eq. (9). Assume that ∀λ ∈ Λ, Aλ is symmetric with Sp(Aλ) ⊂
[0, 1] , that εi are i.i.d. Gaussian with zero mean and variance σ2 > 0 , and that

∃λ1 ∈ Λ, df(λ1) ≥ n

2
and b(λ1) ≤ σ2

√
n ln(n) (A1)

∃λ2 ∈ Λ, df(λ2) ≤
√
n and b(λ2) ≤ σ2

√
n ln(n) . (A2)

Then, a numerical constant C1 > 0 exists such that for every n ≥ C1 , for every γ ≥ 1 ,

∀0 ≤ C <

(
1− 91γ

√
ln(n)
n

)
σ2 , df(λ̂0(C)) ≥ n

10
(10)

and ∀C >

(
1 +

44γ
√

ln(n)
n1/4

)
σ2 , df(λ̂0(C)) ≤ n3/4 (11)

hold with probability at least 1− 8 Card(Λ)n−γ .

If Card(Λ) ≤ Knα, Proposition 1 with γ = α+ 2 proves that with probability at least 1− 8Kn−2,
Ĉ defined in the Algorithm of Section 4.1 in [1] exists and(

1− 91(α+ 2)

√
ln(n)
n

)
σ2 ≤ Ĉ ≤

(
1 +

44(α+ 2)
√

ln(n)
n1/4

)
σ2 .
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Remark 1 If (A1) is replaced by
∃λ1 ∈ Λ, df(λ1) ≥ an and b(λ1) ≤ σ2βn (A′1)

for some an ≥ ln(n) and βn ≥ 0 , then Proposition 1 still holds with Eq. (10) replaced by

∀0 ≤ C <

1− 3βn
an
− 62γ

√
ln(n)
an

σ2, df(λ̂0(C)) ≥ an
5

. (12)

Remark 2 If (A2) is replaced by
∃λ2 ∈ Λ, df(λ2) ≤ na and b(λ2) ≤ σ2β′n (A′2)

for some a ∈ [1/2, 1) and β′n ≥
√
n ln(n) , then for every β ∈ (a, 1) Proposition 1 still holds for

n ≥ max
{
C1, 41/(β−a)

}
with Eq. (11) replaced by

∀C >
(

1 + 44γβ′nn
−β )σ2, df(λ̂0(C)) ≤ nβ . (13)

Remark 3 On the event defined in Proposition 1, we can derive from Eq. (3), (39), (48), and
‖Aλ‖ ≤ 1 , that

∀λ ∈ Λ such that df(λ) ≥ n

ln(n)
, n−1

∥∥∥F̂λ − F∥∥∥2

2
≥
(

1
2 ln(n)

− 8γ ln(n)
n

)
σ2 .

Hence, the blow up of df(λ̂0(C)) holding when the penalty is below the minimal penalty also implies

a blow up of the risk n−1
∥∥∥F̂bλ0(C) − F

∥∥∥2

2
.

Let us now prove Proposition 1.

2.1 General starting point

Combining Eq. (9) with Eq. (3) and (4), for every C ≥ 0 , λ̂0(C) also minimizes over λ ∈ Λ

critC(λ) :=
∥∥∥F̂λ − Y ∥∥∥2

2
− ‖ε‖22 + C

(
2 tr(Aλ)− tr(A>λAλ)

)
= b(λ) + (σ−2C − 1) (2v1(λ)− v2(λ) )− 2δ1(λ) + δ2(λ) + δ3(λ) + δ4(λ) .

We now use the concentration inequalities of Eq. (39), (40), (47) and (48) proved in Section 4: For
every λ ∈ Λ and x ≥ 1 , an event of probability 1 − 8e−x exists on which for every C ≥ 0 and
θ > 0 ,

critC(λ) ≥ b(λ)
3

+ (σ−2C − 1)(2v1(λ)− v2(λ))− 3θv1(λ)− 6(2 + θ−1)xσ2 (14)

critC(λ) ≤ 5b(λ)
3

+ (σ−2C − 1)(2v1(λ)− v2(λ)) + 3θv1(λ) + 6(2 + θ−1)xσ2 , (15)

using also that v2 ≤ v1 by Eq. (8) and that ‖Aλ‖ ≤ 1 .

For every x ≥ 1 , let Ωx be the event on which the inequalities appearing in Eq. (39), (40), (47)
and (48) hold for every θ > 0 and λ ∈ Λ . The union bound shows that P(Ωx) ≥ 1−8 Card(Λ)e−x .

