
Riffled Independence for Ranked Data
(extended version with proofs)

Jonathan Huang, Carlos Guestrin
School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA 15213
{jch1,guestrin}@cs.cmu.edu

Abstract
Representing distributions over permutations can be a daunting task due to the
fact that the number of permutations of n objects scales factorially in n. One
recent way that has been used to reduce storage complexity has been to exploit
probabilistic independence, but as we argue, full independence assumptions im-
pose strong sparsity constraints on distributions and are unsuitable for modeling
rankings. We identify a novel class of independence structures, called riffled
independence, encompassing a more expressive family of distributions while
retaining many of the properties necessary for performing efficient inference and
reducing sample complexity. In riffled independence, one draws two permuta-
tions independently, then performs the riffle shuffle, common in card games, to
combine the two permutations to form a single permutation. In ranking, riffled
independence corresponds to ranking disjoint sets of objects independently,
then interleaving those rankings. We provide a formal introduction and present
algorithms for using riffled independence within Fourier-theoretic frameworks
which have been explored by a number of recent papers.

1 Introduction
Distributions over permutations play a central role in a variety of applications such as multi-object
tracking, visual feature matching, and ranking. In people tracking, for example, permutations rep-
resent joint assignments of individual identities to track positions, whereas in ranking, permutations
represent the preference orderings of a list of objects. Representing distributions over permutations
is a notoriously difficult problem since there are n! permutations, and standard representations, such
as graphical models, are not effective due to the mutual exclusivity constraints typically associated
with permutations. The quest for exploitable problem structure has led researchers to consider a
number of possibilities including distribution sparsity [17, 9], exponential family parameteriza-
tions [15, 5, 14, 16], algebraic/Fourier structure [13, 12, 6, 7], and probabilistic independence [8].

While sparse distributions have been successfully applied in certain tracking domains, we argue that
they are less suitable in ranking problems where it might be necessary to model indifference over
a large subset of objects. In contrast, Fourier-based methods handle smooth distributions well but
are not easily scalable without making aggressive independence assumptions [8]. In this paper, we
argue that while probabilistic independence might be useful for tracking applications, it is a poor
approximation in ranking applications. We propose a novel generalization of independence, called
riffled independence, which we believe to be far more suitable for modeling distributions over
preference rankings, and develop algorithms for working with riffled independence in the Fourier
domain. The following is a summary of the major contributions of our paper.

• We introduce an intuitive generalization of independence on permutations, which we call riffled
independence, and show it to be a more appropriate notion of independence for ranked data.

• We show how to exploit riffled independence in a distribution to reduce sample complexity and
to perform efficient inference.

• We introduce a novel family of distributions, called biased riffle shuffles, that are useful for riffled
independence and propose an algorithm for computing its Fourier transform.

1

• We provide algorithms that can be used in the Fourier-theoretic framework of [13, 8, 7] for joining
riffle independent factors (RiffleJoin), and for teasing apart the riffle independent factors from a
joint (RiffleSplit), and provide theoretical and empirical evidence that our algorithms perform well.

2 Distributions on permutations and independence relations
In the context of ranking, a permutation σ = [σ1, . . . , σn] represents a one-to-one mapping from
n objects to n ranks, where, by σj = i (or σ(j) = i), we mean that the jth object is assigned rank
i under σ. If we are ranking a list of fruits/vegetables enumerated as (1) Artichoke, (2) Broccoli,
(3) Cherry, and (4) Dates, then the permutation σ = [σA σB σC σD] = [2 3 1 4] ranks Cherry first,
Artichoke second, Broccoli third, and Dates last. The set of all permutations of {1, . . . , n} forms
a group with respect to function composition called the symmetric group (written Sn). We will
write τσ to denote the permutation resulting from τ composed with σ (thus [τσ](j) = τ(σ(j))).
A distribution h(σ), defined over Sn, can be viewed as a joint distribution over the n variables
σ = (σ1, . . . , σn) (where σj ∈ {1, . . . , n}), subject to mutual exclusivity constraints which ensure
that objects i and j do not map to the same rank (h(σi = σj) = 0 whenever i 6= j). Since there are
n! permutations, it is typically intractable to represent entire distributions and one can hope only to
maintain compact summary statistics.

There have been a variety of methods proposed for summarizing distributions over permutations
ranging from older ad-hoc methods such as maintaining k-best hypotheses [17] to the more recent
Fourier-based methods which maintain a set of low-order summary statistics [19, 2, 11, 7]. The first-
order summary, for example, stores a marginal probability of the form h(σ : σ(j) = i) for every
pair (i, j) and thus requires storing a matrix of only O(n2) numbers. For example, we might store
the probability that apples are ranked first. More generally, one might store the sth-order marginals,
which are marginal probabilities of s-tuples. The second-order marginals, for example, take the form
h(σ : σ(k, `) = (i, j)), and require O(n4) storage. Low-order marginals correspond, in a certain
sense, to the low-frequency Fourier coefficients of a distribution over permutations. For example,
the first-order matrix of h(σ) can be reconstructed exactly from O(n2) of the lowest frequency
Fourier coefficients of h(σ), and the second-order matrix from O(n4) of the lowest frequency
Fourier coefficients. In general, one requires O(n2s) coefficients to exactly reconstruct sth-order
marginals, which quickly becomes intractable for moderately large n. To scale to larger problems,
Huang et al. [8] demonstrated that, by exploiting probabilistic independence, one could dramatically
improve the scalability of Fourier-based methods, e.g., for tracking problems, since confusion in
data association only occurs over small independent subgroups of objects in many problems.
Probabilistic independence on permutations. Probabilistic independence assumptions on the
symmetric group can simply be stated as follows. Consider a distribution h defined over Sn. Let X
be a p-subset of {1, . . . , n}, say, {1, . . . , p} and let X̄ be its complement ({p+ 1, . . . , n}) with size
q = n− p. We say that σX = (σ1, σ2, . . . , σp) and σX̄ = (σp+1, . . . , σn) are independent if

h(σ) = f(σ1, σ2, . . . , σp) · g(σp+1, . . . , σn).
Storing the parameters for the above distribution requires keeping O(p! + q!) probabilities instead
of the much larger O(n!) size required for general distributions. Of course, O(p! + q!) can still be
quite large. Typically, one decomposes the distribution recursively and stores factors exactly for
small enough factors, or compresses factors using Fourier coefficients (but using higher frequency
terms than what would be possible without the independence assumption). In order to exploit
probabilistic independence in the Fourier domain, Huang et al. [8] proposed algorithms for joining
factors and splitting distributions into independent components in the Fourier domain.
Restrictive first-order conditions. Despite its utility for many tracking problems, however, we
argue that the independence assumption on permutations implies a rather restrictive constraint on
distributions, rendering independence highly unrealistic in ranking applications. In particular, using
the mutual exclusivity property, it can be shown [8] that, if σX and σX̄ are independent, then for
some fixed p-subset Y ⊂ {1, . . . , n}, σX is a permutation of elements in Y and σX̄ is a permutation
of its complement, Ȳ , with probability 1. Continuing with our vegetable/fruit example with n = 4,
if the vegetable and fruit rankings, σveg = [σA σB] and σfruit = [σC σD], are known to be indepen-
dent, then for Y = {1, 2}, the vegetables are ranked first and second with probability one, and the
fruits are ranked third and last with probability one. Huang et al. [8] refer to this as the first-order
condition because of the block structure imposed upon first-order marginals (see Fig. 1). In sports
tracking, the first-order condition might say, quite reasonably, that there is potential identity confu-
sion within tracks for the red team and within tracks for the blue team but no confusion between the