2.2 Below the minimal penalty

We assume in this subsection that C ∈ [0, σ2) . We will prove Eq. (12) using assumption (A′1),
since when an = n/2 and βn =

√
n ln(n) , Eq. (12) is Eq. (10) and (A′1) is (A1).

Using Eq. (8) and taking θ =
√
x/df(λ) in Eq. (14) and (15), we get that for every x ≥ 1 , on Ωx ,

for every λ ∈ Λ ,

critC(λ) ≥ b(λ)
3

+ 2(C − σ2) df(λ)−
(

9
√
xdf(λ) + 12x

)
σ2 (16)

critC(λ) ≤ 5b(λ)
3

+ (C − σ2) df(λ) +
(

9
√
xdf(λ) + 12x

)
σ2 . (17)

Let λ ∈ Λ . Two cases can be distinguished:
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1. If df(λ) < an/5 , then Eq. (16) implies

critC(λ) ≥ 2(C − σ2)an
5

−
(

9
√
xan

5
+ 12x

)
σ2 . (18)

2. If df(λ) ≥ an , then Eq. (17) implies

critC(λ) ≤ 5b(λ)
3

+ (C − σ2)an + (9
√
xan + 12x )σ2 . (19)

We now take x = γ ln(n) so that P (Ωx ) ≥ 1− 8 Card(Λ)n−γ .

On the one hand, Eq. (18) implies

inf
λ∈Λ, df(λ)<an/5

{critC(λ)} ≥ 2(C − σ2)an
5

−

(
9

√
γan ln(n)

5
+ 12γ ln(n)

)
σ2 . (20)

On the other hand, for λ = λ1 given by assumption (A′1), Eq. (19) implies

critC(λ1) ≤ 5σ2βn
3

+ (C − σ2)an +
(

9
√
γan ln(n) + 12γ ln(n)

)
σ2 . (21)

Comparing Eq. (20) and Eq. (21), we get that

critC(λ1) < inf
λ∈Λ, df(λ)<an/5

{critC(λ)}

hence df(λ̂0(C)) ≥ an/5 if

1− σ−2C >
3βn
an

+ 62γ

√
ln(n)
an

.

2.3 Above the minimal penalty

We assume in this subsection that C > σ2 . We will prove Eq. (13) using assumption (A′2), since
when a = 1/2 , β′n =

√
n ln(n) and β = (1 + a)/2 = 3/4 , Eq. (13) is Eq. (11) and (A′2) is (A2).

Using Eq. (8) and taking θ =
√
x/df(λ) in Eq. (14) and (15), we get that for every x ≥ 1 , on Ωx ,

for every λ ∈ Λ ,

critC(λ) ≥ b(λ)
3

+ (C − σ2) df(λ)−
(

9
√
xdf(λ) + 12x

)
σ2 (22)

critC(λ) ≤ 5b(λ)
3

+ 2(C − σ2) df(λ) +
(

9
√
x df(λ) + 12x

)
σ2 . (23)

Let λ ∈ Λ , and β ∈ (a, 1) . As in Section 2.2, we consider two cases.

1. If df(λ) ≤ na , Eq. (23) implies

critC(λ) ≤ 2b(λ) + 2(C − σ2)na +
(

9
√
xna + 12x

)
σ2 . (24)

2. If df(λ) ≥ nβ , Eq. (22) implies

critC(λ) ≥ (C − σ2)nβ −
(

9
√
xnβ + 12x

)
σ2 . (25)

We now take x = γ ln(n) as in Section 2.2.

On the one hand, for λ = λ2 given by assumption (A′2), Eq. (24) implies

critC(λ2) ≤ 2σ2β′n + (C − σ2)
nβ

2
+
(

9
√
γ ln(n)na + 12γ ln(n)

)
σ2 (26)
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if nβ−a ≥ 4 .

On the other hand, Eq. (25) implies

inf
λ∈Λ, df(λ)≥nβ

{critC(λ)} ≥ (C − σ2)nβ −
(

9
√
γ ln(n)nβ + 12γ ln(n)

)
σ2 . (27)

Comparing Eq. (26) and Eq. (27), we get that

critC(λ2) < inf
λ∈Λ, df(λ)≥nβ

{critC(λ)}

hence df(λ̂0(C)) < nβ if

n ≥ 41/(β−a) ,
√
n/ ln(n) ≥ 12 , and σ−2C − 1 > 44γβ′nn

−β .

3 Oracle inequality

Define

∀C ≥ 0 , λ̂opt(C) ∈ arg min
λ∈Λ

{∥∥∥F̂λ − Y ∥∥∥2

2
+ 2C tr(Aλ)

}
. (28)

We will prove the following proposition in this section.

Proposition 2 Let λ̂opt be defined by Eq. (28). Assume that ∀λ ∈ Λ , Aλ is symmetric with
Sp(Aλ) ⊂ [0, 1] , that εi are i.i.d. Gaussian with zero mean and variance σ2 > 0 .

Then, a numerical constant C2 > 0 exists such that for every n ≥ C2 , γ ≥ 1 , η+ ≥ ( ln(n) )−1 ,

and C > 0 such that σ−2C ∈
[

1 + ( ln(n) )−1
, 1 + η+

]
,

n−1
∥∥∥F̂bλopt(C) − F

∥∥∥2

2
≤
(

1 +
3

ln(n)

)
inf
λ∈Λ

{
n−1

∥∥∥F̂λ − F∥∥∥2

2
+ 4η+σ

2 tr(Aλ)
n

}
+

14γ ( ln(n) )2
σ2

n
.

(29)

holds with probability at least 1− 8 Card(Λ)n−γ .

If in addition

∃κ ≥ 1 , ∀λ ∈ Λ , v1(λ) ≤ κ
(
v2(λ) + b(λ) + ( ln(n) )2

σ2
)
, (A′3)

then a constant C3 > 0 depending only on κ exists such that for every n ≥ C3 , γ ≥ 1 , and C > 0
such that σ−2C ∈

[
1− ( ln(n) )−1

, 1 + ( ln(n) )−1
]

,

n−1
∥∥∥F̂bλopt(C) − F

∥∥∥2

2
≤
(

1 +
40κ

ln(n)

)
inf
λ∈Λ

{
n−1

∥∥∥F̂λ − F∥∥∥2

2

}
+

36(κ+ γ) ln(n)σ2

n
(30)

holds with probability at least 1− 8 Card(Λ)n−γ .

If Card(Λ) ≤ Knα , Proposition 2 with γ = α+2 proves that with probability at least 1−8Kn−2 ,
λ̂ defined in the Algorithm of Section 4.1 in [1] satisfies an oracle inequality if assumption (A′3)
holds.

Remark 4 Assumption (A′3) holds as soon as (A3) holds, i.e.,

E
[
n−1

∥∥∥F̂λ − F∥∥∥2

2

]
= n−1 (v2(λ) + b(λ) ) ≥ κ−1σ

2 tr(Aλ)
n

,

which is the parametric rate of estimation in a model of dimension tr(Aλ) .

In the ordinary least-squares regression example, where all Aλ are projection matrices, assumption
(A3) always holds with κ = 1 because v1(λ) = v2(λ) .
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In the kernel ridge regression example, a sufficient condition for (A3) is that the eigenvalues
(µj)1≤j≤n of the kernel matrix K satisfy

∃α,L1, L2 > 0, ∀1 ≤ j ≤ n, L1j
−α ≤ µj ≤ L2j

−α ,

which is a classical assumption in kernel ridge regression with a random design; see Section 5.2 for
details.

Remark 5 When tr(A>λAλ) � tr(Aλ) for most λ ∈ Λ , taking C slightly larger than σ2 as in the
first part of Proposition 2 is necessary to obtain an oracle inequality. Indeed, Proposition 1 then
shows that (

2 tr(Aλ)− tr(A>λAλ)
)
σ2n−1 ≈ 2 tr(Aλ)σ2n−1

is a minimal penalty. So, any underestimation of the constant C in the penalty 2C tr(Aλ)n−1 may
lead to selecting λ̂ = λ̂opt(C) with df(λ̂) ≥ n/(ln(n)) .

Such a phenomenon holds for instance when Aλ = λIn and Λ ⊂ [0, 1] , since tr(A>λAλ) =
tr(Aλ)2n−1 � tr(Aλ) unless tr(Aλ) ∝ n .

Remark 6 The remainder terms in Eq. (29) and (30), 14γ(ln(n))2σ2n−1 and 36(κ +
γ) ln(n)σ2n−1 , are negligible in front of the risk of the oracle provided that v2(λ?) tends grows
with n faster than (ln(n))2 , since the risk of F̂λ? is at least of order v2(λ?)n−1 . This usually holds
when the bias is not exactly zero for some λ ∈ Λ with tr(A>λAλ) too small, as often assumed in the
model selection literature for proving asymptotic optimality results.