2

j

i

P(σ:σ(j)=i)

2 4 6

2

4

6

(a)

j

i

P(σ:σ(j)=i), Y={1,2,3}

2 4 6

2

4

6

(b)

j

i

P(σ:σ(j)=i), Y={2,4,5}

2 4 6

2

4

6

(c)

j

i

P(σ:σ(j)=i), Y={1,2,5}

2 4 6

2

4

6

(d)

j

i

P(σ:σ(j)=i), Y={4,5,6}

2 4 6

2

4

6

(e)

Figure 1: Example first-order matrices with X = {1, 2, 3}, X̄ = {4, 5, 6} fully independent, where black
means h(σ : σ(j) = i) = 0. In each case, there is some 3-subset Y which X is constrained to map to with
probability one. Notice that, with respect to some rearranging of the rows, independence imposes a block-
diagonal structure on first-order matrices.

two teams. In our ranking example however, the first-order condition forces the probability of any
vegetable being in third place to be zero, even though both vegetables will, in general, have nonzero
marginal probability of being in second place, which seems quite unrealistic. In the next section, we
overcome the restrictive first-order condition with the more flexible notion of riffled independence.

3 Going beyond full independence: Riffled independence
The riffle (or dovetail) shuffle [1] is perhaps the most commonly used method of card shuffling,
in which one cuts a deck of n cards into two piles, X = {1, . . . , p} and X̄ = {p + 1, . . . , n},
with size p and q = n − p, respectively, and successively drops the cards, one by one, so that
the two piles become interleaved (see Fig. 2) into a single deck again. Inspired by the riffle
shuffle, we now present a novel relaxation of the full independence assumption, which we call
riffled independence. Rankings that are riffle independent are formed by independently selecting

Figure 2: Riffle shuffling a standard deck of cards.

rankings for two disjoint subsets of objects,
then interleaving the two rankings using a riffle
shuffle to form a final ranking over all objects.
For example, we might first ‘cut the deck’
into two piles, vegetables (X) and fruits (X̄),
independently decide that Broccoli is preferred
over Artichoke (σB < σA) and that Dates is
preferred over Cherry (σD < σC), then finally
interleave the fruit and vegetable rankings to
form σB < σD < σA < σC (i.e. σ = [3 1 4 2]).
Intuitively, riffled independence models complex
relationships within each set X and X̄ while
allowing correlations between the sets to be mod-
eled only through a constrained form of shuffling.

Riffle shuffling distributions. Mathematically, shuffles are modeled as random walks on Sn.
The ranking σ′ after a shuffle is generated from the ranking prior to that shuffle, σ, by drawing a
permutation, τ from a shuffling distribution m(τ), and setting σ′ = τσ. Given the distribution P
over σ, we can find the distribution h′(σ′) after the shuffle via convolution: h′(σ′) = [m ∗ h] (σ′) =∑
{σ,τ :σ′=τσ}m(τ)h(σ). Note that we use the ∗ symbol to denote the convolution operation.

Besides the riffle shuffle, there are a number of different kinds of shuffles — the pairwise shuffle,
for example, simply selects two cards at random and swaps them. The question then, is what are
the shuffling distributions m that correspond to riffle shuffles? To answer this question, we use the
distinguishing property of the riffle shuffle, that, after cutting the deck into two piles of size p and
q = n − p, it must preserve the relative ranking relations within each pile. Thus, if the ith card
appears above the jth card in one of the piles, then after shuffling, the ith card remains above the
jth card. In our example, relative rank preservation says that if Artichoke is preferred over Broccoli
prior to shuffling, it continues to be preferred over Broccoli after shuffling. Any allowable riffle
shuffling distribution must therefore assign zero probability to permutations which do not preserve
relative ranking relations. As it turns out, the set of permutations which do preserve these relations
have a simple description.
Definition 1 (Riffle shuffling distribution). Define the set of (p, q)-interleavings as:

Ωp,q ≡ {τY = [Y(1) Y(2) . . . Y(p) Ȳ(1) Ȳ(2) . . . Ȳ(q)] : Y ⊂ {1, . . . , n}, |Y | = p} ⊂ Sn, n = p+ q,

3

where Y(1) represents the smallest element of Y , Y(2) the second smallest, etc. A distribution mp,q

on Sn is called a riffle shuffling distribution if it assigns nonzero probability only to elements in Ωp,q .

The (p, q)-interleavings can be shown to preserve the relative ranking relations within each of the
subsets X = {1, . . . , p} and X̄ = {p+ 1, . . . , n} upon multiplication.

Lemma 2. Let i, j ∈ X = {1, . . . , p} and let τY be any (p, q)-interleaving in Ωp,q . Then i < j if
and only if τY (i) < τY (j) (i.e., permutations in Ωp,q preserve relative ranking relations).

Proof. By definition of τY , we have that τY (i) = Y(i), and τY (j) = Y(j), where Y(i) is the ith

smallest element in the set Y , and Y(j) is the jth smallest element in Y . We have that:

i < j ⇐⇒ Y(i) < Y(j) ⇐⇒ τY (i) < τY (j).

In our vegetable/fruits example, we have n = 4, p = 2, and so the collection of subsets of size p
are: { {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} } , and the set of (2, 2)-interleavings is given by:
Ωp,q = {[1 2 3 4], [1 3 2 4], [1 4 2 3], [2 3 1 4], [2 4 1 3], [3 4 1 2]}. Note that the number of possible
interleavings is |Ωp,q| =

(
n
p

)
=
(
n
q

)
= 4!/(2!2!) = 6. One possible riffle shuffling distribution on

S4 might, for example, assign uniform probability (munif
2,2 (σ) = 1/6) to each permutation in Ω2,2

and zero probability to everything else, reflecting indifference between vegetables and fruits. We
now formally define our generalization of independence where a distribution which fully factors
independently is allowed to undergo a single riffle shuffle.