Let us now prove Proposition 2.

3.1 General starting point

Combining Eq. (4) and (28), we obtain that for every C > 0 such that σ−2C ∈ [ 1− η−, 1 + η+ ]
and every λ ∈ Λ , ∥∥∥F̂bλopt(C) − F

∥∥∥2

2
− 2η−v1(λ̂opt(C)) + ∆̂(λ̂opt(C))

≤ inf
λ∈Λ

{∥∥∥F̂λ − F∥∥∥2

2
+ 2η+v1(λ) + ∆̂(λ)

}
.

(31)

where
∆̂(λ) := −2δ1(λ) + δ4(λ) .

Inequality (31) implies an oracle inequality as soon as ∆̂(λ) is small compared to
∥∥∥F̂λ − F∥∥∥2

2
and

η−, η+ are small enough.

3.2 Make use of concentration inequalities

Let Ωx denote the same event as in Section 2. From Eq. (40) and (47), since ‖Aλ‖ ≤ 1 , we deduce
that on Ωx

∀λ ∈ Λ, ∀θ > 0,
∣∣∣∆̂(λ)

∣∣∣ ≤ θb(λ) + 2θv1(λ) + (4 + 5θ−1)xσ2 . (32)

In addition, combining Eq. (3), (39) and (48) with θ = 1/2 , and ‖Aλ‖ ≤ 1 , we have on Ωx ,

∀λ ∈ Λ, b(λ) + v2(λ) ≤ 2
∥∥∥F̂λ − F∥∥∥2

2
+ 16xσ2 . (33)

3.3 First result: with a slightly enlarged penalty

Assume in this subsection that σ−2C ∈
[
1 + (ln(n))−1; 1 + η+

]
with η+ ≥ (ln(n))−1 . Then,

Eq. (31) and (32) with θ = (ln(n))−1 imply∥∥∥F̂bλopt(C) − F
∥∥∥2

2
≤ 1 + (ln(n))−1

1− (ln(n))−1
inf
λ∈Λ

{∥∥∥F̂λ − F∥∥∥2

2
+ 4η+v1(λ)

}
+(9+12 ln(n))xσ2 , (34)
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if ln(n) ≥ 5 .

Taking x = γ ln(n) with γ ≥ 1 , then P(Ωx) ≥ 1 − 8 Card(Λ)n−γ and Eq. (34) implies Eq. (29)
for every n ≥ C2 = e5 .

3.4 Second result: with assumption (A′3)

Assume in this subsection that σ−2C ∈ [ 1− η−; 1 + η+ ] with 0 ≤ η−, η+ ≤ (ln(n))−1 , and that
(A′3) holds.

Then, Eq. (32) with θ = (ln(n))−1 and Eq. (33) imply∥∥∥F̂bλopt(C) − F
∥∥∥2

2
− 2η−v1(λ̂opt(C)) + ∆̂(λ̂opt(C))

≥
(

1− 10κ
ln(n)

)∥∥∥F̂bλopt(C) − F
∥∥∥2

2
−
[(

4 +
80κ

ln(n)

)
x+ 9 ln(n)κ

]
σ2 , (35)

and for every λ ∈ Λ ,∥∥∥F̂λ − F∥∥∥2

2
+ 2η+v1(λ) + ∆̂(λ)

≤
(

1 +
10κ

ln(n)

)∥∥∥F̂λ − F∥∥∥2

2
+
[(

4 +
80κ

ln(n)

)
x+ 9 ln(n)κ

]
σ2 . (36)

Combining Eq. (31), (35) and (36), we get that on Ωx ,∥∥∥F̂bλopt(C) − F
∥∥∥2

2
≤
(

1 +
40κ

ln(n)

)∥∥∥F̂λ − F∥∥∥2

2
+ 4

[(
4 +

80κ
ln(n)

)
x+ 9 ln(n)κ

]
σ2 (37)

if ln(n) ≥ 20κ .

Now, taking x = γ ln(n) with γ ≥ 1 in Eq. (37) implies Eq. (30) for every n ≥ C3(κ) .

4 Concentration inequalities

The concentration inequalities used for proving Propositions 1 and 2 are proved in this section.

4.1 Linear functions of ε

We here prove concentration inequalities for δ3(λ) and δ4(λ) . Let us first prove a classical result.