Definition 3 (Riffled independence). The subsets X = {1, . . . , p} and X̄ = {p + 1, . . . , n}
are said to be riffle independent if h = mp,q ∗ (f(σp) · g(σq)), with respect to some riffle
shuffling distribution mp,q and distributions f, g, respectively. We denote riffled independence by:
h = f ⊥mp,q g, and refer to f, g as riffled factors.

To draw from h, one independently draws a permutation σp, of cards {1, . . . , p}, a permutation σq ,
of cards {p + 1, . . . , n}, and a (p, q)-interleaving τY , then shuffles to obtain σ = τY [σp σq]. In our
example, the rankings σp = [2 1] (Broccoli preferred to Artichoke) and σq = [4 3] (Cherry preferred
to Dates) are selected, then shuffled (multiplied by τ{1,3} = [1 3 2 4]) to obtain σ = [3 1 4 2].

We remark that setting mp,q to be the delta distribution on any of the (p, q)-interleavings in Ωp,q
recovers the definition of ordinary probabilistic independence, and thus riffled independence is a
strict generalization thereof. Just as in the full independence regime, where the distributions f and
g are marginal distributions of rankings of X and X̄ , in the riffled independence regime, they can
be thought of as marginal distributions of the relative rankings of X and X̄ .

Biased riffle shuffles. There is, in the general case, a significant increase in
storage required for riffled independence over full independence. In addition
to the O(p! + q!) storage required for distributions f and g, we now require
O(
(
n
p

)
) storage for the nonzero terms of the riffle shuffling distribution mp,q .

DRAWRIFFLEUNIF(p, q, n) // (p+ q = n)1
with prob q/n // drop from right pile2

σ− ← DRAWRIFFLEUNIF(p, q − 1, n− 1)3

foreach i do σ(i)←

σ−(i) if i < n
n if i = n4

otherwise // drop from left pile5
σ− ← DRAWRIFFLEUNIF(p− 1, q, n− 1)6

foreach i do σ(i)←

8<: σ−(i) if i < p
n if i = p

σ−(i− 1) if i > p7
return σ8

Algorithm 1: Recurrence for drawing σ ∼ munif
p,q

(Base case: return σ = [1] if n = 1).

Instead of representing all possible riffle
shuffling distributions, however, we now
introduce a family of useful riffle shuffling
distributions which can be described
using only a handful of parameters. The
simplest riffle shuffling distribution is
the uniform riffle shuffle, munif

p,q , which
assigns uniform probability to all (p, q)-
interleavings and zero probability to all
other elements in Sn. Used in the context
of riffled independence, munif

p,q models
potentially complex relations within X
and X̄ , but only captures the simplest
possible correlations across subsets. We
might, for example, have complex preference relations amongst vegetables and amongst fruits, but
be completely indifferent with respect to the subsets, vegetables and fruits, as a whole.

4

j

i

P(σ:σ(j)=i), α=00

5 10 15 20

5

10

15

20

(a)

j

i

P(σ:σ(j)=i), α=1.50e−01

5 10 15 20

5

10

15

20

(b)

j

i

P(σ:σ(j)=i), α=5.00e−01

5 10 15 20

5

10

15

20

(c)

j

i

P(σ:σ(j)=i), α=8.50e−01

5 10 15 20

5

10

15

20

(d)

j

i

P(σ:σ(j)=i), α=01

5 10 15 20

5

10

15

20

(e)

Figure 3: First-order matrices with a deck of 20 cards, X = {1, . . . , 10}, X̄ = {11, . . . , 20}, riffle indepen-
dent and various settings of α. Note that nonzero blocks ‘bleed’ into zero regions (compare to Fig. 1). Setting
α = 0 or 1 recovers full independence, where a subset of objects is preferred over the other with probability one.

There is a simple recursive method for uniformly drawing (p, q)-interleavings. Starting with a
deck of n cards cut into a left pile ({1, . . . , p}) and a right pile ({p + 1, . . . , n}), pick one of the
piles with probability proportional to its size (p/n for the left pile, q/n for the right) and drop
the bottommost card, thus mapping either card p or card n to rank n. Then recurse on the n − 1
remaining undropped cards, drawing a (p − 1, q)-interleaving if the right pile was picked, or a
(p, q − 1)-interleaving if the left pile was picked. See Alg. 1.

It is natural to consider generalizations where one is preferentially biased towards dropping
cards from the left hand over the right hand (or vice-versa). We model this bias using a simple
one-parameter family of distributions in which cards from the left and right piles drop with
probability proportional to αp and (1 − α)q, respectively, instead of p and q. We will refer to α as
the bias parameter, and the family of distributions parameterized by α as the biased riffle shuffles.1
In the context of rankings, biased riffle shuffles provide a simple model for expressing groupwise
preferences (or indifference) for an entire subset X over X̄ or vice-versa. The bias parameter α can
be thought of as a knob controlling the preference for one subset over the other, and might reflect, for
example, a preference for fruits over vegetables, or perhaps indifference between the two subsets.
Setting α = 0 or 1 recovers the full independence assumption, preferring objects in X (vegetables)
over objects in X̄ (fruits) with probability one (or vice-versa), and setting α = .5, recovers the
uniform riffle shuffle (see Fig. 3). Finally, there are a number of straightforward generalizations of
the biased riffle shuffle that one can use to realize richer distributions. For example, α might depend
on the number of cards that have been dropped from each pile (allowing perhaps, for distributions
to prefer crunchy fruits over crunchy vegetables, but soft vegetables over soft fruits).

4 Between independence and conditional independence
We have presented riffle independent distributions as fully independent distributions which have
been convolved by a certain class of shuffling distributions. In this section, we provide an alternative
view of riffled independence based on conditional independence, showing that the notion of riffled
independence lies somewhere between full and conditional independence, and in a sense, can be
thought of as full independence without the first-order condition.

In Section 3, we formed a ranking by first independently drawing permutations πp and πq , of object
sets {1, . . . , p} (vegetables) and {p + 1, . . . , n} (fruits), respectively, drawing a (p, q)-interleaving
(i.e., a relative ranking permutation, τY ∈ Ωp,q), and shuffling to form σ = τY [πp πq]. Thus, an ob-
ject i ∈ {1, . . . , p} is ranked in position τY (πp(i)) after shuffling (and an object j ∈ {p+ 1, . . . , n}
is ranked in position τY (πq(j))). An equivalent way to form the same σ, however, is to first draw
an interleaving τY ∈ Ωp,q , then, conditioned on the choice of Y , draw independent permutations of
the sets Y and Ȳ . In our example, we might first draw the (2,2)-interleaving [1 3 2 4] (so that after
shuffling, we would obtain σV eg < σFruit < σV eg < σFruit). Then we would draw a permutation
of the vegetable ranks (Y = {1, 3}), say, [3 1], and a permutation of the fruit ranks (Ȳ = {2, 4}),
[4 2], to obtain a final ranking over all items: σ = [3 1 4 2], or σB < σD < σA < σC .

It is tempting to think that riffled independence is exactly the conditional independence assumption,
in which case the distribution would factor as h(σ) = h(Y) · h(σX |Y) · h(σX̄ |Y). The general
case of conditional independence, however, has O(

(
n
p

)
(p! + q! + 1)) parameters, while riffled

independence requires only O(
(
n
p

)
+ p! + q!) parameters.

1The recurrence in Alg. 1 has appeared in various forms in literature [1]. We are the first to (1) use the
recurrence to Fourier transform mp,q , and to (2) consider biased versions. The biased riffle shuffles in [4] are
not similar to our biased riffle shuffles. See Appendix A for details.

5

We now provide a simple correspondence between the conditional independence view of riffled
independence presented in this section to the shuffle theoretic definition from Section 3 (Def. 3).
Define the map φ, which, given a permutation of Y (or Ȳ), returns the permutation in σp ∈ Sp (or
Sq) such that [σp]i is the rank of [σX]i relative to the set Y . For example, if the permutation of
the vegetable ranks is σX = [3 1] (with Artichoke ranked third, Broccoli first), then φ(σX) = [2 1]
since, relative to the set of vegetables, Artichoke is ranked second, and Broccoli first.

Proposition 4. Consider a riffle independent h = f ⊥mp,q
g. For each σ ∈ Sn, h factors as h(σ) =

h(Y) ·h(σX |Y) ·h(σX̄ |Y), with h(Y) = m(τY), h(σX |Y) = f(φ(σX)), and h(σX̄) = g(φ(σX̄)).

Proposition 4 is useful because it shows that the probability of a single ranking can be computed
without summing over the entire symmetric group (a convolution)— a fact that might not be
obvious from Definition 3. The factorization h(σ) = m(τY)f(φ(σX))g(φ(σX̄)) also suggests that
riffled independence behaves essentially like full independence (without the first-order condition),
where, in addition to the independent variables σX and σX̄ , we also independently randomize over
the subset Y . To prove Proposition 4, we first establish a simple fact.

Lemma 5. Let σ = [σX σX̄] be any permutation in Sn and Y the set consisting of elements in σX .
Define πp = φ(σX), πq = φ(σX̄), and τY = [sort(Y) sort(Ȳ)]. Then σ = τY [πp (πq + p)].

Proof. Let 1 ≤ i ≤ p. We want to show that σ(i) = τY (πp(i)). Since πp ∈ Sp, πp(i) is some
number between 1 and p, and thus τY (πp(i)) = [sort(Y)](πp(i)). By definition of the function
φ, πp(i) is the rank of i relative to the set Y , and so [sort(Y)](πp(i)) is the absolute rank (e.g.,
the rank relative to the entire set, {1, . . . , n}) of i assigned by σ. Therefore, we conclude that
σ(i) = τY (πp(i)). The proof for p+ 1 ≤ i ≤ n is similar.

Example 6. Let σ = [4 6 2 8 7 5 3 1] ∈ Sn (hence, σX = [4 6 2 8], σX̄ = [7 5 3 1]). The set Y
is {4, 6, 2, 8}, πp = φ([4 6 2 8]) = [2 3 1 4], and πq = φ([7 5 3 1]) = [4 3 2 1]. Finally, we set
τY = [2 4 6 8 1 3 5 7]. Lemma 5 then tells us that:

σ = τY [πp (πq + p)]
= [2 4 6 8 1 3 5 7][2 3 1 4 (4 + p) (3 + p) (2 + p) (1 + p)]
= [2 4 6 8 1 3 5 7][2 3 1 4 8 7 6 5]
= [4 6 2 8 7 5 3 1]

Proof (of Proposition 4). Let X = {1, . . . , p} and let Sp × Sq denote the subgroup: {σ : σ(X) ⊂
X}. The function f ·g (fully-independent) is supported on Sp×Sq . Assume that h = mp,q ∗ (f ·g).

Let σ = [σX σX̄] be any permutation in Sn and let Y be the p-subset corresponding to the values in
σX . Notice that τ−1

Y σ is always in Sp × Sq , and τ−1
Y ′ σ lies outside of Sp × Sq for any Y ′ 6= Y .

[mp,q ∗ (f · g)](σ) =
∑
σ′∈Sn

mp,q(σ′) · [f · g](σ′−1
σ),

=
∑

τ∈Ωp,q

mp,q(τ) · [f · g](τ−1σ),

(since mp,q is supported on Ωp,q),

= mp,q(τY) · [f · g](τ−1
Y σ),

(since f · g is supported on Sp × Sq),
= mp,q(τY) · [f · g]([πp (πq + p)]),

(by Lemma 5),
= mp,q(τY) · f(πp) · g(πq),
= mp,q(τY) · f(φ(σX)) · g(φ(σX̄)).

One immediate consequence is that we can show, just as in the full independence regime, that condi-
tioning operations on certain observations and MAP (maximum a posteriori) assignment problems
decompose according to riffled independence structure.

6

Proposition 7 (Probabilistic inference decompositions). Consider riffle independent prior and like-
lihood functions, hprior and hlike, on Sn which factor as: hprior = fprior ⊥mprior

gprior
and hlike = flike ⊥mlike

glike, respectively. The posterior distribution under Bayes rule
can be written as the riffle independent distribution: hpost ∝ (fprior � flike) ⊥mprior�mlike

(gprior � glike),where the � symbol denotes the pointwise product operation.

Proof (of Proposition 7). For any element σ ∈ Sn, we have:

hpost(σ) ∝ (mlike(τY) · flike(φ(σX)) · glike(φ(σX̄)))
· (mprior(τY) · fprior(φ(σX)) · gprior(φ(σX̄))),

∝ (mlike(τY) ·mprior(τY))
· (flike(φ(σX)) · fprior(φ(σX)))
· (glike(φ(σX̄)) · gprior(φ(σX̄))),

∝ (fprior � flike) ⊥mlike�mprior (gprior � glike).

A similar result allows us to also perform MAP (maximum a posteriori) assignments by maximizing
each of the distributions mp,q , f and g, independently and combining the results.

Proposition 8. Consider a distribution h which factors as h = f ⊥m g. Let πp = arg maxπ f(π),
πq = arg maxπ g(π), and τY = arg maxτY

m(τY). We have: arg maxσ h(σ) = τY [πp (πq + p)].

Pairwise rankings. Some ranked datasets come in the form of pairwise comparisons, with records
of the form “object i is preferred to object j”. The pairwise ranking model [7] (for objects i and j),
is defined over Sn as:

glike(σ) = δnσ(i)<σ(j)(σ) =


β if σ(i) < σ(j)

1− β otherwise , 0 ≤ β ≤ 1,

and reflects the fact that object i is preferred to object j (with probability β). If objects i and j
both belong to one of the sets, say X̄ , then we can show, as a corollary of Proposition 7, that only
one factor requires an update using Bayes rule. If vegetables and fruits are riffle independent, for
example, then less computation would be required to compare a fruit against a fruit than to compare
a fruit against a vegetable.