Proposition 3 Let ξ be a standard Gaussian vector in Rn , α ∈ Rn and

Z = 〈ξ, α〉 =
n∑
j=1

αjξj .

Then, for every x ≥ 0 ,
P
(
|Z| ≤

√
2x ‖α‖2

)
≥ 1− 2e−x . (38)

Proof Z is a Lipschitz function of ξ , with Lipschitz constant ‖α‖2 . Therefore, the Gaussian
concentration theorem implies (see for instance Theorem 3.4 in [2]):

∀t ≥ 0, P ( |Z| ≥ t ) ≤ 2 exp

(
− t2

2 ‖α‖22

)
.

The result follows by taking t =
√

2x ‖α‖2 .

Now, remark that

δ3(λ) =
〈
σ−1ε, 2σA>λ (In −Aλ)F

〉
and δ4(λ) =

〈
σ−1ε, 2σ(In −Aλ)F

〉
,
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where σ−1ε is a standard Gaussian vector. Hence, Proposition 3 shows that for every x ≥ 0 and
λ ∈ Λ ,

P
(
|δ3(λ)| ≤ 2σ

√
x
∥∥A>λ (In −Aλ)F

∥∥
2

)
≥ 1− 2e−x

P
(
|δ4(λ)| ≤ 2σ

√
x ‖(In −Aλ)F‖2

)
≥ 1− 2e−x ,

which implies that

P
(
∀θ > 0, |δ3(λ)| ≤ θ−1x ‖Aλ‖2 σ2 + θ ‖(In −Aλ)F‖22

)
≥ 1− 2e−x (39)

P
(
∀θ > 0, |δ4(λ)| ≤ θ−1xσ2 + θ ‖(In −Aλ)F‖22

)
≥ 1− 2e−x , (40)

since ∀a, b, θ > 0 , 2ab ≤ θa2 + θ−1b2 .

4.2 Quadratic functions of ε

We here prove concentration inequalities for δ2(λ) and δ1(λ) . Let us first prove (recall) a general
result.

Proposition 4 Let ξ be a standard Gaussian vector in Rn , M a real-valued n× n matrix and

Z = ‖Mξ‖22 − tr(M>M) .

Then, for every x ≥ 0 ,

P
(
∀θ > 0, Z ≤ θ tr(M>M) + 2(1 + θ−1) ‖M‖2 x

)
≥ 1− e−x (41)

P
(
∀θ > 0, Z ≥ −θ tr(M>M)−

[
2x
(
θ−1 − 1

)
+ 1− θ

]
‖M‖2

)
≥ 1− e−x . (42)

Proof Define W = ‖Mξ‖2 , and note that E
[
W 2

]
= tr(M>M) . Since W is a Lipschitz function

of ξ with Lipschitz constant ‖M‖ , the Gaussian concentration theorem (see for instance Theo-
rem 3.4 in [2]) shows that for every x ≥ 0 , an event Ω+

x of probability at least 1 − exp(−x) exists
on which

W ≤ E [W ] +
√

2x ‖M‖ , (43)
and an event Ω−x of probability at least 1− exp(−x) exists on which

W ≥ E [W ]−
√

2x ‖M‖ . (44)

In addition, Proposition 3.5 in [2] shows that var(W ) ≤ ‖M‖2 . Therefore,

0 ≤ E
[
W 2

]
− (E [W ] )2 = var(W ) ≤ ‖M‖2 . (45)

We now combine Eq. (45) with the two concentration inequalities above for proving the result.

On the one hand, on Ω+
x ,

W 2 ≤ (E [W ] )2 + 2E [W ]
√

2x ‖M‖+ 2x ‖M‖2

≤ E
[
W 2

]
+ 2
√

2xE [W 2 ] ‖M‖+ 2x ‖M‖2

≤ (1 + θ)E
[
W 2

]
+ 2(1 + θ−1)x ‖M‖2

for every θ > 0 , using successively Eq. (45) and that ∀a, b, θ > 0 , 2
√
ab ≤ aθ+ bθ−1 . This proves

Eq. (41).