Corollary 9. Conditioning on the pairwise ranking model can be performed on Sq instead of all of

Sn using the update: hpost ← fprior ⊥mp,q

(
gprior � δqσ(i)<σ(j)

)
.

Before proving Corollary 9, we first prove another corollary of Lemma 2.

Corollary 10 (of Lemma 2). Let σ = [σX σX̄], i, j ∈ X , and τY = [sort(Y) sort(Ȳ)]. Then we
have: σ(i) < σ(j) if and only if τ−1

Y (σ(i)) < τ−1
Y (σ(j)).

Proof. First notice that σ(i) < σ(j) if and only if τY τ−1
Y σ(i) < τY τ

−1
Y σ(j). Since i, j ∈ X ,

σ(i), σ(j) ∈ Y , and since all elements in Y are in the first p ranks in the permutation τ , we have
that both elements τ−1

Y (σ(i)) and τ−1
Y (σ(j)) are in the set {1, . . . , p}. Applying Lemma 2, we see

that τ−1
Y σ(i) < τ−1

Y σ(j). The other direction is similar.

Proof (of Corollary 9). This proof will rely on Proposition 4. For simplicity, we will actually as-
sume that i, j ∈ {1, . . . , p} for the proof. It is enough, by Proposition 7,to show that the indicator
function δnσ(i)<σ(j), factors into riffle independent components over Sn. Let munif

p,q be the uniform
riffle shuffing distribution (which assigns uniform probability to the relative ranking permutations,
and zero probability to all other permutation), let f : Sp → R be δpσ(i)<σ(j), the pairwise ranking
likelihood on Sp, and let g : Sq → R be the uniform distribution on Sq .

7

For any σ ∈ Sn, write (using Lemma 5) σ = τY [πp (πq + p)]. We have:

δnσ(i)<σ(j)(σ) = δnσ(i)<σ(j)(τ
−1
Y σ),

(by Corollary 10),
= δnσ(i)<σ(j)([πp (πq + p)]),

= δpσ(i)<σ(j)(πp),

(since δnσ(i)<σ(j)([πp (πq + p)] only depends on πp),

∝ munif
p,q (τY) · f(πp) · g(πq), (by Proposition 4),

∝ f ⊥munif
p,q

g.

Then use Proposition 7 to conclude the result.

5 Fourier domain algorithms: RiffleJoin and RiffleSplit
In this section, we present two algorithms for working with riffled independence in the Fourier theo-
retic framework of [13, 8, 7] — one algorithm for merging riffled factors to form a joint distribution
(RiffleJoin), and one for extracting riffled factors from a joint (RiffleSplit). We begin with a brief
introduction to Fourier theoretic inference on permutations (see [11, 7] for a detailed exposition).
Unlike its analog on the real line, the Fourier transform of a function on Sn takes the form of a
collection of Fourier coefficient matrices ordered with respect to frequency. Discussing the analog
of frequency for functions on Sn, is beyond the scope of our paper, and, given a distribution h,
we simply index the Fourier coefficient matrices of h as ĥ0, ĥ1, . . . , ĥK ordered with respect to
some measure of increasing complexity. We use ĥ to denote the complete collection of Fourier
coefficient matrices. One rough way to understand this complexity, as mentioned in Section 2,
is by the fact that the low-frequency Fourier coefficient matrices of a distribution can be used to
reconstruct low-order marginals. For example, the first-order matrix of marginals of h can always
be reconstructed from the matrices ĥ0 and ĥ1. As on the real line, many of the familiar properties of
the Fourier transform continue to hold. The following are several basic properties used in this paper:
Proposition 11 (Properties of the Fourier transform, see [2]). Consider any f, g : Sn → R.

• (Linearity) For any α, β ∈ R, [̂αf + βg]i = αf̂i + βĝi holds at all frequency levels i.

• (Convolution) The Fourier transform of a convolution is a product of Fourier transforms:
[f̂ ∗ g]i = f̂i · ĝi, for each frequency level i, where the operation · is matrix multiplication.

• (Normalization) The first coefficient matrix, f̂0, is a scalar and equals
∑
σ∈Sn

f(σ).

A number of papers in recent years ([13, 6, 8, 7]) have considered approximating distributions over
permutations using a truncated (bandlimited) set of Fourier coefficients and have proposed infer-
ence algorithms that operate on these Fourier coefficient matrices. For example, one can perform
generic marginalization, Markov chain prediction, and conditioning operations using only Fourier
coefficients without ever having to perform an inverse Fourier transform. Additionally, Huang et
al. [8] introduced two Fourier domain algorithms, Join and Split, for combining independent factors
to form joint distributions and for extracting the factors from a joint distribution, respectively.

In this section, we provide generalizations of the algorithms in [8] that we call RiffleJoin and Riffle-
Split. We will assume that X = {1, . . . , p}, X̄ = {p+ 1, . . . , n} and that we are given a riffle inde-
pendent distribution h : Sn → R (h = f ⊥mp,q g). We also, for the purposes of this section, assume
that the parameters for the distribution mp,q are known, though it will not matter for the RiffleSplit
algorithm. Although we begin each of the following discussions as if all of the Fourier coefficients
are provided, we will be especially interested in algorithms that work well in cases where only a trun-
cated set of Fourier coefficients are present, and where h is only approximately riffle independent.

RiffleJoin. Given the Fourier coefficients of f , g, and m, we can compute the Fourier coefficients
of h using Definition 3 by applying the Join algorithm from [8] and the Convolution Theorem
(Prop. 11), which tells us that the Fourier transform of a convolution can be written as a pointwise
product of Fourier transforms. To compute the ĥλ, our RiffleJoin algorithm simply calls the Join
algorithm on f̂ and ĝ, and convolves the result by m̂ (see Alg. 2). In general, it may be intractable
to Fourier transform the riffle shuffling distribution mp,q . However, for the class of biased riffle

8

RIFFLEJOIN(bf, bg)1 bh′ = JOIN(bf, bg) ;2
foreach frequency level i do3 bhi ← h

m̂α
p,q

i
i
· bh′i ;4

return bh ;5

Algorithm 2: Pseudocode for RiffleJoin

RIFFLESPLIT(bh)1
foreach frequency level i do2 bh′i ← ˆ bmunif

p,q

˜T
i
· bhi ;3

[bf, bg] ← SPLIT(bh′) ;4

Normalize f̂ and ĝ;5

return f̂ , ĝ;6

Algorithm 3: Pseudocode for RiffleSplit

shuffles from Section 3, one can efficiently compute the low-frequency terms of m̂α
p,q by employing

the recurrence relation in Alg. 1. In particular, Alg. 1 expresses a biased riffle shuffle on Sn as a
linear combination of biased riffle shuffles on Sn−1. By invoking linearity of the Fourier transform
(Prop. 11), one can efficiently compute m̂α

p,q via a dynamic programming approach. See Appendix
A for a description of our algorithm for Fourier transforming biased riffle shuffles. To the best of
our knowledge, we are the first to compute the Fourier transform of riffle shuffling distributions.

RiffleSplit. Given the Fourier coefficients of the riffle independent distribution h, we would like to
tease apart the riffle factors f and g. From the RiffleJoin algorithm, we saw that for each frequency
level i, ĥi = [m̂p,q]i ·[f̂ · g]i. The first solution to the splitting problem that might occur is to perform
a deconvolution by multiplying each ĥi term by the inverse of the matrix [m̂p,q]i (to form [m̂p,q]

−1
i ·

ĥi) and call the Split algorithm from [8] on the result. Unfortunately, the matrix [m̂p,q]i is, in general,

non-invertible. Instead, our RiffleSplit algorithm left-multiplies each ĥi term by
[
m̂unif
p,q

]T
i

, which
can be shown to be equivalent to convolving the distribution h by the ‘dual shuffle’, m∗, defined as
m∗(σ) = munif

p,q (σ−1). While convolving by m∗ does not produce a distribution that factors inde-
pendently, the Split algorithm from [8] can still be shown to recover the Fourier transforms f̂ and ĝ:

Theorem 12. If h = f ⊥mp,q
g, then RiffleSplit (Alg. 3) (with ĥ as input), returns f̂ and ĝ exactly.

Proof (of Theorem 12). This follows from the more general result in Theorem 14 whose proof can
be found in Appendix B.

As with RiffleJoin, it is necessary to compute the Fourier coefficients of munif
p,q , which we can again

accomplish via the recurrence in Alg. 1. It is also necessary to normalize the output of Split to sum
to one, but fortunately, normalizing a function f can be performed in the Fourier domain simply by
dividing each Fourier coefficient matrix by f̂0 (Prop. 11).

Theoretical guarantees. We now briefly summarize several results which show how, (1) our
algorithms perform when called with a truncated set of Fourier coefficients, and (2) when RiffleSplit
is called on a distribution which is only approximately riffle independent.

Theorem 13. Given enough Fourier terms to reconstruct the kth-order marginals of f and g, Rif-
fleJoin returns enough Fourier terms to exactly reconstruct the kth-order marginals of h. Likewise,
given enough Fourier terms to reconstruct the kth-order marginals of h, RiffleSplit returns enough
Fourier terms to exactly reconstruct the kth-order marginals of both f and g.

Proof (of Theorem 13). This result is a simple consequence of the well-known convolution theo-
rem 11 and Theorems 9 and 12 from Huang et al. [8]. Theorem 9 from [8] states that, given sth-
order marginals of factors f and g, the Join algorithm can reconstruct the sth-order marginals of the
joint distribution f · g, exactly. Since the riffled independence joint is m ∗ (f · g) and convolution
operations are pointwise in the Fourier domain (Proposition 11), then given enough Fourier terms
to reconstruct the sth-order marginals of the function mp,q , we can also reconstruct the sth-order
marginals of the riffle independent joint distribution from the output of RiffleSplit.

Theorem 14. Let h be any distribution on Sn and mp,q any riffle shuffling distribution on Sn. If
[f̂ ′, ĝ′] = RIFFLESPLIT(ĥ), then (f ′, g′) is the minimizer of the problem:

minimizef,g DKL(h||f ⊥mp,q
g), (subject to:

∑
σp
f(σp) = 1,

∑
σq
g(σq) = 1),

where DKL is the Kullback-Leibler divergence.
The proof of Theorem 14 is deferred to Appendix B.

9

10 20 30 40 50 60 70 80 90 100 110 120
APA ranking distribution

true distribution

Remove candidate {3} (D
KL

=0.1878)

Remove candidate {2} (D
KL

=0.0398)

(a) Purple line: approximation to vote distribution when candidate 2 is riffle independent;
Blue line: approximation when candidate 3 is riffle independent.

50 100 200 400 800 1600 3200

−9000

−8500

−8000

−7500

Training set size

Lo
g−

lik
el

ih
oo

d
of

 h
el

d−
ou

t t
es

t s
et

Full model

Riffle Independent w/optimal m

Biased riffle independent w/optimal α

(b) Average log-likelihood of held out
test examples from the Sushi dataset

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Ranks i = 1 (favorite) through 10 (least favorite)

P
ro

ba
bi

lit
y

of
 U

ni
/S

ea
 U

rc
hi

n
in

 r
an

k
i

Estimated from 1000 examples
Estimated from 100 examples
Biased riffle indep. approx.

(c) First-order probabilities of Uni (sea
urchin) (Sushi dataset) rankings.

100 200 300 400 500 600
0

5

10

15

20

25

Sample sizes

K
L

di
ve

rg
en

ce
 fr

om
 tr

ut
h

(2
0

tr
ia

ls
)

Split algorithm

RiffleSplit algorithm

(d) Estimating a riffle independent distri-
bution using various sample sizes

10 20 30 40
0

20

40

60

80

100

n, p=n/2

E
la

ps
ed

 ti
m

e
in

 s
ec

on
d

1st order (O(n2) terms)

2nd order (O(n4) terms)

3rd order (O(n4) terms)

(e) Running time plot of RiffleJoin

Figure 4: Experiments

6 Experiments
In this section, we discuss several experiments demonstrating riffled independence in real data and
validating our Fourier-domain algorithms.
APA dataset. The APA dataset [3] is a collection of 5738 ballots from a 1980 presidential election
of the American Psychological Association where members ordered five candidates from favorite
to least favorite. We first perform an exhaustive search for subsets X and X̄ that are closest to riffle
independent (with respect to DKL), and find that candidate 2 is nearly riffle independent of the
remaining candidates. In Fig. 4(a) we plot the true vote distribution and the best approximation by a
distribution in which candidate 2 is riffle independent of the rest. For comparison, we plot the result
of splitting off candidate 3 instead of candidate 2, which one can see to be an inferior approximation.