On the other hand, for every x ≥ 0 such that x ≤ (E
[
W 2

]
− ‖M‖2)/(2 ‖M‖2) , on Ω−x

W 2 ≥
(√

E [W 2 ]− ‖M‖2 −
√

2x ‖M‖
)2

≥ (1− θ)E
[
W 2

]
−
[
2x
(
θ−1 − 1

)
+ 1− θ

]
‖M‖2 . (46)

This proves Eq. (42), since the lower bound in Eq. (46) is non-positive if x >

(E
[
W 2

]
− ‖M‖2)/(2 ‖M‖2) .
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Now, remark that if Bλ exists such that Aλ = B>λ Bλ —as in the kernel ridge regression example
for instance, and more generally when Aλ is symmetric real-valued with Sp(Aλ) ⊂ [0, 1] —, then

σ−2δ1(λ) =
∥∥Bλ(σ−1ε)

∥∥2

2
− tr(B>λ Bλ) and σ−2δ2(λ) =

∥∥Aλ(σ−1ε)
∥∥2

2
− tr(A>λAλ) .

Hence, Proposition 4 shows that for every x ≥ 0 and λ ∈ Λ ,

P
(
∀θ > 0, |δ1(λ)| ≤ θσ2 tr(Aλ) + 2(1 + θ−1)x ‖Aλ‖σ2

)
≥ 1− 2e−x (47)

P
(
∀θ > 0, |δ2(λ)| ≤ θσ2 tr(A>λAλ) + 2(1 + θ−1)x ‖Aλ‖2 σ2

)
≥ 1− 2e−x , (48)

where we used in particular that ‖Bλ‖2 = ‖Aλ‖ .

5 Kernel ridge regression example

Finally, let us make some computations that are specific to the kernel ridge regression example.

5.1 Explicit formulas for the deterministic terms

Let K be the n × n matrix such that Ki,j = k(xi, xj) . Then, the kernel regression estimator with
regularization parameter λ is defined by

F̂λ = AλY with Aλ = K(K + nλIn)−1 .

Then, Aλ is symmetric, real-valued (hence diagonalizable by orthogonal matrices) and Sp(Aλ) ⊂
[0, 1] .

Let (ej)1≤j≤n be the (orthonormal) eigenvectors of K , with eigenvalues (µj)1≤j≤n , assuming that
µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 . We also assume that µ1 > 0 , that is, K is not the null matrix. We can
then decompose F in this basis: F =

∑
j fjej .

Therefore, in the orthonormal basis (ej)1≤j≤n , Aλ is diagonal with coefficients(
µj

µj + nλ

)
1≤j≤n

.

Hence,

tr(Aλ) = df(λ) =
n∑
j=1

(
µj

µj + nλ

)

tr(A>λAλ) =
n∑
j=1

(
µj

µj + nλ

)2

2 tr(Aλ)− tr(A>λAλ) =
n∑
j=1

[
2µj

µj + nλ
−
(

µj
µj + nλ

)2
]

=
n∑
j=1

[
µj(µj + 2nλ)
(µj + nλ )2

]

b(λ) = ‖(Aλ − In)F‖22 =
n∑
j=1

(
1− µj

µj + nλ

)2

f2
j .

Note that df(λ) and tr(A>λAλ) are decreasing functions of λ , as well as 2 tr(Aλ)−tr(A>λAλ) since
each term of the sum is nonincreasing, and at least one is decreasing. On the contrary, b(λ) is an
nondecreasing function of λ . Hence, tr(A>λAλ) and 2 tr(Aλ)− tr(A>λAλ) are increasing functions
of df(λ) , and b(λ) is a nonincreasing function of df(λ) .

5.2 Sufficient condition for assumption (A3)

Assumption (A3) holds in particular when

∃κ ≥ 1, ∀λ ∈ Λ, tr(Aλ) ≤ κ tr(A>λAλ) .
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If the eigenvalues of K satisfy

∃α,L1, L2 > 0, ∀1 ≤ j ≤ n, L1j
−α ≤ µj ≤ L2j

−α ,

then, following [3],

tr(Aλ) ≤
n∑
j=1

L2j
−α

L2j−α + nλ
=

n∑
j=1

1
1 + nλL−1

2 jα

≤
∫ ∞

0

dt

1 + nλL−1
2 tα

=
(
L2

nλ

)1/α ∫ ∞
0

du

1 + uα

and

tr(A>λAλ) ≥
n∑
j=1

(
L1j

−α

L1j−α + nλ

)2

=
n∑
j=1

1(
1 + nλL−1

1 jα
)2

≥
∫ ∞

1

dt(
1 + nλL−1

1 tα
)2 =

(
L1

nλ

)1/α ∫ ∞
1

du

(1 + uα )2 .

Therefore, (A3) holds with

κ =
(
L2

L1

)1/α ∫ ∞
0

du

1 + uα

(∫ ∞
1

du

(1 + uα )2

)−1

.
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