The APA, as described by Diaconis [3], is divided into “academicians and clinicians who are on
uneasy terms”. In 1980, candidates {1, 3} and {4, 5} fell on opposite ends of this political spectrum
with candidate 2 being somewhat independent. Diaconis conjectured that voters choose one group
over the other, and then choose within. We are now able to verify his conjecture in a riffled
independence sense. After removing candidate 2 from the distribution, we perform a search within
candidates {1, 3, 4, 5} to again find nearly riffle independent subsets. We find that X = {1, 3} and
X̄ = {4, 5} are very nearly riffle independent and thus are able to verify that candidate sets {2},
{1, 3}, {4, 5} are indeed grouped in a riffle independent sense in the APA data. Finally since there
are two opposing groups within the APA, the riffle shuffling distribution for sets {1, 3} and {4, 5} is
not well approximated by a biased riffle shuffle. Instead, we fit a mixture of two biased riffle shuffles
to the data and found the bias parameters of the mixture components to be α1 ≈ .67 and α2 ≈ .17,
indicating that the two components oppose each other (since α1 and α2 lie on either side of .5).

Sushi dataset. The sushi dataset [10] consists of 5000 full rankings of ten types of sushi. Com-
pared to the APA data, it has more objects, but fewer examples. We divided the data into training
and test sets and estimated the true distribution in three ways: (1) directly from samples,(2) using
a riffle independent distribution (split evenly into two groups of five) with the optimal shuffling
distribution m, and (3) with a biased riffle shuffle (and optimal bias α). Fig. 4(b) plots testset
log-likelihood as a function of training set size — we see that riffle independence assumptions can
help significantly to lower the sample complexity of learning. Biased riffle shuffles, as can be seen,
are a useful learning bias with very small samples. As an illustration, see Fig. 4(c) which shows the
first-order marginals of Uni (Sea Urchin) rankings, and the biased riffle approximation.

Approximation accuracy. To understand the behavior of RiffleSplit in approximately riffle
independent situations, we draw sample sets of varying sizes from a riffle independent distribution

10

on S8 (with bias parameter α = .25) and use RiffleSplit to estimate the riffle factors from the
empirical distribution. In Fig. 4(d), we plot the KL-divergence between the true distribution and
that obtained by applying RiffleJoin to the estimated riffle factors. With small sample sizes (far
less than 8!), we are able to recover accurate approximations despite the fact that the empirical
distributions are not exactly riffle independent. For comparison, we ran the experiment using the
Split algorithm [8] to recover the riffle factors. Somewhat surprisingly, one can show that Split also
recovers the riffle factors, albeit without the optimality guarantee that we have shown for Rifflesplit
(Theorem 14) and therefore requires far more samples to reliably approximate h.

Running times. In general, the complexity of Split is cubic (O(d3)) in the dimension of each
Fourier coefficient matrix [8]. The complexity of RiffleJoin/RiffleSplit isO(n2d3), in the worst case
when p ∼ O(n). If we precompute the Fourier coefficients of mp,q , (which requires O(n2d3)) for
each coefficient matrix, then the complexity of RiffleSplit is alsoO(d3). In Fig. 4(e), we plot running
times of RiffleJoin (no precomputation) as a function of n (setting p = dn/2e) scaling up to n = 40.

7 Future Directions and Conclusions
There are many open questions. For example, several papers note that graphical models cannot
compactly represent distributions over permutations due to mutual exclusivity. An interesting
question which our paper opens, is whether it is possible to use something similar to graphical
models by substituting conditional generalizations of riffled independence for ordinary conditional
independence. Other possibilities include going beyond the algebraic approach and studying riffled
independence in non-Fourier frameworks and developing statistical (riffled) independence tests.

In summary, we have introduced riffled independence and discussed how to exploit such structure
in a Fourier-theoretic framework. Riffled independence is a new tool for analyzing ranked data and
has the potential to offer novel insights into datasets both new and old. We believe that it will lead
to the development of fast inference and low sample complexity learning algorithms.

Acknowledgements
This work is supported in part by the ONR under MURI N000140710747 as well as the Young In-
vestigator Program grant N00014-08-1-0752. We also thank Khalid El-Arini for providing valuable
feedback on an initial draft of the paper.

References
[1] D. Bayer and P. Diaconis. Trailing the dovetail shuffle to its lair. The Annals of Probability, 1992.

[2] P. Diaconis. Group Representations in Probability and Statistics. IMS Lecture Notes, 1988.

[3] P. Diaconis. A generalization of spectral analysis with application to ranked data. The Annals of Statistics,
17(3):949–979, 1989.

[4] J. Fulman. The combinatorics of biased riffle shuffles. Combinatorica, 18(2):173–184, 1998.

[5] D. P. Helmbold and M. K. Warmuth. Learning permutations with exponential weights. In COLT, 2007.

[6] J. Huang, C. Guestrin, and L. Guibas. Efficient inference for distributions on permutations. In NIPS,
2007.

[7] J. Huang, C. Guestrin, and L. Guibas. Fourier theoretic probabilistic inference over permutations. JMLR,
10, 2009.

[8] J. Huang, C. Guestrin, X. Jiang, and L. Guibas. Exploiting probabilistic independence for permutations.
In AISTATS, 2009.

[9] S. Jagabathula and D. Shah. Inferring rankings under constrained sensing. In NIPS, 2008.

[10] T. Kamishima. Nantonac collaborative filtering: recommendation based on order responses. In KDD,
pages 583–588, 2003.

[11] R. Kondor. Group Theoretical Methods in Machine Learning. PhD thesis, Columbia University, 2008.

[12] R. Kondor and K. M. Borgwardt. The skew spectrum of graphs. In ICML, pages 496–503, 2008.

[13] R. Kondor, A. Howard, and T. Jebara. Multi-object tracking with representations of the symmetric group.
In AISTATS, 2007.

[14] G. Lebanon and Y. Mao. Non-parametric modeling of partially ranked data. In NIPS, 2008.

11

RIFFLEHAT(p, q)1
n← p+ q ;2
Initialize bmprev, bmcurr as arrays of p+ 1 Fourier transform data structures ;3
for i = 1, 2, ..., n do4

for j = max(0, p− n+ i), . . . ,min(i, p) do5
if j == 0 or j == i then6 bmcurr[j]← bδε∈Si ;7
else8 bmcurr[j]←

`
i−j
i

´
EMBED(bmprev[j], i− 1, i)9

+
“
i
j

”
CONVOLVE(EMBED(bmprev[j − 1], i− 1, i), bδ(i,i−1,...,j));10 bmprev ← bmcurr ;11

return bmcurr[p];12

Algorithm 4: Pseudocode for computing the Fourier transform of the uniform riffle shuffling distri-
bution using dynamic programming.

[15] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes. Consensus ranking under the exponential model.
Technical Report 515, University of Washington, Statistics Department, April 2007.

[16] J. Petterson, T. Caetano, J. McAuley, and J. Yu. Exponential family graph matching and ranking. CoRR,
abs/0904.2623, 2009.

[17] D.B. Reid. An algorithm for tracking multiple targets. IEEE Trans. on Automatic Control, 6:843–854,
1979.

[18] B. Sagan. The Symmetric Group. Springer, 2001.

[19] J. Shin, N. Lee, S. Thrun, and L. Guibas. Lazy inference on object identities in wireless sensor networks.
In IPSN, 2005.

Appendix A: Fourier transforming the biased riffle shuffle

We describe the recurrence satisfied by munif
p,q , allowing one to write munif

p,q , a distribution
on Sn, in terms of munif

p,q−1 and munif
p−1,q , distributions over Sn−1 (see Alg. 1 in main paper).

Given a function f : Sn−1 → R, we will define the embedded function f ↑nn−1: Sn → R by
f ↑nn−1 (σ) = f(σ1, . . . , σn−1) if σ(n) = n, and 0 otherwise. Algorithm 1 can be then rephrased
as a legitimate recurrence relation as follows.

Proposition 15. The uniform riffle shuffling distribution munif
p,q obeys the recurrence relation:

munif
p,q =

[(
p

p+ q

)
·munif

p−1,q ↑nn−1 ∗δ(p+1,...,n)

]
+
[(

q

p+ q

)
·munif

p,q−1 ↑nn−1

]
, (7.1)

with base cases: munif
0,n = munif

n,0 = δε, where δε is the delta function at the identity permutation.

Note that by taking the support sizes of each of the functions in the above recurrence, we recover
the following well known recurrence for binomial coefficients:(

n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
, with base case

(
n

0

)
=
(
n

n

)
= 1. (7.2)

The biased riffle shuffle is defined by:

mα
p,q ∝

[(
αp

p+ q

)
·munif

p−1,q ↑nn−1 ∗δ(p+1,...,n)

]
+
[(

(1− α)q
p+ q

)
·munif

p,q−1 ↑nn−1

]
(7.3)

Writing the recursion in the form of Equation 7.1 provides a construction of the uniform riffle shuffle
as a sequence of operations on smaller distribution which can be performed completely with respect
to Fourier coefficients. In particular, given the Fourier coefficients of a function f : Sn−1 → R,
one can construct the Fourier coefficients of the embedding f ↑nn−1 by applying the branching rule
(see [18, 12] for details). Using the linearity property, the Convolution Theorem 11 and the fact that

12

embeddings can be performed in the Fourier domain, we arrive at the equivalent Fourier-theoretic
recurrence for each frequency level i.[

m̂unif
p,q

]
i

=
(

p

p+ q

)
·
[
m̂unif
p−1,q ↑nn−1

]
i

· ρi(p+ 1, . . . , n) +
(

q

p+ q

)
·
[
m̂unif
p,q−1

]
i

(7.4)

where ρi is the ith irreducible representation matrix evaluated at the cycle (p + 1, . . . , n) (see [7]
for details on irreducible representations). Implementing the recurrence (Equation 7.4) in code can
naively result in an exponential time algorithm if one is not careful. It is necessary to use dynamic
programming to be sure not to recompute things that were already computed. In Algorithm 4, we
present pseudocode of such a dynamic programming approach, which builds a ‘Pascal’s triangle’
similar to that which might be constructed to compute a table of binomial coefficients. The pseu-
docode assumes the existence of Fourier domain algorithms for convolving distributions and for
embedding a distribution over Sn−1 into Sn.

Appendix B: Proof of Theorem 14

Proof (of Theorem 14). Fix any mp,q . Given an arbitrary distribution h : Sn → R, we want to

find distributions f , and g, such that h̃ = f ⊥mp,q
g minimizes DKL

(
h || h̃

)
. Thus, we want to

minimize the functional:
∑
σ∈Sn

h(σ) log
(
h(σ)

h̃(σ)

)
, or equivalently, maximize:∑

σ∈Sn

h(σ) log h̃(σ) =
∑
σ∈Sn

h(σ) log(mp,q(τY (σ)) · f(φ(σX)) · g(φ(σX̄))),

=
∑
σ∈Sn

h(σ) logmp,q(τY (σ)) +
∑
σ∈Sn

h(σ) log f(φ(σX)) +
∑
σ∈Sn

h(σ) log g(φ(σX̄)),

subject to the constraints that f and g, sum to one. Forming the Lagrangian, we have:

L(f, g, µ, ν) =
∑
σ

h(σ) log f(φ(σX)) + µ(1−
∑
πp∈Sp

f(πp))

+
∑
σ

h(σ) log g(φ(σX̄)) + ν(1−
∑
πq∈Sq

g(πq)) + constants.

Differentiating the Lagrangian (and setting the partials to zero), we have:

∂L
∂f(πp)

=
∑

σ : φ(σX)=πp

h(σ)
f(πp)

+ µ = 0,

∂L
∂g(πq)

=
∑

σ : φ(σX̄)=πq

h(σ)
g(πq)

+ ν = 0.

Therefore,
f(πp) ∝

∑
{σ : φ(σX)=πp}

h(σ), and g(πq) ∝
∑

{σ : φ(σX̄)=πq}

h(σ).

By Lemma 5, we can write the factors f and g as:

f(πp) ∝
∑
πq∈Sq

∑
τY ∈Ωp,q

h(τY [πp (πq + p)]), and

g(πq) ∝
∑
πp∈Sp

∑
τY ∈Ωp,q

h(τY [πp (πq + p)]).

To compute the functions f and g, we can therefore first form the function: h′(σ) =∑
τY ∈Ωp,q

h(τY σ), and call the Split algorithm from [8] on h′ (which depends only on elements
in Sp × Sq). Let munif

p,q be the uniform riffle shuffling distribution on Sn which assigns uniform

13

probability to all relative ranking permutations in Ωp,q , and zero probability to all other elements in
Sn. Define the ‘dual shuffle’ m∗p,q by: m∗p,q(σ) = munif

p,q (σ−1) for all σ ∈ Sn. We can rewrite the
function h′ : Sn → R as a convolution of the dual-shuffle with h:

h′(σ) ∝
∑
π∈Sn

munif
p,q (π)h(πσ),

∝
∑
π∈Sn

m∗p,q(π)h(π−1σ),

∝ [m∗p,q ∗ h](σ).

Applying the convolution theorem, we have that ĥ′λi
= [m̂∗p,q]λi

· ĥλi
. The only thing that is left

is to show that Fourier coefficient matrices of the uniform riffle shuffle are exactly the same as the
Fourier coefficient matrices of its dual shuffle, except transposed. Let i denote any frequency level
and let ρi be its corresponding irreducible representation for Sn. We will assume, for the purposes
of this proof, that all irreducible representation matrices are orthogonal.

[m̂unif
p,q]i =

∑
σ∈Sn

munif
p,q (σ)ρi(σ),

=
∑
σ∈Sn

munif
p,q (σ−1)ρi(σ−1),

=
∑
σ∈Sn

m∗p,q(σ)ρi(σ)T ,

=
(

[m̂∗p,q]i
)T

.

and the Split algorithm from [8] yields the finally RiffleSplit algorithm.

14

